The following issues were found
torch/testing/_internal/jit_metaprogramming_utils.py
195 issues
Line: 22
Column: 25
from torch._six import inf
# TODO: include files like this should not set the default dtype
torch.set_default_dtype(torch.double)
L = 20
M = 10
S = 5
Reported by Pylint.
Line: 60
Column: 22
('max_pool2d', (S, S, S, S), (2, 1), '', (True, 'aten::max_pool2d_with_indices')),
('max_pool2d', (S, S, S, S), (2, 1, 1, 1, False, True), 'with_indices', (True, 'aten::max_pool2d_with_indices')),
('max_pool3d', (S, S, S, S, S), (2, 1)),
('max_unpool1d', torch.tensor([[[2., 4]]]), (torch.tensor([[[1, 3]]]), 2, 2, 0)),
('max_unpool2d', torch.tensor([[[[2., 4]]]]), (torch.tensor([[[[1, 3]]]]), 2, 2, 0)),
('max_unpool3d', torch.tensor([[[[[2., 4]]]]]), (torch.tensor([[[[[1, 3]]]]]), 2, 2, 0)),
('lp_pool1d', (S, S, S), (2., 3, 2,)),
('lp_pool2d', (S, S, S, S), (2., 3, 2,)),
('adaptive_max_pool1d', (S, S, S), (5,)),
Reported by Pylint.
Line: 60
Column: 50
('max_pool2d', (S, S, S, S), (2, 1), '', (True, 'aten::max_pool2d_with_indices')),
('max_pool2d', (S, S, S, S), (2, 1, 1, 1, False, True), 'with_indices', (True, 'aten::max_pool2d_with_indices')),
('max_pool3d', (S, S, S, S, S), (2, 1)),
('max_unpool1d', torch.tensor([[[2., 4]]]), (torch.tensor([[[1, 3]]]), 2, 2, 0)),
('max_unpool2d', torch.tensor([[[[2., 4]]]]), (torch.tensor([[[[1, 3]]]]), 2, 2, 0)),
('max_unpool3d', torch.tensor([[[[[2., 4]]]]]), (torch.tensor([[[[[1, 3]]]]]), 2, 2, 0)),
('lp_pool1d', (S, S, S), (2., 3, 2,)),
('lp_pool2d', (S, S, S, S), (2., 3, 2,)),
('adaptive_max_pool1d', (S, S, S), (5,)),
Reported by Pylint.
Line: 61
Column: 22
('max_pool2d', (S, S, S, S), (2, 1, 1, 1, False, True), 'with_indices', (True, 'aten::max_pool2d_with_indices')),
('max_pool3d', (S, S, S, S, S), (2, 1)),
('max_unpool1d', torch.tensor([[[2., 4]]]), (torch.tensor([[[1, 3]]]), 2, 2, 0)),
('max_unpool2d', torch.tensor([[[[2., 4]]]]), (torch.tensor([[[[1, 3]]]]), 2, 2, 0)),
('max_unpool3d', torch.tensor([[[[[2., 4]]]]]), (torch.tensor([[[[[1, 3]]]]]), 2, 2, 0)),
('lp_pool1d', (S, S, S), (2., 3, 2,)),
('lp_pool2d', (S, S, S, S), (2., 3, 2,)),
('adaptive_max_pool1d', (S, S, S), (5,)),
('adaptive_max_pool2d', (S, S, S, S), ([5, 7],)),
Reported by Pylint.
Line: 61
Column: 52
('max_pool2d', (S, S, S, S), (2, 1, 1, 1, False, True), 'with_indices', (True, 'aten::max_pool2d_with_indices')),
('max_pool3d', (S, S, S, S, S), (2, 1)),
('max_unpool1d', torch.tensor([[[2., 4]]]), (torch.tensor([[[1, 3]]]), 2, 2, 0)),
('max_unpool2d', torch.tensor([[[[2., 4]]]]), (torch.tensor([[[[1, 3]]]]), 2, 2, 0)),
('max_unpool3d', torch.tensor([[[[[2., 4]]]]]), (torch.tensor([[[[[1, 3]]]]]), 2, 2, 0)),
('lp_pool1d', (S, S, S), (2., 3, 2,)),
('lp_pool2d', (S, S, S, S), (2., 3, 2,)),
('adaptive_max_pool1d', (S, S, S), (5,)),
('adaptive_max_pool2d', (S, S, S, S), ([5, 7],)),
Reported by Pylint.
