The following issues were found
test/onnx/test_pytorch_onnx_onnxruntime.py
5222 issues
Line: 2
Column: 1
import unittest
import onnxruntime
import torch
import numpy as np
import io
import itertools
import copy
import os
Reported by Pylint.
Line: 3
Column: 1
import unittest
import onnxruntime
import torch
import numpy as np
import io
import itertools
import copy
import os
Reported by Pylint.
Line: 12
Column: 1
import os
import random
from torch.nn.utils import rnn as rnn_utils
from model_defs.lstm_flattening_result import (LstmFlatteningResultWithSeqLength,
LstmFlatteningResultWithoutSeqLength)
from model_defs.rnn_model_with_packed_sequence import (RnnModelWithPackedSequence,
RnnModelWithPackedSequenceWithState,
RnnModelWithPackedSequenceWithoutState)
Reported by Pylint.
Line: 18
Column: 1
from model_defs.rnn_model_with_packed_sequence import (RnnModelWithPackedSequence,
RnnModelWithPackedSequenceWithState,
RnnModelWithPackedSequenceWithoutState)
from test_pytorch_common import (skipIfUnsupportedMinOpsetVersion, skipIfUnsupportedOpsetVersion,
skipIfNoLapack, disableScriptTest, skipIfONNXShapeInference,
skipIfUnsupportedMaxOpsetVersion)
from test_pytorch_common import BATCH_SIZE
from test_pytorch_common import RNN_BATCH_SIZE, RNN_SEQUENCE_LENGTH, RNN_INPUT_SIZE, RNN_HIDDEN_SIZE
from typing import List, Tuple, Optional, Dict
Reported by Pylint.
Line: 24
Column: 1
from test_pytorch_common import BATCH_SIZE
from test_pytorch_common import RNN_BATCH_SIZE, RNN_SEQUENCE_LENGTH, RNN_INPUT_SIZE, RNN_HIDDEN_SIZE
from typing import List, Tuple, Optional, Dict
from torch import Tensor
import model_defs.word_language_model as word_language_model
import onnx
import torchvision
Reported by Pylint.
Line: 27
Column: 1
from torch import Tensor
import model_defs.word_language_model as word_language_model
import onnx
import torchvision
from torchvision import ops
from torchvision.models.detection.image_list import ImageList
from torchvision.models.detection.transform import GeneralizedRCNNTransform
Reported by Pylint.
Line: 29
Column: 1
import onnx
import torchvision
from torchvision import ops
from torchvision.models.detection.image_list import ImageList
from torchvision.models.detection.transform import GeneralizedRCNNTransform
from torchvision.models.detection.rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
from torchvision.models.detection.roi_heads import RoIHeads
Reported by Pylint.
Line: 30
Column: 1
import onnx
import torchvision
from torchvision import ops
from torchvision.models.detection.image_list import ImageList
from torchvision.models.detection.transform import GeneralizedRCNNTransform
from torchvision.models.detection.rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
Reported by Pylint.
Line: 31
Column: 1
import torchvision
from torchvision import ops
from torchvision.models.detection.image_list import ImageList
from torchvision.models.detection.transform import GeneralizedRCNNTransform
from torchvision.models.detection.rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
from collections import OrderedDict
Reported by Pylint.
Line: 32
Column: 1
import torchvision
from torchvision import ops
from torchvision.models.detection.image_list import ImageList
from torchvision.models.detection.transform import GeneralizedRCNNTransform
from torchvision.models.detection.rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
from collections import OrderedDict
Reported by Pylint.
test/test_nn.py
4176 issues
Line: 17
Column: 1
from operator import mul
from collections import OrderedDict
import torch
# TODO: remove this global setting
# NN tests use double as the default dtype
torch.set_default_dtype(torch.double)
Reported by Pylint.
Line: 23
Column: 1
# NN tests use double as the default dtype
torch.set_default_dtype(torch.double)
from torch._six import inf, nan
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.nn.utils.rnn as rnn_utils
Reported by Pylint.
Line: 24
Column: 1
torch.set_default_dtype(torch.double)
from torch._six import inf, nan
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.nn.utils.rnn as rnn_utils
from torch.nn.utils import clip_grad_norm_, clip_grad_value_
Reported by Pylint.
Line: 25
Column: 1
from torch._six import inf, nan
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.nn.utils.rnn as rnn_utils
from torch.nn.utils import clip_grad_norm_, clip_grad_value_
import torch.nn.utils.parametrize as parametrize
Reported by Pylint.
Line: 26
Column: 1
from torch._six import inf, nan
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.nn.utils.rnn as rnn_utils
from torch.nn.utils import clip_grad_norm_, clip_grad_value_
import torch.nn.utils.parametrize as parametrize
import torch.nn.utils.prune as prune
Reported by Pylint.
