The following issues were found
modules/core/misc/java/src/java/core+MatOfDMatch.java
9 issues
Line: 37
public MatOfDMatch(DMatch...ap) {
super();
fromArray(ap);
}
public void alloc(int elemNumber) {
if(elemNumber>0)
super.create(elemNumber, 1, CvType.makeType(_depth, _channels));
Reported by PMD.
Line: 6
import java.util.Arrays;
import java.util.List;
import org.opencv.core.DMatch;
public class MatOfDMatch extends Mat {
// 32FC4
private static final int _depth = CvType.CV_32F;
private static final int _channels = 4;
Reported by PMD.
Line: 51
return;
int num = a.length;
alloc(num);
float buff[] = new float[num * _channels];
for(int i=0; i<num; i++) {
DMatch m = a[i];
buff[_channels*i+0] = m.queryIdx;
buff[_channels*i+1] = m.trainIdx;
buff[_channels*i+2] = m.imgIdx;
Reported by PMD.
Line: 54
float buff[] = new float[num * _channels];
for(int i=0; i<num; i++) {
DMatch m = a[i];
buff[_channels*i+0] = m.queryIdx;
buff[_channels*i+1] = m.trainIdx;
buff[_channels*i+2] = m.imgIdx;
buff[_channels*i+3] = m.distance;
}
put(0, 0, buff); //TODO: check ret val!
Reported by PMD.
Line: 55
for(int i=0; i<num; i++) {
DMatch m = a[i];
buff[_channels*i+0] = m.queryIdx;
buff[_channels*i+1] = m.trainIdx;
buff[_channels*i+2] = m.imgIdx;
buff[_channels*i+3] = m.distance;
}
put(0, 0, buff); //TODO: check ret val!
}
Reported by PMD.
Line: 56
DMatch m = a[i];
buff[_channels*i+0] = m.queryIdx;
buff[_channels*i+1] = m.trainIdx;
buff[_channels*i+2] = m.imgIdx;
buff[_channels*i+3] = m.distance;
}
put(0, 0, buff); //TODO: check ret val!
}
Reported by PMD.
Line: 57
buff[_channels*i+0] = m.queryIdx;
buff[_channels*i+1] = m.trainIdx;
buff[_channels*i+2] = m.imgIdx;
buff[_channels*i+3] = m.distance;
}
put(0, 0, buff); //TODO: check ret val!
}
public DMatch[] toArray() {
Reported by PMD.
Line: 64
public DMatch[] toArray() {
int num = (int) total();
DMatch[] a = new DMatch[num];
if(num == 0)
return a;
float buff[] = new float[num * _channels];
get(0, 0, buff); //TODO: check ret val!
for(int i=0; i<num; i++)
Reported by PMD.
Line: 70
float buff[] = new float[num * _channels];
get(0, 0, buff); //TODO: check ret val!
for(int i=0; i<num; i++)
a[i] = new DMatch((int) buff[_channels*i+0], (int) buff[_channels*i+1], (int) buff[_channels*i+2], buff[_channels*i+3]);
return a;
}
public void fromList(List<DMatch> ldm) {
DMatch adm[] = ldm.toArray(new DMatch[0]);
Reported by PMD.
samples/python/tutorial_code/features2D/feature_flann_matcher/SURF_FLANN_matching_Demo.py
9 issues
Line: 2
Column: 1
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
parser = argparse.ArgumentParser(description='Code for Feature Matching with FLANN tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='box.png')
parser.add_argument('--input2', help='Path to input image 2.', default='box_in_scene.png')
args = parser.parse_args()
Reported by Pylint.
Line: 1
Column: 1
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
parser = argparse.ArgumentParser(description='Code for Feature Matching with FLANN tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='box.png')
parser.add_argument('--input2', help='Path to input image 2.', default='box_in_scene.png')
args = parser.parse_args()
Reported by Pylint.
Line: 1
Column: 1
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
parser = argparse.ArgumentParser(description='Code for Feature Matching with FLANN tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='box.png')
parser.add_argument('--input2', help='Path to input image 2.', default='box_in_scene.png')
args = parser.parse_args()
Reported by Pylint.
Line: 4
Column: 1
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
parser = argparse.ArgumentParser(description='Code for Feature Matching with FLANN tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='box.png')
parser.add_argument('--input2', help='Path to input image 2.', default='box_in_scene.png')
args = parser.parse_args()
Reported by Pylint.