Line: 62
Column: 22
('max_pool3d', (S, S, S, S, S), (2, 1)),
('max_unpool1d', torch.tensor([[[2., 4]]]), (torch.tensor([[[1, 3]]]), 2, 2, 0)),
('max_unpool2d', torch.tensor([[[[2., 4]]]]), (torch.tensor([[[[1, 3]]]]), 2, 2, 0)),
('max_unpool3d', torch.tensor([[[[[2., 4]]]]]), (torch.tensor([[[[[1, 3]]]]]), 2, 2, 0)),
('lp_pool1d', (S, S, S), (2., 3, 2,)),
('lp_pool2d', (S, S, S, S), (2., 3, 2,)),
('adaptive_max_pool1d', (S, S, S), (5,)),
('adaptive_max_pool2d', (S, S, S, S), ([5, 7],)),
('adaptive_max_pool3d', (S, S, S, S, S), ([3, 2, 2],)),
Reported by Pylint.
Line: 62
Column: 54
('max_pool3d', (S, S, S, S, S), (2, 1)),
('max_unpool1d', torch.tensor([[[2., 4]]]), (torch.tensor([[[1, 3]]]), 2, 2, 0)),
('max_unpool2d', torch.tensor([[[[2., 4]]]]), (torch.tensor([[[[1, 3]]]]), 2, 2, 0)),
('max_unpool3d', torch.tensor([[[[[2., 4]]]]]), (torch.tensor([[[[[1, 3]]]]]), 2, 2, 0)),
('lp_pool1d', (S, S, S), (2., 3, 2,)),
('lp_pool2d', (S, S, S, S), (2., 3, 2,)),
('adaptive_max_pool1d', (S, S, S), (5,)),
('adaptive_max_pool2d', (S, S, S, S), ([5, 7],)),
('adaptive_max_pool3d', (S, S, S, S, S), ([3, 2, 2],)),
Reported by Pylint.
Line: 103
Column: 35
('softplus', (S, S, S), (),),
('softmin', (S, S, S), (0,),),
('softmax', (S, S, S), (0,), '', (True,)),
('softmax', (S, S, S), (0, 3, torch.double), 'with_all_args', (True,)),
('tanh', (S, S, S), (), '', (True,)),
('sigmoid', (S, S, S), (), '', (True,)),
('log_softmax', (S, S, S), (0,), '', (True,)),
('linear', (S, S), ((M, S),), '', (True, ['aten::linear'])),
('linear', (S, S), ((M, S), (M,)), 'addmm', (True, ['aten::linear'])),
Reported by Pylint.
Line: 109
Column: 41
('log_softmax', (S, S, S), (0,), '', (True,)),
('linear', (S, S), ((M, S),), '', (True, ['aten::linear'])),
('linear', (S, S), ((M, S), (M,)), 'addmm', (True, ['aten::linear'])),
('bilinear', (S, S, S), ((S, S, M), torch.zeros(M, S, M),),),
('embedding', torch.tensor([[1, 2, 4, 5], [4, 3, 2, 5]]), (torch.rand(6, 3), ), '', (True,)),
('embedding_bag', torch.tensor([1, 2, 4, 2]), (torch.rand(5, 3), torch.tensor([0, 4]),),),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), ),
'', (False, 'aten::_batch_norm_impl_index')),
('instance_norm', (S, S, S), (non_differentiable(torch.zeros(S)), non_differentiable(torch.ones(S))),),
Reported by Pylint.
Line: 110
Column: 64
('linear', (S, S), ((M, S),), '', (True, ['aten::linear'])),
('linear', (S, S), ((M, S), (M,)), 'addmm', (True, ['aten::linear'])),
('bilinear', (S, S, S), ((S, S, M), torch.zeros(M, S, M),),),
('embedding', torch.tensor([[1, 2, 4, 5], [4, 3, 2, 5]]), (torch.rand(6, 3), ), '', (True,)),
('embedding_bag', torch.tensor([1, 2, 4, 2]), (torch.rand(5, 3), torch.tensor([0, 4]),),),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), ),
'', (False, 'aten::_batch_norm_impl_index')),
('instance_norm', (S, S, S), (non_differentiable(torch.zeros(S)), non_differentiable(torch.ones(S))),),
('layer_norm', (S, S, S, S), ([5],), '',
Reported by Pylint.
test/test_mobile_optimizer.py
194 issues
Line: 2
Column: 1
import unittest
import torch
import torch.nn as nn
import torch.backends.xnnpack
import torch.utils.bundled_inputs
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.jit_utils import get_forward, get_forward_graph
from torch.utils.mobile_optimizer import (LintCode,
generate_mobile_module_lints,
Reported by Pylint.