Line: 27
Column: 1
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.nn.utils.rnn as rnn_utils
from torch.nn.utils import clip_grad_norm_, clip_grad_value_
import torch.nn.utils.parametrize as parametrize
import torch.nn.utils.prune as prune
from torch.nn.utils import parameters_to_vector, vector_to_parameters
Reported by Pylint.
Line: 28
Column: 1
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.nn.utils.rnn as rnn_utils
from torch.nn.utils import clip_grad_norm_, clip_grad_value_
import torch.nn.utils.parametrize as parametrize
import torch.nn.utils.prune as prune
from torch.nn.utils import parameters_to_vector, vector_to_parameters
from torch.nn import Parameter
Reported by Pylint.
Line: 29
Column: 1
import torch.nn.functional as F
import torch.nn.init as init
import torch.nn.utils.rnn as rnn_utils
from torch.nn.utils import clip_grad_norm_, clip_grad_value_
import torch.nn.utils.parametrize as parametrize
import torch.nn.utils.prune as prune
from torch.nn.utils import parameters_to_vector, vector_to_parameters
from torch.nn import Parameter
from torch.nn.parameter import UninitializedParameter, UninitializedBuffer
Reported by Pylint.
Line: 30
Column: 1
import torch.nn.init as init
import torch.nn.utils.rnn as rnn_utils
from torch.nn.utils import clip_grad_norm_, clip_grad_value_
import torch.nn.utils.parametrize as parametrize
import torch.nn.utils.prune as prune
from torch.nn.utils import parameters_to_vector, vector_to_parameters
from torch.nn import Parameter
from torch.nn.parameter import UninitializedParameter, UninitializedBuffer
from torch.nn.parallel._functions import Broadcast
Reported by Pylint.
Line: 31
Column: 1
import torch.nn.utils.rnn as rnn_utils
from torch.nn.utils import clip_grad_norm_, clip_grad_value_
import torch.nn.utils.parametrize as parametrize
import torch.nn.utils.prune as prune
from torch.nn.utils import parameters_to_vector, vector_to_parameters
from torch.nn import Parameter
from torch.nn.parameter import UninitializedParameter, UninitializedBuffer
from torch.nn.parallel._functions import Broadcast
from torch.testing import get_all_fp_dtypes
Reported by Pylint.
test/test_autograd.py
3066 issues
Line: 18
Column: 1
from itertools import product, permutations
from operator import mul
from functools import reduce, partial
import torch
from torch import nn
from torch._six import inf, nan
from torch.autograd.function import once_differentiable
from torch.autograd.profiler import (profile, record_function, emit_nvtx)
Reported by Pylint.
Line: 20
Column: 1
from functools import reduce, partial
import torch
from torch import nn
from torch._six import inf, nan
from torch.autograd.function import once_differentiable
from torch.autograd.profiler import (profile, record_function, emit_nvtx)
from torch.autograd.profiler_util import (_format_time, EventList, FunctionEvent, FunctionEventAvg)
import torch.autograd.functional as autogradF
Reported by Pylint.
Line: 21
Column: 1
import torch
from torch import nn
from torch._six import inf, nan
from torch.autograd.function import once_differentiable
from torch.autograd.profiler import (profile, record_function, emit_nvtx)
from torch.autograd.profiler_util import (_format_time, EventList, FunctionEvent, FunctionEventAvg)
import torch.autograd.functional as autogradF
from torch.utils.checkpoint import checkpoint
Reported by Pylint.
Line: 22
Column: 1
from torch import nn
from torch._six import inf, nan
from torch.autograd.function import once_differentiable
from torch.autograd.profiler import (profile, record_function, emit_nvtx)
from torch.autograd.profiler_util import (_format_time, EventList, FunctionEvent, FunctionEventAvg)
import torch.autograd.functional as autogradF
from torch.utils.checkpoint import checkpoint
from torch.testing._internal.common_cuda import TEST_CUDA
Reported by Pylint.
Line: 23
Column: 1
from torch import nn
from torch._six import inf, nan
from torch.autograd.function import once_differentiable
from torch.autograd.profiler import (profile, record_function, emit_nvtx)
from torch.autograd.profiler_util import (_format_time, EventList, FunctionEvent, FunctionEventAvg)
import torch.autograd.functional as autogradF
from torch.utils.checkpoint import checkpoint
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (TestCase, run_tests, skipIfNoLapack,
Reported by Pylint.
Line: 24
Column: 1
from torch._six import inf, nan
from torch.autograd.function import once_differentiable
from torch.autograd.profiler import (profile, record_function, emit_nvtx)
from torch.autograd.profiler_util import (_format_time, EventList, FunctionEvent, FunctionEventAvg)
import torch.autograd.functional as autogradF
from torch.utils.checkpoint import checkpoint
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (TestCase, run_tests, skipIfNoLapack,
suppress_warnings, slowTest,
Reported by Pylint.