Line: 15
Column: 5
img2 = cv.imread(cv.samples.findFile(args.input2), cv.IMREAD_GRAYSCALE)
if img1 is None or img2 is None:
print('Could not open or find the images!')
exit(0)
#-- Step 1: Detect the keypoints using SURF Detector, compute the descriptors
minHessian = 400
detector = cv.xfeatures2d_SURF.create(hessianThreshold=minHessian)
keypoints1, descriptors1 = detector.detectAndCompute(img1, None)
Reported by Pylint.
Line: 18
Column: 1
exit(0)
#-- Step 1: Detect the keypoints using SURF Detector, compute the descriptors
minHessian = 400
detector = cv.xfeatures2d_SURF.create(hessianThreshold=minHessian)
keypoints1, descriptors1 = detector.detectAndCompute(img1, None)
keypoints2, descriptors2 = detector.detectAndCompute(img2, None)
#-- Step 2: Matching descriptor vectors with a FLANN based matcher
Reported by Pylint.
Line: 29
Column: 1
knn_matches = matcher.knnMatch(descriptors1, descriptors2, 2)
#-- Filter matches using the Lowe's ratio test
ratio_thresh = 0.7
good_matches = []
for m,n in knn_matches:
if m.distance < ratio_thresh * n.distance:
good_matches.append(m)
Reported by Pylint.
Line: 36
Column: 1
good_matches.append(m)
#-- Draw matches
img_matches = np.empty((max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1], 3), dtype=np.uint8)
cv.drawMatches(img1, keypoints1, img2, keypoints2, good_matches, img_matches, flags=cv.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
#-- Show detected matches
cv.imshow('Good Matches', img_matches)
Reported by Pylint.
Line: 37
Column: 1
#-- Draw matches
img_matches = np.empty((max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1], 3), dtype=np.uint8)
cv.drawMatches(img1, keypoints1, img2, keypoints2, good_matches, img_matches, flags=cv.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
#-- Show detected matches
cv.imshow('Good Matches', img_matches)
cv.waitKey()
Reported by Pylint.
modules/core/misc/java/src/java/core+KeyPoint.java
8 issues
Line: 3
package org.opencv.core;
import org.opencv.core.Point;
//javadoc: KeyPoint
public class KeyPoint {
/**
* Coordinates of the keypoint.
Reported by PMD.
Line: 6
import org.opencv.core.Point;
//javadoc: KeyPoint
public class KeyPoint {
/**
* Coordinates of the keypoint.
*/
public Point pt;
Reported by PMD.
Line: 11
/**
* Coordinates of the keypoint.
*/
public Point pt;
/**
* Diameter of the useful keypoint adjacent area.
*/
public float size;
/**
Reported by PMD.
Line: 15
/**
* Diameter of the useful keypoint adjacent area.
*/
public float size;
/**
* Computed orientation of the keypoint (-1 if not applicable).
*/
public float angle;
/**
Reported by PMD.
Line: 19
/**
* Computed orientation of the keypoint (-1 if not applicable).
*/
public float angle;
/**
* The response, by which the strongest keypoints have been selected. Can
* be used for further sorting or subsampling.
*/
public float response;
Reported by PMD.
Line: 24
* The response, by which the strongest keypoints have been selected. Can
* be used for further sorting or subsampling.
*/
public float response;
/**
* Octave (pyramid layer), from which the keypoint has been extracted.
*/
public int octave;
/**
Reported by PMD.
Line: 28
/**
* Octave (pyramid layer), from which the keypoint has been extracted.
*/
public int octave;
/**
* Object ID, that can be used to cluster keypoints by an object they
* belong to.
*/
public int class_id;
Reported by PMD.
Line: 33
* Object ID, that can be used to cluster keypoints by an object they
* belong to.
*/
public int class_id;
// javadoc:KeyPoint::KeyPoint(x,y,_size,_angle,_response,_octave,_class_id)
public KeyPoint(float x, float y, float _size, float _angle, float _response, int _octave, int _class_id) {
pt = new Point(x, y);
size = _size;
Reported by PMD.
samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py
8 issues
Line: 2
Column: 1
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
from math import sqrt
## [load]
parser = argparse.ArgumentParser(description='Code for AKAZE local features matching tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='graf1.png')
Reported by Pylint.