Line: 3
Column: 1
import unittest
import torch
import torch.nn as nn
import torch.backends.xnnpack
import torch.utils.bundled_inputs
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.jit_utils import get_forward, get_forward_graph
from torch.utils.mobile_optimizer import (LintCode,
generate_mobile_module_lints,
Reported by Pylint.
Line: 4
Column: 1
import unittest
import torch
import torch.nn as nn
import torch.backends.xnnpack
import torch.utils.bundled_inputs
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.jit_utils import get_forward, get_forward_graph
from torch.utils.mobile_optimizer import (LintCode,
generate_mobile_module_lints,
Reported by Pylint.
Line: 5
Column: 1
import torch
import torch.nn as nn
import torch.backends.xnnpack
import torch.utils.bundled_inputs
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.jit_utils import get_forward, get_forward_graph
from torch.utils.mobile_optimizer import (LintCode,
generate_mobile_module_lints,
optimize_for_mobile)
Reported by Pylint.
Line: 6
Column: 1
import torch.nn as nn
import torch.backends.xnnpack
import torch.utils.bundled_inputs
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.jit_utils import get_forward, get_forward_graph
from torch.utils.mobile_optimizer import (LintCode,
generate_mobile_module_lints,
optimize_for_mobile)
from torch.nn import functional as F
Reported by Pylint.
Line: 7
Column: 1
import torch.backends.xnnpack
import torch.utils.bundled_inputs
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.jit_utils import get_forward, get_forward_graph
from torch.utils.mobile_optimizer import (LintCode,
generate_mobile_module_lints,
optimize_for_mobile)
from torch.nn import functional as F
from torch._C import MobileOptimizerType
Reported by Pylint.
Line: 8
Column: 1
import torch.utils.bundled_inputs
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.jit_utils import get_forward, get_forward_graph
from torch.utils.mobile_optimizer import (LintCode,
generate_mobile_module_lints,
optimize_for_mobile)
from torch.nn import functional as F
from torch._C import MobileOptimizerType
from torch.testing._internal.common_quantized import override_quantized_engine
Reported by Pylint.
Line: 11
Column: 1
from torch.utils.mobile_optimizer import (LintCode,
generate_mobile_module_lints,
optimize_for_mobile)
from torch.nn import functional as F
from torch._C import MobileOptimizerType
from torch.testing._internal.common_quantized import override_quantized_engine
try:
import torchvision
Reported by Pylint.
Line: 12
Column: 1
generate_mobile_module_lints,
optimize_for_mobile)
from torch.nn import functional as F
from torch._C import MobileOptimizerType
from torch.testing._internal.common_quantized import override_quantized_engine
try:
import torchvision
HAS_TORCHVISION = True
Reported by Pylint.
Line: 13
Column: 1
optimize_for_mobile)
from torch.nn import functional as F
from torch._C import MobileOptimizerType
from torch.testing._internal.common_quantized import override_quantized_engine
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
Reported by Pylint.
caffe2/python/data_parallel_model_test.py
193 issues
Line: 13
Column: 1
import tempfile
import unittest
import time
from mock import Mock
from hypothesis import assume, given, settings
import hypothesis.strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import brew, core, cnn, data_parallel_model, dyndep, \
Reported by Pylint.
Line: 14
Column: 1
import unittest
import time
from mock import Mock
from hypothesis import assume, given, settings
import hypothesis.strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import brew, core, cnn, data_parallel_model, dyndep, \
model_helper, optimizer, rnn_cell, workspace
Reported by Pylint.
Line: 15
Column: 1
import time
from mock import Mock
from hypothesis import assume, given, settings
import hypothesis.strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import brew, core, cnn, data_parallel_model, dyndep, \
model_helper, optimizer, rnn_cell, workspace
from caffe2.python.test_util import TestCase
Reported by Pylint.