Line: 25
Column: 1
from torch.autograd.function import once_differentiable
from torch.autograd.profiler import (profile, record_function, emit_nvtx)
from torch.autograd.profiler_util import (_format_time, EventList, FunctionEvent, FunctionEventAvg)
import torch.autograd.functional as autogradF
from torch.utils.checkpoint import checkpoint
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (TestCase, run_tests, skipIfNoLapack,
suppress_warnings, slowTest,
load_tests,
Reported by Pylint.
Line: 26
Column: 1
from torch.autograd.profiler import (profile, record_function, emit_nvtx)
from torch.autograd.profiler_util import (_format_time, EventList, FunctionEvent, FunctionEventAvg)
import torch.autograd.functional as autogradF
from torch.utils.checkpoint import checkpoint
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (TestCase, run_tests, skipIfNoLapack,
suppress_warnings, slowTest,
load_tests,
IS_WINDOWS, IS_MACOS, CudaMemoryLeakCheck,
Reported by Pylint.
Line: 27
Column: 1
from torch.autograd.profiler_util import (_format_time, EventList, FunctionEvent, FunctionEventAvg)
import torch.autograd.functional as autogradF
from torch.utils.checkpoint import checkpoint
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (TestCase, run_tests, skipIfNoLapack,
suppress_warnings, slowTest,
load_tests,
IS_WINDOWS, IS_MACOS, CudaMemoryLeakCheck,
TEST_WITH_ROCM, disable_gc,
Reported by Pylint.
Line: 28
Column: 1
import torch.autograd.functional as autogradF
from torch.utils.checkpoint import checkpoint
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (TestCase, run_tests, skipIfNoLapack,
suppress_warnings, slowTest,
load_tests,
IS_WINDOWS, IS_MACOS, CudaMemoryLeakCheck,
TEST_WITH_ROCM, disable_gc,
gradcheck, gradgradcheck, make_tensor)
Reported by Pylint.
torch/testing/_internal/common_methods_invocations.py
2729 issues
Line: 23
Column: 1
floating_and_complex_types, floating_and_complex_types_and,
all_types_and_complex_and, all_types_and, all_types_and_complex,
integral_types_and, all_types, double_types)
from .._core import _dispatch_dtypes
from torch.testing._internal.common_device_type import \
(onlyOnCPUAndCUDA, skipCUDAIfNoMagma, skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfNoCusolver,
skipCPUIfNoLapack, skipCPUIfNoFFT, skipCUDAIfRocm, precisionOverride, toleranceOverride, tol)
from torch.testing._internal.common_cuda import CUDA11OrLater, SM53OrLater, SM60OrLater
from torch.testing._internal.common_utils import \
Reported by Pylint.
Line: 43
Column: 5
from setuptools import distutils
if TEST_SCIPY:
import scipy.special
class DecorateInfo(object):
"""Describes which test, or type of tests, should be wrapped in the given
decorators when testing an operator. Any test that matches all provided
Reported by Pylint.
Line: 745
Column: 66
else:
backward_dtypes = self.backward_dtypes
allowed_backward_dtypes = floating_and_complex_types_and(torch.bfloat16, torch.float16)
return set(allowed_backward_dtypes).intersection(backward_dtypes)
def supports_complex_autograd(self, device_type):
if device_type == 'cpu':
return any(dtype.is_complex for dtype in self.backward_dtypesIfCPU)
Reported by Pylint.
Line: 745
Column: 82
else:
backward_dtypes = self.backward_dtypes
allowed_backward_dtypes = floating_and_complex_types_and(torch.bfloat16, torch.float16)
return set(allowed_backward_dtypes).intersection(backward_dtypes)
def supports_complex_autograd(self, device_type):
if device_type == 'cpu':
return any(dtype.is_complex for dtype in self.backward_dtypesIfCPU)
Reported by Pylint.
Line: 814
Column: 35
dtypesIfCUDA=None,
dtypesIfROCM=None,
default_test_dtypes=(
torch.uint8, torch.long, torch.half, torch.bfloat16,
torch.float32, torch.cfloat), # dtypes which tests check by default
domain=(None, None), # the [low, high) domain of the function
handles_large_floats=True, # whether the op correctly handles large float values (like 1e20)
handles_extremals=True, # whether the op correctly handles extremal values (like inf)
handles_complex_extremals=True, # whether the op correct handles complex extremals (like inf -infj)
Reported by Pylint.
Line: 814
Column: 22
dtypesIfCUDA=None,
dtypesIfROCM=None,
default_test_dtypes=(
torch.uint8, torch.long, torch.half, torch.bfloat16,
torch.float32, torch.cfloat), # dtypes which tests check by default
domain=(None, None), # the [low, high) domain of the function
handles_large_floats=True, # whether the op correctly handles large float values (like 1e20)
handles_extremals=True, # whether the op correctly handles extremal values (like inf)
handles_complex_extremals=True, # whether the op correct handles complex extremals (like inf -infj)
Reported by Pylint.