Line: 1
Column: 1
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
from math import sqrt
## [load]
parser = argparse.ArgumentParser(description='Code for AKAZE local features matching tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='graf1.png')
Reported by Pylint.
Line: 1
Column: 1
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
from math import sqrt
## [load]
parser = argparse.ArgumentParser(description='Code for AKAZE local features matching tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='graf1.png')
Reported by Pylint.
Line: 4
Column: 1
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
from math import sqrt
## [load]
parser = argparse.ArgumentParser(description='Code for AKAZE local features matching tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='graf1.png')
Reported by Pylint.
Line: 5
Column: 1
import cv2 as cv
import numpy as np
import argparse
from math import sqrt
## [load]
parser = argparse.ArgumentParser(description='Code for AKAZE local features matching tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='graf1.png')
parser.add_argument('--input2', help='Path to input image 2.', default='graf3.png')
Reported by Pylint.
Line: 18
Column: 5
img2 = cv.imread(cv.samples.findFile(args.input2), cv.IMREAD_GRAYSCALE)
if img1 is None or img2 is None:
print('Could not open or find the images!')
exit(0)
fs = cv.FileStorage(cv.samples.findFile(args.homography), cv.FILE_STORAGE_READ)
homography = fs.getFirstTopLevelNode().mat()
## [load]
Reported by Pylint.
Line: 38
Column: 1
## [ratio test filtering]
matched1 = []
matched2 = []
nn_match_ratio = 0.8 # Nearest neighbor matching ratio
for m, n in nn_matches:
if m.distance < nn_match_ratio * n.distance:
matched1.append(kpts1[m.queryIdx])
matched2.append(kpts2[m.trainIdx])
## [ratio test filtering]
Reported by Pylint.
Line: 49
Column: 1
inliers1 = []
inliers2 = []
good_matches = []
inlier_threshold = 2.5 # Distance threshold to identify inliers with homography check
for i, m in enumerate(matched1):
col = np.ones((3,1), dtype=np.float64)
col[0:2,0] = m.pt
col = np.dot(homography, col)
Reported by Pylint.
samples/python/tutorial_code/imgProc/morph_lines_detection/morph_lines_detection.py
8 issues
Line: 7
Column: 1
"""
import numpy as np
import sys
import cv2 as cv
def show_wait_destroy(winname, img):
cv.imshow(winname, img)
cv.moveWindow(winname, 500, 0)
Reported by Pylint.
Line: 100
Column: 5
vertical = cv.bitwise_not(vertical)
show_wait_destroy("vertical_bit", vertical)
'''
Extract edges and smooth image according to the logic
1. extract edges
2. dilate(edges)
3. src.copyTo(smooth)
4. blur smooth img
Reported by Pylint.
Line: 6
Column: 1
@brief Use morphology transformations for extracting horizontal and vertical lines sample code
"""
import numpy as np
import sys
import cv2 as cv
def show_wait_destroy(winname, img):
cv.imshow(winname, img)
Reported by Pylint.
Line: 10
Column: 1
import cv2 as cv
def show_wait_destroy(winname, img):
cv.imshow(winname, img)
cv.moveWindow(winname, 500, 0)
cv.waitKey(0)
cv.destroyWindow(winname)
Reported by Pylint.
Line: 17
Column: 1
cv.destroyWindow(winname)
def main(argv):
# [load_image]
# Check number of arguments
if len(argv) < 1:
print ('Not enough parameters')
print ('Usage:\nmorph_lines_detection.py < path_to_image >')
Reported by Pylint.
Line: 51
Column: 5
# [bin]
# Apply adaptiveThreshold at the bitwise_not of gray, notice the ~ symbol
gray = cv.bitwise_not(gray)
bw = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, \
cv.THRESH_BINARY, 15, -2)
# Show binary image
show_wait_destroy("binary", bw)
# [bin]
Reported by Pylint.
Line: 69
Column: 5
horizontal_size = cols // 30
# Create structure element for extracting horizontal lines through morphology operations
horizontalStructure = cv.getStructuringElement(cv.MORPH_RECT, (horizontal_size, 1))
# Apply morphology operations
horizontal = cv.erode(horizontal, horizontalStructure)
horizontal = cv.dilate(horizontal, horizontalStructure)
Reported by Pylint.