Line: 28
Column: 9
class TemporaryDirectory:
def __enter__(self):
self.tmpdir = tempfile.mkdtemp()
return self.tmpdir
def __exit__(self, type, value, traceback):
shutil.rmtree(self.tmpdir)
Reported by Pylint.
Line: 31
Column: 24
self.tmpdir = tempfile.mkdtemp()
return self.tmpdir
def __exit__(self, type, value, traceback):
shutil.rmtree(self.tmpdir)
# Note(jiayq): we are yet to find out why Travis gives out an error in gloo
# like:
# RuntimeError: [enforce fail at /home/travis/build/caffe2/caffe2/third_party/gloo/gloo/transport/tcp/device.cc:113] ifa != nullptr. Unable to find interface for: [127.0.1.1]
Reported by Pylint.
Line: 46
Column: 31
'''
Helper function for test_equiv
'''
def input_builder_fun(model):
return None
def model_build_fun(model, loss_scale):
fc = model.FC("data", "fc", 16, 1,
("ConstantFill", {}), ("ConstantFill", {}))
Reported by Pylint.
Line: 102
Column: 17
batch_per_device = batch_size // len(devices)
for (j, g) in enumerate(devices):
st = j * batch_per_device
en = st + batch_per_device
data = full_data[st:en, :].astype(np.float32)
labels = full_labels[st:en].astype(np.float32)
with core.DeviceScope(core.DeviceOption(model._device_type, g)):
workspace.FeedBlob(
Reported by Pylint.
Line: 106
Column: 57
en = st + batch_per_device
data = full_data[st:en, :].astype(np.float32)
labels = full_labels[st:en].astype(np.float32)
with core.DeviceScope(core.DeviceOption(model._device_type, g)):
workspace.FeedBlob(
"{}_{}/data".format(model._device_prefix, g), data
)
workspace.FeedBlob(
"{}_{}/label".format(model._device_prefix, g), labels
Reported by Pylint.
Line: 108
Column: 45
labels = full_labels[st:en].astype(np.float32)
with core.DeviceScope(core.DeviceOption(model._device_type, g)):
workspace.FeedBlob(
"{}_{}/data".format(model._device_prefix, g), data
)
workspace.FeedBlob(
"{}_{}/label".format(model._device_prefix, g), labels
)
Reported by Pylint.
Line: 111
Column: 46
"{}_{}/data".format(model._device_prefix, g), data
)
workspace.FeedBlob(
"{}_{}/label".format(model._device_prefix, g), labels
)
if i == 0:
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
Reported by Pylint.
test/test_spectral_ops.py
193 issues
Line: 1
Column: 1
import torch
import unittest
import math
from contextlib import contextmanager
from itertools import product
import itertools
import doctest
import inspect
Reported by Pylint.
Line: 10
Column: 1
import doctest
import inspect
from torch.testing._internal.common_utils import \
(TestCase, run_tests, TEST_NUMPY, TEST_LIBROSA, TEST_MKL)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, ops, dtypes, onlyOnCPUAndCUDA,
skipCPUIfNoFFT, deviceCountAtLeast, onlyCUDA, OpDTypes, skipIf)
from torch.testing._internal.common_methods_invocations import spectral_funcs, SpectralFuncInfo
Reported by Pylint.
Line: 12
Column: 1
from torch.testing._internal.common_utils import \
(TestCase, run_tests, TEST_NUMPY, TEST_LIBROSA, TEST_MKL)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, ops, dtypes, onlyOnCPUAndCUDA,
skipCPUIfNoFFT, deviceCountAtLeast, onlyCUDA, OpDTypes, skipIf)
from torch.testing._internal.common_methods_invocations import spectral_funcs, SpectralFuncInfo
from setuptools import distutils
Reported by Pylint.
Line: 15
Column: 1
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, ops, dtypes, onlyOnCPUAndCUDA,
skipCPUIfNoFFT, deviceCountAtLeast, onlyCUDA, OpDTypes, skipIf)
from torch.testing._internal.common_methods_invocations import spectral_funcs, SpectralFuncInfo
from setuptools import distutils
from typing import Optional, List
Reported by Pylint.