Line: 814
Column: 59
dtypesIfCUDA=None,
dtypesIfROCM=None,
default_test_dtypes=(
torch.uint8, torch.long, torch.half, torch.bfloat16,
torch.float32, torch.cfloat), # dtypes which tests check by default
domain=(None, None), # the [low, high) domain of the function
handles_large_floats=True, # whether the op correctly handles large float values (like 1e20)
handles_extremals=True, # whether the op correctly handles extremal values (like inf)
handles_complex_extremals=True, # whether the op correct handles complex extremals (like inf -infj)
Reported by Pylint.
Line: 814
Column: 47
dtypesIfCUDA=None,
dtypesIfROCM=None,
default_test_dtypes=(
torch.uint8, torch.long, torch.half, torch.bfloat16,
torch.float32, torch.cfloat), # dtypes which tests check by default
domain=(None, None), # the [low, high) domain of the function
handles_large_floats=True, # whether the op correctly handles large float values (like 1e20)
handles_extremals=True, # whether the op correctly handles extremal values (like inf)
handles_complex_extremals=True, # whether the op correct handles complex extremals (like inf -infj)
Reported by Pylint.
Line: 815
Column: 37
dtypesIfROCM=None,
default_test_dtypes=(
torch.uint8, torch.long, torch.half, torch.bfloat16,
torch.float32, torch.cfloat), # dtypes which tests check by default
domain=(None, None), # the [low, high) domain of the function
handles_large_floats=True, # whether the op correctly handles large float values (like 1e20)
handles_extremals=True, # whether the op correctly handles extremal values (like inf)
handles_complex_extremals=True, # whether the op correct handles complex extremals (like inf -infj)
supports_complex_to_float=False, # op supports casting from complex input to real output safely eg. angle
Reported by Pylint.
Line: 815
Column: 22
dtypesIfROCM=None,
default_test_dtypes=(
torch.uint8, torch.long, torch.half, torch.bfloat16,
torch.float32, torch.cfloat), # dtypes which tests check by default
domain=(None, None), # the [low, high) domain of the function
handles_large_floats=True, # whether the op correctly handles large float values (like 1e20)
handles_extremals=True, # whether the op correctly handles extremal values (like inf)
handles_complex_extremals=True, # whether the op correct handles complex extremals (like inf -infj)
supports_complex_to_float=False, # op supports casting from complex input to real output safely eg. angle
Reported by Pylint.
torch/testing/_internal/distributed/rpc/rpc_test.py
2190 issues
Line: 52
Column: 12
def foo_add():
return torch.add(torch.ones(1), torch.ones(1))
def udf_with_torch_ops(device=-1, use_record_function=False):
device_ctx = contextlib.suppress() if device == -1 else torch.cuda.device(device)
record_function_ctx = (
torch.autograd.profiler.record_function("##forward##")
Reported by Pylint.
Line: 52
Column: 22
def foo_add():
return torch.add(torch.ones(1), torch.ones(1))
def udf_with_torch_ops(device=-1, use_record_function=False):
device_ctx = contextlib.suppress() if device == -1 else torch.cuda.device(device)
record_function_ctx = (
torch.autograd.profiler.record_function("##forward##")
Reported by Pylint.
Line: 52
Column: 37
def foo_add():
return torch.add(torch.ones(1), torch.ones(1))
def udf_with_torch_ops(device=-1, use_record_function=False):
device_ctx = contextlib.suppress() if device == -1 else torch.cuda.device(device)
record_function_ctx = (
torch.autograd.profiler.record_function("##forward##")
Reported by Pylint.
Line: 62
Column: 33
else contextlib.suppress()
)
with device_ctx, record_function_ctx:
t1, t2 = torch.ones(1), torch.ones(1)
t = torch.add(t1, t2)
t = torch.mul(t, t)
t = t.relu()
t = t.sigmoid()
Reported by Pylint.
Line: 62
Column: 18
else contextlib.suppress()
)
with device_ctx, record_function_ctx:
t1, t2 = torch.ones(1), torch.ones(1)
t = torch.add(t1, t2)
t = torch.mul(t, t)
t = t.relu()
t = t.sigmoid()
Reported by Pylint.
Line: 63
Column: 13
)
with device_ctx, record_function_ctx:
t1, t2 = torch.ones(1), torch.ones(1)
t = torch.add(t1, t2)
t = torch.mul(t, t)
t = t.relu()
t = t.sigmoid()
# Events (operator invocations) that are expected to be ran as part of the above
Reported by Pylint.
Line: 64
Column: 13
with device_ctx, record_function_ctx:
t1, t2 = torch.ones(1), torch.ones(1)
t = torch.add(t1, t2)
t = torch.mul(t, t)
t = t.relu()
t = t.sigmoid()
# Events (operator invocations) that are expected to be ran as part of the above
# function.
Reported by Pylint.
Line: 142
Column: 44
def __getstate__(self):
(pickled_python_udf, tensors) = _internal_rpc_pickler.serialize(
PythonUDF(my_tensor_function, (torch.ones(2, 2), torch.ones(2, 2)), None)
)
return (pickled_python_udf, tensors)
def __setstate__(self, obj):
python_udf = _internal_rpc_pickler.deserialize(obj[0], obj[1])
Reported by Pylint.