Line: 85
Column: 5
verticalsize = rows // 30
# Create structure element for extracting vertical lines through morphology operations
verticalStructure = cv.getStructuringElement(cv.MORPH_RECT, (1, verticalsize))
# Apply morphology operations
vertical = cv.erode(vertical, verticalStructure)
vertical = cv.dilate(vertical, verticalStructure)
Reported by Pylint.
samples/dnn/dnn_model_runner/dnn_conversion/common/abstract_model.py
8 issues
Line: 1
Column: 1
from abc import ABC, ABCMeta, abstractmethod
class AbstractModel(ABC):
@abstractmethod
def get_prepared_models(self):
pass
Reported by Pylint.
Line: 4
Column: 1
from abc import ABC, ABCMeta, abstractmethod
class AbstractModel(ABC):
@abstractmethod
def get_prepared_models(self):
pass
Reported by Pylint.
Line: 4
Column: 1
from abc import ABC, ABCMeta, abstractmethod
class AbstractModel(ABC):
@abstractmethod
def get_prepared_models(self):
pass
Reported by Pylint.
Line: 7
Column: 5
class AbstractModel(ABC):
@abstractmethod
def get_prepared_models(self):
pass
class Framework(object):
in_blob_name = ''
Reported by Pylint.
Line: 11
Column: 1
pass
class Framework(object):
in_blob_name = ''
out_blob_name = ''
__metaclass__ = ABCMeta
Reported by Pylint.
Line: 11
Column: 1
pass
class Framework(object):
in_blob_name = ''
out_blob_name = ''
__metaclass__ = ABCMeta
Reported by Pylint.
Line: 18
Column: 5
__metaclass__ = ABCMeta
@abstractmethod
def get_name(self):
pass
@abstractmethod
def get_output(self, input_blob):
pass
Reported by Pylint.
Line: 22
Column: 5
pass
@abstractmethod
def get_output(self, input_blob):
pass
Reported by Pylint.
samples/android/tutorial-4-opencl/src/org/opencv/samples/tutorial4/Tutorial4Activity.java
8 issues
Line: 15
public class Tutorial4Activity extends Activity {
private MyGLSurfaceView mView;
private TextView mProcMode;
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
Reported by PMD.
Line: 16
public class Tutorial4Activity extends Activity {
private MyGLSurfaceView mView;
private TextView mProcMode;
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
requestWindowFeature(Window.FEATURE_NO_TITLE);
Reported by PMD.
Line: 22
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
requestWindowFeature(Window.FEATURE_NO_TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG_FULLSCREEN);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON,
WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);
Reported by PMD.
Line: 24
requestWindowFeature(Window.FEATURE_NO_TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG_FULLSCREEN);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON,
WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);
//mView = new MyGLSurfaceView(this, null);
//setContentView(mView);
Reported by PMD.
Line: 33
setContentView(R.layout.activity);
mView = (MyGLSurfaceView) findViewById(R.id.my_gl_surface_view);
mView.setCameraTextureListener(mView);
TextView tv = (TextView)findViewById(R.id.fps_text_view);
mProcMode = (TextView)findViewById(R.id.proc_mode_text_view);
runOnUiThread(new Runnable() {
public void run() {
mProcMode.setText("Processing mode: No processing");
}
Reported by PMD.
Line: 59
@Override
public boolean onCreateOptionsMenu(Menu menu) {
MenuInflater inflater = getMenuInflater();
inflater.inflate(R.menu.menu, menu);
return super.onCreateOptionsMenu(menu);
}
@Override
public boolean onOptionsItemSelected(MenuItem item) {
Reported by PMD.
Line: 33
setContentView(R.layout.activity);
mView = (MyGLSurfaceView) findViewById(R.id.my_gl_surface_view);
mView.setCameraTextureListener(mView);
TextView tv = (TextView)findViewById(R.id.fps_text_view);
mProcMode = (TextView)findViewById(R.id.proc_mode_text_view);
runOnUiThread(new Runnable() {
public void run() {
mProcMode.setText("Processing mode: No processing");
}
Reported by PMD.
Line: 33
setContentView(R.layout.activity);
mView = (MyGLSurfaceView) findViewById(R.id.my_gl_surface_view);
mView.setCameraTextureListener(mView);
TextView tv = (TextView)findViewById(R.id.fps_text_view);
mProcMode = (TextView)findViewById(R.id.proc_mode_text_view);
runOnUiThread(new Runnable() {
public void run() {
mProcMode.setText("Processing mode: No processing");
}
Reported by PMD.
samples/android/camera-calibration/src/org/opencv/samples/cameracalibration/CalibrationResult.java
8 issues
Line: 10
import android.content.SharedPreferences;
import android.util.Log;
public abstract class CalibrationResult {
private static final String TAG = "OCV::CalibrationResult";
private static final int CAMERA_MATRIX_ROWS = 3;
private static final int CAMERA_MATRIX_COLS = 3;
private static final int DISTORTION_COEFFICIENTS_SIZE = 5;
Reported by PMD.