Line: 26
Column: 5
if TEST_LIBROSA:
import librosa
def _complex_stft(x, *args, **kwargs):
# Transform real and imaginary components separably
stft_real = torch.stft(x.real, *args, **kwargs, return_complex=True, onesided=False)
Reported by Pylint.
Line: 217
Column: 46
return (input, s, dim, norm)
@onlyOnCPUAndCUDA
@ops([op for op in spectral_funcs if not op.ndimensional])
def test_reference_1d(self, device, dtype, op):
norm_modes = ((None, "forward", "backward", "ortho")
if distutils.version.LooseVersion(np.__version__) >= '1.20.0'
else (None, "ortho"))
test_args = [
Reported by Pylint.
Line: 370
Column: 42
# nd-fft tests
@onlyOnCPUAndCUDA
@unittest.skipIf(not TEST_NUMPY, 'NumPy not found')
@ops([op for op in spectral_funcs if op.ndimensional])
def test_reference_nd(self, device, dtype, op):
norm_modes = ((None, "forward", "backward", "ortho")
if distutils.version.LooseVersion(np.__version__) >= '1.20.0'
else (None, "ortho"))
Reported by Pylint.
Line: 442
Column: 42
forward != torch.fft.fftn or x.is_complex()))
@onlyOnCPUAndCUDA
@ops([op for op in spectral_funcs if op.ndimensional],
allowed_dtypes=[torch.float, torch.cfloat])
def test_fftn_invalid(self, device, dtype, op):
a = torch.rand(10, 10, 10, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, "dims must be unique"):
Reported by Pylint.
Line: 105
Column: 44
# (i.e. it cannot be a set of random numbers)
# So for ROCm, call np.fft.rfftn and use its output as the input
# for testing ops that call hipfftExecC2R
def _generate_valid_rocfft_input(self, input, op, s, dim, norm):
def get_op_name(op):
if type(op) == SpectralFuncInfo:
return op.name
else:
return op.__name__
Reported by Pylint.
Line: 247
Column: 13
for iargs in test_args:
args = list(iargs)
input = args[0]
args = args[1:]
if torch.version.hip is not None and input.device.type == 'cuda':
input, args[0], args[1], args[2] = self._generate_valid_rocfft_input(
input, op, args[0], args[1], args[2])
Reported by Pylint.
torch/jit/_recursive.py
192 issues
Line: 99
Column: 55
# in addition, tuples and lists of these base types are also considered constants
# If you edit this list, then you also need to edit the handlers in
# ConstantValue in jit/script/init.cpp
_constant_types = (bool, float, int, str, type(None), torch.device, torch.layout, torch.dtype)
def _get_valid_constant(attr, v, owner_type):
if isinstance(v, _constant_types):
return v
elif isinstance(v, tuple) or isinstance(v, list):
Reported by Pylint.
Line: 99
Column: 83
# in addition, tuples and lists of these base types are also considered constants
# If you edit this list, then you also need to edit the handlers in
# ConstantValue in jit/script/init.cpp
_constant_types = (bool, float, int, str, type(None), torch.device, torch.layout, torch.dtype)
def _get_valid_constant(attr, v, owner_type):
if isinstance(v, _constant_types):
return v
elif isinstance(v, tuple) or isinstance(v, list):
Reported by Pylint.
Line: 99
Column: 69
# in addition, tuples and lists of these base types are also considered constants
# If you edit this list, then you also need to edit the handlers in
# ConstantValue in jit/script/init.cpp
_constant_types = (bool, float, int, str, type(None), torch.device, torch.layout, torch.dtype)
def _get_valid_constant(attr, v, owner_type):
if isinstance(v, _constant_types):
return v
elif isinstance(v, tuple) or isinstance(v, list):
Reported by Pylint.
Line: 896
Column: 16
script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn)
method = types.MethodType(unbound_method, script_module)
return method(*args)
# make the lazy binding method "look like" the original method
lazy_binding_method.original_fn = unbound_method # type: ignore[attr-defined]
lazy_binding_method.__name__ = unbound_method.__name__
torch._jit_internal.copy_torchscript_modifier(unbound_method, lazy_binding_method)
Reported by Pylint.
Line: 23
Column: 3
PropertyStub = collections.namedtuple('PropertyStub', ('resolution_callback', 'def_'))
# TODO: there should be a more principled way of doing this.
ignored_attributes = [
"_version",
"_parameters",
"_buffers",
"_modules",
Reported by Pylint.