Line: 142
Column: 62
def __getstate__(self):
(pickled_python_udf, tensors) = _internal_rpc_pickler.serialize(
PythonUDF(my_tensor_function, (torch.ones(2, 2), torch.ones(2, 2)), None)
)
return (pickled_python_udf, tensors)
def __setstate__(self, obj):
python_udf = _internal_rpc_pickler.deserialize(obj[0], obj[1])
Reported by Pylint.
Line: 194
Column: 16
def my_slow_method(self, my_tensor_arg):
time.sleep(5)
return torch.add(self.a, my_tensor_arg)
def _call_method_on_rref(method, rref, *args, **kwargs):
return method(rref.local_value(), *args, **kwargs)
Reported by Pylint.
test/test_linalg.py
2125 issues
Line: 2
Column: 1
# -*- coding: utf-8 -*-
import torch
import numpy as np
import unittest
import itertools
import warnings
import math
from math import inf, nan, isnan
Reported by Pylint.
Line: 15
Column: 1
from itertools import product
from functools import reduce
from torch.testing._internal.common_utils import \
(TestCase, run_tests, TEST_SCIPY, IS_MACOS, IS_WINDOWS, slowTest,
TEST_WITH_ASAN, make_tensor, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU,
iter_indices, gradcheck, gradgradcheck)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes,
Reported by Pylint.
Line: 19
Column: 1
(TestCase, run_tests, TEST_SCIPY, IS_MACOS, IS_WINDOWS, slowTest,
TEST_WITH_ASAN, make_tensor, TEST_WITH_ROCM, IS_FBCODE, IS_REMOTE_GPU,
iter_indices, gradcheck, gradgradcheck)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes,
onlyCPU, skipCUDAIf, skipCUDAIfNoMagma, skipCPUIfNoLapack, precisionOverride,
skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, onlyOnCPUAndCUDA, dtypesIfCUDA,
onlyCUDA, skipCUDAVersionIn, skipMeta, skipCUDAIfNoCusolver)
from torch.testing import floating_and_complex_types, floating_types, all_types
Reported by Pylint.
Line: 24
Column: 1
onlyCPU, skipCUDAIf, skipCUDAIfNoMagma, skipCPUIfNoLapack, precisionOverride,
skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, onlyOnCPUAndCUDA, dtypesIfCUDA,
onlyCUDA, skipCUDAVersionIn, skipMeta, skipCUDAIfNoCusolver)
from torch.testing import floating_and_complex_types, floating_types, all_types
from torch.testing._internal.common_cuda import SM53OrLater, tf32_on_and_off, CUDA11OrLater, CUDA9
from torch.distributions.binomial import Binomial
# Protects against includes accidentally setting the default dtype
# NOTE: jit_metaprogramming_utils sets the default dtype to double!
Reported by Pylint.
Line: 25
Column: 1
skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, onlyOnCPUAndCUDA, dtypesIfCUDA,
onlyCUDA, skipCUDAVersionIn, skipMeta, skipCUDAIfNoCusolver)
from torch.testing import floating_and_complex_types, floating_types, all_types
from torch.testing._internal.common_cuda import SM53OrLater, tf32_on_and_off, CUDA11OrLater, CUDA9
from torch.distributions.binomial import Binomial
# Protects against includes accidentally setting the default dtype
# NOTE: jit_metaprogramming_utils sets the default dtype to double!
torch.set_default_dtype(torch.float32)
Reported by Pylint.
Line: 26
Column: 1
onlyCUDA, skipCUDAVersionIn, skipMeta, skipCUDAIfNoCusolver)
from torch.testing import floating_and_complex_types, floating_types, all_types
from torch.testing._internal.common_cuda import SM53OrLater, tf32_on_and_off, CUDA11OrLater, CUDA9
from torch.distributions.binomial import Binomial
# Protects against includes accidentally setting the default dtype
# NOTE: jit_metaprogramming_utils sets the default dtype to double!
torch.set_default_dtype(torch.float32)
assert torch.get_default_dtype() is torch.float32
Reported by Pylint.
Line: 34
Column: 5
assert torch.get_default_dtype() is torch.float32
if TEST_SCIPY:
import scipy
class TestLinalg(TestCase):
def setUp(self):
super(self.__class__, self).setUp()
torch.backends.cuda.matmul.allow_tf32 = False
Reported by Pylint.
Line: 38
Column: 9
class TestLinalg(TestCase):
def setUp(self):
super(self.__class__, self).setUp()
torch.backends.cuda.matmul.allow_tf32 = False
def tearDown(self):
torch.backends.cuda.matmul.allow_tf32 = True
super(self.__class__, self).tearDown()
Reported by Pylint.