Line: 19
public static void save(Activity activity, Mat cameraMatrix, Mat distortionCoefficients) {
SharedPreferences sharedPref = activity.getPreferences(Context.MODE_PRIVATE);
SharedPreferences.Editor editor = sharedPref.edit();
double[] cameraMatrixArray = new double[CAMERA_MATRIX_ROWS * CAMERA_MATRIX_COLS];
cameraMatrix.get(0, 0, cameraMatrixArray);
for (int i = 0; i < CAMERA_MATRIX_ROWS; i++) {
for (int j = 0; j < CAMERA_MATRIX_COLS; j++) {
Reported by PMD.
Line: 37
editor.putFloat(Integer.toString(i), (float)distortionCoefficientsArray[i-shift]);
}
editor.apply();
Log.i(TAG, "Saved camera matrix: " + cameraMatrix.dump());
Log.i(TAG, "Saved distortion coefficients: " + distortionCoefficients.dump());
}
public static boolean tryLoad(Activity activity, Mat cameraMatrix, Mat distortionCoefficients) {
Reported by PMD.
Line: 44
public static boolean tryLoad(Activity activity, Mat cameraMatrix, Mat distortionCoefficients) {
SharedPreferences sharedPref = activity.getPreferences(Context.MODE_PRIVATE);
if (sharedPref.getFloat("0", -1) == -1) {
Log.i(TAG, "No previous calibration results found");
return false;
}
double[] cameraMatrixArray = new double[CAMERA_MATRIX_ROWS * CAMERA_MATRIX_COLS];
Reported by PMD.
Line: 49
return false;
}
double[] cameraMatrixArray = new double[CAMERA_MATRIX_ROWS * CAMERA_MATRIX_COLS];
for (int i = 0; i < CAMERA_MATRIX_ROWS; i++) {
for (int j = 0; j < CAMERA_MATRIX_COLS; j++) {
int id = i * CAMERA_MATRIX_ROWS + j;
cameraMatrixArray[id] = sharedPref.getFloat(Integer.toString(id), -1);
}
Reported by PMD.
Line: 53
for (int i = 0; i < CAMERA_MATRIX_ROWS; i++) {
for (int j = 0; j < CAMERA_MATRIX_COLS; j++) {
int id = i * CAMERA_MATRIX_ROWS + j;
cameraMatrixArray[id] = sharedPref.getFloat(Integer.toString(id), -1);
}
}
cameraMatrix.put(0, 0, cameraMatrixArray);
Log.i(TAG, "Loaded camera matrix: " + cameraMatrix.dump());
Reported by PMD.
Line: 59
cameraMatrix.put(0, 0, cameraMatrixArray);
Log.i(TAG, "Loaded camera matrix: " + cameraMatrix.dump());
double[] distortionCoefficientsArray = new double[DISTORTION_COEFFICIENTS_SIZE];
int shift = CAMERA_MATRIX_ROWS * CAMERA_MATRIX_COLS;
for (int i = shift; i < DISTORTION_COEFFICIENTS_SIZE + shift; i++) {
distortionCoefficientsArray[i - shift] = sharedPref.getFloat(Integer.toString(i), -1);
}
distortionCoefficients.put(0, 0, distortionCoefficientsArray);
Reported by PMD.
Line: 62
double[] distortionCoefficientsArray = new double[DISTORTION_COEFFICIENTS_SIZE];
int shift = CAMERA_MATRIX_ROWS * CAMERA_MATRIX_COLS;
for (int i = shift; i < DISTORTION_COEFFICIENTS_SIZE + shift; i++) {
distortionCoefficientsArray[i - shift] = sharedPref.getFloat(Integer.toString(i), -1);
}
distortionCoefficients.put(0, 0, distortionCoefficientsArray);
Log.i(TAG, "Loaded distortion coefficients: " + distortionCoefficients.dump());
return true;
Reported by PMD.
samples/python/edge.py
8 issues
Line: 16
Column: 1
# Python 2/3 compatibility
from __future__ import print_function
import cv2 as cv
import numpy as np
# relative module
import video
Reported by Pylint.