Line: 44
Column: 24
if not script_class:
ast = get_jit_class_def(obj, obj.__name__)
defaults = torch.jit.frontend.get_default_args_for_class(obj)
script_class = torch._C._jit_script_class_compile(qualified_name, ast, defaults, rcb)
_add_script_class(obj, script_class)
return script_class
def make_stub(func, name):
Reported by Pylint.
Line: 44
Column: 24
if not script_class:
ast = get_jit_class_def(obj, obj.__name__)
defaults = torch.jit.frontend.get_default_args_for_class(obj)
script_class = torch._C._jit_script_class_compile(qualified_name, ast, defaults, rcb)
_add_script_class(obj, script_class)
return script_class
def make_stub(func, name):
Reported by Pylint.
Line: 116
Column: 21
""".format(torch.typename(type(v)), owner_type, attr, constants)))
class SourceContext(torch._C._jit_tree_views.SourceRangeFactory):
def __init__(self, source, filename, file_lineno, leading_whitespace_len):
super(SourceContext, self).__init__(source, filename, file_lineno, leading_whitespace_len)
def infer_concrete_type_builder(nn_module, share_types=True):
Reported by Pylint.
Line: 116
Column: 21
""".format(torch.typename(type(v)), owner_type, attr, constants)))
class SourceContext(torch._C._jit_tree_views.SourceRangeFactory):
def __init__(self, source, filename, file_lineno, leading_whitespace_len):
super(SourceContext, self).__init__(source, filename, file_lineno, leading_whitespace_len)
def infer_concrete_type_builder(nn_module, share_types=True):
Reported by Pylint.
Line: 117
Column: 5
class SourceContext(torch._C._jit_tree_views.SourceRangeFactory):
def __init__(self, source, filename, file_lineno, leading_whitespace_len):
super(SourceContext, self).__init__(source, filename, file_lineno, leading_whitespace_len)
def infer_concrete_type_builder(nn_module, share_types=True):
"""
Reported by Pylint.
test/test_multiprocessing.py
189 issues
Line: 10
Column: 1
import copy
from sys import platform
import torch
import torch.cuda
import torch.multiprocessing as mp
import torch.utils.hooks
from torch.nn import Parameter
from torch.testing._internal.common_utils import (TestCase, run_tests, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN,
Reported by Pylint.
Line: 11
Column: 1
from sys import platform
import torch
import torch.cuda
import torch.multiprocessing as mp
import torch.utils.hooks
from torch.nn import Parameter
from torch.testing._internal.common_utils import (TestCase, run_tests, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN,
load_tests, slowTest, TEST_WITH_TSAN)
Reported by Pylint.
Line: 12
Column: 1
import torch
import torch.cuda
import torch.multiprocessing as mp
import torch.utils.hooks
from torch.nn import Parameter
from torch.testing._internal.common_utils import (TestCase, run_tests, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN,
load_tests, slowTest, TEST_WITH_TSAN)
Reported by Pylint.
Line: 13
Column: 1
import torch
import torch.cuda
import torch.multiprocessing as mp
import torch.utils.hooks
from torch.nn import Parameter
from torch.testing._internal.common_utils import (TestCase, run_tests, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN,
load_tests, slowTest, TEST_WITH_TSAN)
# load_tests from common_utils is used to automatically filter tests for
Reported by Pylint.
Line: 14
Column: 1
import torch.cuda
import torch.multiprocessing as mp
import torch.utils.hooks
from torch.nn import Parameter
from torch.testing._internal.common_utils import (TestCase, run_tests, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN,
load_tests, slowTest, TEST_WITH_TSAN)
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
Reported by Pylint.
Line: 15
Column: 1
import torch.multiprocessing as mp
import torch.utils.hooks
from torch.nn import Parameter
from torch.testing._internal.common_utils import (TestCase, run_tests, IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, TEST_WITH_ASAN,
load_tests, slowTest, TEST_WITH_TSAN)
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
Reported by Pylint.
Line: 20
Column: 1
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
TEST_REPEATS = 30
HAS_SHM_FILES = os.path.isdir('/dev/shm')
TEST_CUDA_IPC = torch.cuda.is_available() and \
sys.platform != 'darwin' and \
Reported by Pylint.