Line: 43
Column: 9
def tearDown(self):
torch.backends.cuda.matmul.allow_tf32 = True
super(self.__class__, self).tearDown()
exact_dtype = True
@dtypes(torch.float, torch.cfloat)
@precisionOverride({torch.float: 1e-06, torch.cfloat: 1e-06})
Reported by Pylint.
Line: 133
Column: 9
@skipCPUIfNoLapack
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_linalg_lstsq(self, device, dtype):
from torch.testing._internal.common_utils import random_well_conditioned_matrix
if self.device_type == 'cpu':
drivers = ('gels', 'gelsy', 'gelsd', 'gelss', None)
else:
drivers = ('gels', None)
Reported by Pylint.
test/test_torch.py
2031 issues
Line: 2
Column: 1
# -*- coding: utf-8 -*-
import torch
import torch.utils.data
import numpy as np
import contextlib
import gc
import io
import inspect
Reported by Pylint.
Line: 3
Column: 1
# -*- coding: utf-8 -*-
import torch
import torch.utils.data
import numpy as np
import contextlib
import gc
import io
import inspect
Reported by Pylint.
Line: 25
Column: 1
import subprocess
import weakref
import sys
from torch.utils.dlpack import from_dlpack, to_dlpack
from torch._six import inf, nan, string_classes
from itertools import product, combinations, permutations
from functools import partial
from torch import multiprocessing as mp
from torch.testing._internal.common_utils import (
Reported by Pylint.
Line: 26
Column: 1
import weakref
import sys
from torch.utils.dlpack import from_dlpack, to_dlpack
from torch._six import inf, nan, string_classes
from itertools import product, combinations, permutations
from functools import partial
from torch import multiprocessing as mp
from torch.testing._internal.common_utils import (
TestCase, TEST_WITH_ROCM, run_tests,
Reported by Pylint.
Line: 29
Column: 1
from torch._six import inf, nan, string_classes
from itertools import product, combinations, permutations
from functools import partial
from torch import multiprocessing as mp
from torch.testing._internal.common_utils import (
TestCase, TEST_WITH_ROCM, run_tests,
IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN,
do_test_dtypes, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, slowTest,
skipCUDAMemoryLeakCheckIf, BytesIOContext, noarchTest,
Reported by Pylint.
Line: 30
Column: 1
from itertools import product, combinations, permutations
from functools import partial
from torch import multiprocessing as mp
from torch.testing._internal.common_utils import (
TestCase, TEST_WITH_ROCM, run_tests,
IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN,
do_test_dtypes, IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, slowTest,
skipCUDAMemoryLeakCheckIf, BytesIOContext, noarchTest,
skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName,
Reported by Pylint.
Line: 38
Column: 1
skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName,
wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard, make_tensor)
from multiprocessing.reduction import ForkingPickler
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
skipCUDAVersionIn,
onlyCUDA, onlyCPU,
dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast,
skipMeta,
Reported by Pylint.
Line: 47
Column: 1
PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyOnCPUAndCUDA,
expectedAlertNondeterministic)
from typing import Dict, List, Tuple
import torch.backends.quantized
import torch.testing._internal.data
from torch.testing._internal.common_cuda import tf32_on_and_off, tf32_is_not_fp32
# Protects against includes accidentally setting the default dtype
assert torch.get_default_dtype() is torch.float32
Reported by Pylint.
Line: 48
Column: 1
expectedAlertNondeterministic)
from typing import Dict, List, Tuple
import torch.backends.quantized
import torch.testing._internal.data
from torch.testing._internal.common_cuda import tf32_on_and_off, tf32_is_not_fp32
# Protects against includes accidentally setting the default dtype
assert torch.get_default_dtype() is torch.float32
Reported by Pylint.
Line: 49
Column: 1
from typing import Dict, List, Tuple
import torch.backends.quantized
import torch.testing._internal.data
from torch.testing._internal.common_cuda import tf32_on_and_off, tf32_is_not_fp32
# Protects against includes accidentally setting the default dtype
assert torch.get_default_dtype() is torch.float32
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
Reported by Pylint.
torch/testing/_internal/distributed/distributed_test.py
1792 issues
Line: 87
Column: 5
HAS_TORCHVISION = False
if sys.platform == "win32":
import msvcrt
else:
import fcntl
class Foo:
Reported by Pylint.
Line: 100
Column: 24
def __eq__(self, other):
def eq(value, other):
if isinstance(value, torch.Tensor):
return torch.equal(value, other)
return value == other
for attr, value in self.__dict__.items():
other_value = other.__dict__[attr]
if not eq(value, other_value):
Reported by Pylint.
Line: 113
Column: 22
f = Foo(10)
f.bar = 1
foo_cpu_tensor = Foo(torch.randn(3, 3))
COLLECTIVES_OBJECT_TEST_LIST = [
{"key1": 3, "key2": 4, "key3": {"nested": True}},
f,
Reported by Pylint.
Line: 151
Column: 8
class TestNamedTupleInput_1(NamedTuple):
a: torch.tensor
b: torch.tensor
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
Reported by Pylint.