Line: 29
Column: 5
def main():
try:
fn = sys.argv[1]
except:
fn = 0
def nothing(*arg):
pass
Reported by Pylint.
Line: 32
Column: 1
except:
fn = 0
def nothing(*arg):
pass
cv.namedWindow('edge')
cv.createTrackbar('thrs1', 'edge', 2000, 5000, nothing)
cv.createTrackbar('thrs2', 'edge', 4000, 5000, nothing)
Reported by Pylint.
Line: 23
Column: 1
import video
# built-in module
import sys
def main():
try:
fn = sys.argv[1]
Reported by Pylint.
Line: 26
Column: 1
import sys
def main():
try:
fn = sys.argv[1]
except:
fn = 0
Reported by Pylint.
Line: 28
Column: 9
def main():
try:
fn = sys.argv[1]
except:
fn = 0
def nothing(*arg):
pass
Reported by Pylint.
Line: 30
Column: 9
try:
fn = sys.argv[1]
except:
fn = 0
def nothing(*arg):
pass
cv.namedWindow('edge')
Reported by Pylint.
Line: 50
Column: 9
vis = np.uint8(vis/2.)
vis[edge != 0] = (0, 255, 0)
cv.imshow('edge', vis)
ch = cv.waitKey(5)
if ch == 27:
break
print('Done')
Reported by Pylint.
samples/python/tutorial_code/Histograms_Matching/histogram_comparison/compareHist_Demo.py
8 issues
Line: 3
Column: 1
from __future__ import print_function
from __future__ import division
import cv2 as cv
import numpy as np
import argparse
## [Load three images with different environment settings]
parser = argparse.ArgumentParser(description='Code for Histogram Comparison tutorial.')
parser.add_argument('--input1', help='Path to input image 1.')
Reported by Pylint.
Line: 4
Column: 1
from __future__ import print_function
from __future__ import division
import cv2 as cv
import numpy as np
import argparse
## [Load three images with different environment settings]
parser = argparse.ArgumentParser(description='Code for Histogram Comparison tutorial.')
parser.add_argument('--input1', help='Path to input image 1.')
Reported by Pylint.
Line: 1
Column: 1
from __future__ import print_function
from __future__ import division
import cv2 as cv
import numpy as np
import argparse
## [Load three images with different environment settings]
parser = argparse.ArgumentParser(description='Code for Histogram Comparison tutorial.')
parser.add_argument('--input1', help='Path to input image 1.')
Reported by Pylint.
Line: 1
Column: 1
from __future__ import print_function
from __future__ import division
import cv2 as cv
import numpy as np
import argparse
## [Load three images with different environment settings]
parser = argparse.ArgumentParser(description='Code for Histogram Comparison tutorial.')
parser.add_argument('--input1', help='Path to input image 1.')
Reported by Pylint.
Line: 5
Column: 1
from __future__ import division
import cv2 as cv
import numpy as np
import argparse
## [Load three images with different environment settings]
parser = argparse.ArgumentParser(description='Code for Histogram Comparison tutorial.')
parser.add_argument('--input1', help='Path to input image 1.')
parser.add_argument('--input2', help='Path to input image 2.')
Reported by Pylint.
Line: 19
Column: 5
src_test2 = cv.imread(args.input3)
if src_base is None or src_test1 is None or src_test2 is None:
print('Could not open or find the images!')
exit(0)
## [Load three images with different environment settings]
## [Convert to HSV]
hsv_base = cv.cvtColor(src_base, cv.COLOR_BGR2HSV)
hsv_test1 = cv.cvtColor(src_test1, cv.COLOR_BGR2HSV)
Reported by Pylint.
Line: 33
Column: 1
## [Convert to HSV half]
## [Using 50 bins for hue and 60 for saturation]
h_bins = 50
s_bins = 60
histSize = [h_bins, s_bins]
# hue varies from 0 to 179, saturation from 0 to 255
h_ranges = [0, 180]
Reported by Pylint.
Line: 34
Column: 1
## [Using 50 bins for hue and 60 for saturation]
h_bins = 50
s_bins = 60
histSize = [h_bins, s_bins]
# hue varies from 0 to 179, saturation from 0 to 255
h_ranges = [0, 180]
s_ranges = [0, 256]
Reported by Pylint.