Line: 23
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b108_hardcoded_tmp_directory.html
load_tests = load_tests
TEST_REPEATS = 30
HAS_SHM_FILES = os.path.isdir('/dev/shm')
TEST_CUDA_IPC = torch.cuda.is_available() and \
sys.platform != 'darwin' and \
sys.platform != 'win32'
TEST_MULTIGPU = TEST_CUDA_IPC and torch.cuda.device_count() > 1
Reported by Bandit.
Line: 41
Column: 9
def _test_cuda_ipc_deadlock_actor(queue, iterations):
for i in range(iterations):
if not queue.empty():
queue.get()
time.sleep(.01)
Reported by Pylint.
Line: 49
Column: 9
def _test_cuda_ipc_deadlock_learner(queue, iterations):
net = torch.nn.LSTM(1, 1).cuda()
for i in range(iterations):
if not queue.full():
queue.put(copy.deepcopy(net.state_dict()))
time.sleep(.01)
Reported by Pylint.
test/test_ops.py
188 issues
Line: 5
Column: 1
from functools import partial, wraps
import warnings
import torch
from torch.testing import \
(FileCheck, floating_and_complex_types_and, get_all_dtypes)
from torch.testing._internal.common_utils import \
(TestCase, is_iterable_of_tensors, run_tests, IS_SANDCASTLE, clone_input_helper, make_tensor,
Reported by Pylint.
Line: 7
Column: 1
import torch
from torch.testing import \
(FileCheck, floating_and_complex_types_and, get_all_dtypes)
from torch.testing._internal.common_utils import \
(TestCase, is_iterable_of_tensors, run_tests, IS_SANDCASTLE, clone_input_helper, make_tensor,
gradcheck, gradgradcheck, IS_IN_CI, suppress_warnings)
from torch.testing._internal.common_methods_invocations import \
Reported by Pylint.
Line: 9
Column: 1
from torch.testing import \
(FileCheck, floating_and_complex_types_and, get_all_dtypes)
from torch.testing._internal.common_utils import \
(TestCase, is_iterable_of_tensors, run_tests, IS_SANDCASTLE, clone_input_helper, make_tensor,
gradcheck, gradgradcheck, IS_IN_CI, suppress_warnings)
from torch.testing._internal.common_methods_invocations import \
(op_db, _NOTHING, UnaryUfuncInfo, SpectralFuncInfo)
from torch.testing._internal.common_device_type import \
Reported by Pylint.
Line: 12
Column: 1
from torch.testing._internal.common_utils import \
(TestCase, is_iterable_of_tensors, run_tests, IS_SANDCASTLE, clone_input_helper, make_tensor,
gradcheck, gradgradcheck, IS_IN_CI, suppress_warnings)
from torch.testing._internal.common_methods_invocations import \
(op_db, _NOTHING, UnaryUfuncInfo, SpectralFuncInfo)
from torch.testing._internal.common_device_type import \
(deviceCountAtLeast, instantiate_device_type_tests, ops, onlyCUDA, onlyOnCPUAndCUDA, skipCUDAIfRocm, OpDTypes)
from torch.testing._internal.common_jit import JitCommonTestCase, check_against_reference
from torch.testing._internal.jit_metaprogramming_utils import create_script_fn, create_traced_fn, \
Reported by Pylint.
Line: 14
Column: 1
gradcheck, gradgradcheck, IS_IN_CI, suppress_warnings)
from torch.testing._internal.common_methods_invocations import \
(op_db, _NOTHING, UnaryUfuncInfo, SpectralFuncInfo)
from torch.testing._internal.common_device_type import \
(deviceCountAtLeast, instantiate_device_type_tests, ops, onlyCUDA, onlyOnCPUAndCUDA, skipCUDAIfRocm, OpDTypes)
from torch.testing._internal.common_jit import JitCommonTestCase, check_against_reference
from torch.testing._internal.jit_metaprogramming_utils import create_script_fn, create_traced_fn, \
check_alias_annotation
from torch.testing._internal.jit_utils import disable_autodiff_subgraph_inlining
Reported by Pylint.