Line: 152
Column: 8
class TestNamedTupleInput_1(NamedTuple):
a: torch.tensor
b: torch.tensor
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
BACKEND = os.environ["BACKEND"]
Reported by Pylint.
Line: 197
Column: 16
class DDPUnevenTestInput(NamedTuple):
name: str
model: nn.Module
inp: Union[torch.tensor, tuple]
sync_interval: int
throw_on_early_termination: bool = False
hook: Callable = None
state: Any = None
Reported by Pylint.
Line: 223
Column: 13
self.fc3 = nn.Linear(50, 4, bias=False)
self.relu = nn.ReLU()
self.no_grad_param = nn.Parameter(
torch.tensor([2, 2]).long(), requires_grad=False
)
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
Reported by Pylint.
Line: 248
Column: 31
class Task(nn.Module):
def __init__(self):
super().__init__()
self.p = nn.Parameter(torch.ones(2, 2))
def forward(self, x):
return self.p + x
Reported by Pylint.
Line: 262
Column: 13
self.fc2 = nn.Linear(40, 4, bias=False)
def forward(self, x):
x = torch.reshape(self.fc1(x), (-1, 4, 10))
x = self.bn(x)
x = torch.reshape(x, (-1, 40))
x = self.fc2(x)
return F.softmax(x, dim=1)
Reported by Pylint.
Line: 264
Column: 13
def forward(self, x):
x = torch.reshape(self.fc1(x), (-1, 4, 10))
x = self.bn(x)
x = torch.reshape(x, (-1, 40))
x = self.fc2(x)
return F.softmax(x, dim=1)
class UnusedParamTwoLinLayerNet(nn.Module):
Reported by Pylint.
torch/onnx/symbolic_opset9.py
1567 issues
Line: 165
Column: 41
# Integer division does trunction rounding
div = g.op("Div", self, other)
# Division is negative if: self < 0 != other < 0
zero = g.op("Constant", value_t=torch.tensor(0, dtype=torch.int64))
negative = g.op("Xor",
g.op("Less", self, zero),
g.op("Less", other, zero))
# For negative numbers with self % other != 0, subtract 1 to round down instead of up
Reported by Pylint.
Line: 165
Column: 63
# Integer division does trunction rounding
div = g.op("Div", self, other)
# Division is negative if: self < 0 != other < 0
zero = g.op("Constant", value_t=torch.tensor(0, dtype=torch.int64))
negative = g.op("Xor",
g.op("Less", self, zero),
g.op("Less", other, zero))
# For negative numbers with self % other != 0, subtract 1 to round down instead of up
Reported by Pylint.
Line: 175
Column: 40
fixup_mask = g.op("And", negative,
g.op("Not", g.op("Equal", mod, zero)))
one = g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64))
fixup = g.op("Sub", div, one)
return g.op("Where", fixup_mask, fixup, div)
def floor_divide(g, self, other):
Reported by Pylint.
Line: 175
Column: 62
fixup_mask = g.op("And", negative,
g.op("Not", g.op("Equal", mod, zero)))
one = g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64))
fixup = g.op("Sub", div, one)
return g.op("Where", fixup_mask, fixup, div)
def floor_divide(g, self, other):
Reported by Pylint.
Line: 212
Column: 19
# Case 4: neither is floating
# Casts both inputs to the default scalar type
scalar_type = torch.get_default_dtype()
onnx_scalar_type = sym_help.cast_pytorch_to_onnx["Float"]
assert scalar_type is torch.float or scalar_type is torch.double
if torch.get_default_dtype() is torch.double:
onnx_scalar_type = sym_help.cast_pytorch_to_onnx["Double"]
Reported by Pylint.
Line: 214
Column: 57
# Casts both inputs to the default scalar type
scalar_type = torch.get_default_dtype()
onnx_scalar_type = sym_help.cast_pytorch_to_onnx["Float"]
assert scalar_type is torch.float or scalar_type is torch.double
if torch.get_default_dtype() is torch.double:
onnx_scalar_type = sym_help.cast_pytorch_to_onnx["Double"]
self = g.op("Cast", self, to_i=onnx_scalar_type)
other = g.op("Cast", other, to_i=onnx_scalar_type)
Reported by Pylint.
Line: 214
Column: 27
# Casts both inputs to the default scalar type
scalar_type = torch.get_default_dtype()
onnx_scalar_type = sym_help.cast_pytorch_to_onnx["Float"]
assert scalar_type is torch.float or scalar_type is torch.double
if torch.get_default_dtype() is torch.double:
onnx_scalar_type = sym_help.cast_pytorch_to_onnx["Double"]
self = g.op("Cast", self, to_i=onnx_scalar_type)
other = g.op("Cast", other, to_i=onnx_scalar_type)
Reported by Pylint.
Line: 215
Column: 37
scalar_type = torch.get_default_dtype()
onnx_scalar_type = sym_help.cast_pytorch_to_onnx["Float"]
assert scalar_type is torch.float or scalar_type is torch.double
if torch.get_default_dtype() is torch.double:
onnx_scalar_type = sym_help.cast_pytorch_to_onnx["Double"]
self = g.op("Cast", self, to_i=onnx_scalar_type)
other = g.op("Cast", other, to_i=onnx_scalar_type)
return g.op("Div", self, other)
Reported by Pylint.
Line: 215
Column: 8
scalar_type = torch.get_default_dtype()
onnx_scalar_type = sym_help.cast_pytorch_to_onnx["Float"]
assert scalar_type is torch.float or scalar_type is torch.double
if torch.get_default_dtype() is torch.double:
onnx_scalar_type = sym_help.cast_pytorch_to_onnx["Double"]
self = g.op("Cast", self, to_i=onnx_scalar_type)
other = g.op("Cast", other, to_i=onnx_scalar_type)
return g.op("Div", self, other)
Reported by Pylint.
Line: 224
Column: 24
def reciprocal(g, self):
return g.op("Div", torch.ones(1), self)
@parse_args("v", "i")
def cat(g, tensor_list, dim):
tensors = sym_help._unpack_list(tensor_list)
Reported by Pylint.
test/quantization/core/test_quantized_op.py
1359 issues
Line: 11
Column: 1
import operator
import random
import torch
from torch import _VF
import torch.jit
import torch.nn.functional as F
from torch.nn.modules.utils import _single, _pair
Reported by Pylint.
Line: 12
Column: 1
import random
import torch
from torch import _VF
import torch.jit
import torch.nn.functional as F
from torch.nn.modules.utils import _single, _pair
from hypothesis import settings, HealthCheck
Reported by Pylint.
Line: 13
Column: 1
import torch
from torch import _VF
import torch.jit
import torch.nn.functional as F
from torch.nn.modules.utils import _single, _pair
from hypothesis import settings, HealthCheck
from hypothesis import assume, given, note
Reported by Pylint.
Line: 14
Column: 1
import torch
from torch import _VF
import torch.jit
import torch.nn.functional as F
from torch.nn.modules.utils import _single, _pair
from hypothesis import settings, HealthCheck
from hypothesis import assume, given, note
from hypothesis import strategies as st
Reported by Pylint.
Line: 15
Column: 1
from torch import _VF
import torch.jit
import torch.nn.functional as F
from torch.nn.modules.utils import _single, _pair
from hypothesis import settings, HealthCheck
from hypothesis import assume, given, note
from hypothesis import strategies as st
import torch.testing._internal.hypothesis_utils as hu
Reported by Pylint.
Line: 17
Column: 1
import torch.nn.functional as F
from torch.nn.modules.utils import _single, _pair
from hypothesis import settings, HealthCheck
from hypothesis import assume, given, note
from hypothesis import strategies as st
import torch.testing._internal.hypothesis_utils as hu
hu.assert_deadline_disabled()
Reported by Pylint.
Line: 18
Column: 1
from torch.nn.modules.utils import _single, _pair
from hypothesis import settings, HealthCheck
from hypothesis import assume, given, note
from hypothesis import strategies as st
import torch.testing._internal.hypothesis_utils as hu
hu.assert_deadline_disabled()
from torch.testing._internal.common_utils import TestCase
Reported by Pylint.
Line: 19
Column: 1
from hypothesis import settings, HealthCheck
from hypothesis import assume, given, note
from hypothesis import strategies as st
import torch.testing._internal.hypothesis_utils as hu
hu.assert_deadline_disabled()
from torch.testing._internal.common_utils import TestCase
from torch.testing._internal.common_utils import IS_PPC, TEST_WITH_UBSAN, IS_MACOS
Reported by Pylint.
Line: 20
Column: 1
from hypothesis import settings, HealthCheck
from hypothesis import assume, given, note
from hypothesis import strategies as st
import torch.testing._internal.hypothesis_utils as hu
hu.assert_deadline_disabled()
from torch.testing._internal.common_utils import TestCase
from torch.testing._internal.common_utils import IS_PPC, TEST_WITH_UBSAN, IS_MACOS
from torch.testing._internal.common_quantization import skipIfNoFBGEMM, skipIfNoQNNPACK
Reported by Pylint.
Line: 23
Column: 1
import torch.testing._internal.hypothesis_utils as hu
hu.assert_deadline_disabled()
from torch.testing._internal.common_utils import TestCase
from torch.testing._internal.common_utils import IS_PPC, TEST_WITH_UBSAN, IS_MACOS
from torch.testing._internal.common_quantization import skipIfNoFBGEMM, skipIfNoQNNPACK
from torch.testing._internal.common_quantized import _quantize, _dequantize, _calculate_dynamic_qparams, \
override_quantized_engine, supported_qengines, override_qengines, _snr
from torch.testing._internal.common_quantized import qengine_is_qnnpack
Reported by Pylint.