Line: 16
Column: 1
(op_db, _NOTHING, UnaryUfuncInfo, SpectralFuncInfo)
from torch.testing._internal.common_device_type import \
(deviceCountAtLeast, instantiate_device_type_tests, ops, onlyCUDA, onlyOnCPUAndCUDA, skipCUDAIfRocm, OpDTypes)
from torch.testing._internal.common_jit import JitCommonTestCase, check_against_reference
from torch.testing._internal.jit_metaprogramming_utils import create_script_fn, create_traced_fn, \
check_alias_annotation
from torch.testing._internal.jit_utils import disable_autodiff_subgraph_inlining
import torch.testing._internal.opinfo_helper as opinfo_helper
Reported by Pylint.
Line: 17
Column: 1
from torch.testing._internal.common_device_type import \
(deviceCountAtLeast, instantiate_device_type_tests, ops, onlyCUDA, onlyOnCPUAndCUDA, skipCUDAIfRocm, OpDTypes)
from torch.testing._internal.common_jit import JitCommonTestCase, check_against_reference
from torch.testing._internal.jit_metaprogramming_utils import create_script_fn, create_traced_fn, \
check_alias_annotation
from torch.testing._internal.jit_utils import disable_autodiff_subgraph_inlining
import torch.testing._internal.opinfo_helper as opinfo_helper
# variant testing is only done with torch.float and torch.cfloat to avoid
Reported by Pylint.
Line: 19
Column: 1
from torch.testing._internal.common_jit import JitCommonTestCase, check_against_reference
from torch.testing._internal.jit_metaprogramming_utils import create_script_fn, create_traced_fn, \
check_alias_annotation
from torch.testing._internal.jit_utils import disable_autodiff_subgraph_inlining
import torch.testing._internal.opinfo_helper as opinfo_helper
# variant testing is only done with torch.float and torch.cfloat to avoid
# excessive test times and maximize signal to noise ratio
_variant_ops = partial(ops, dtypes=OpDTypes.supported,
Reported by Pylint.
Line: 20
Column: 1
from torch.testing._internal.jit_metaprogramming_utils import create_script_fn, create_traced_fn, \
check_alias_annotation
from torch.testing._internal.jit_utils import disable_autodiff_subgraph_inlining
import torch.testing._internal.opinfo_helper as opinfo_helper
# variant testing is only done with torch.float and torch.cfloat to avoid
# excessive test times and maximize signal to noise ratio
_variant_ops = partial(ops, dtypes=OpDTypes.supported,
allowed_dtypes=(torch.float, torch.cfloat))
Reported by Pylint.
Line: 805
Column: 40
_alias_ops = partial(ops, dtypes=OpDTypes.supported,
allowed_dtypes=(torch.float,))
@_alias_ops((op for op in op_db if op.aliases))
def test_jit_alias_remapping(self, device, dtype, op):
# Required to avoid undefined value: tensor error in JIT compilation of the function template
tensor = torch.tensor
samples = op.sample_inputs(device, dtype, requires_grad=True)
Reported by Pylint.
test/test_foreach.py
186 issues
Line: 5
Column: 1
from numbers import Number
import random
import re
import torch
import unittest
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, TEST_WITH_SLOW
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, onlyCUDA, skipCUDAIfRocm, skipMeta, ops)
from torch.testing._internal.common_methods_invocations import \
Reported by Pylint.
Line: 7
Column: 1
import re
import torch
import unittest
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, TEST_WITH_SLOW
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, onlyCUDA, skipCUDAIfRocm, skipMeta, ops)
from torch.testing._internal.common_methods_invocations import \
(foreach_unary_op_db, foreach_binary_op_db, foreach_pointwise_op_db, foreach_minmax_op_db, make_tensor)
Reported by Pylint.
Line: 8
Column: 1
import torch
import unittest
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, TEST_WITH_SLOW
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, onlyCUDA, skipCUDAIfRocm, skipMeta, ops)
from torch.testing._internal.common_methods_invocations import \
(foreach_unary_op_db, foreach_binary_op_db, foreach_pointwise_op_db, foreach_minmax_op_db, make_tensor)
# Includes some values such that N * N won't be a multiple of 4,
Reported by Pylint.
Line: 10
Column: 1
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, TEST_WITH_SLOW
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, onlyCUDA, skipCUDAIfRocm, skipMeta, ops)
from torch.testing._internal.common_methods_invocations import \
(foreach_unary_op_db, foreach_binary_op_db, foreach_pointwise_op_db, foreach_minmax_op_db, make_tensor)
# Includes some values such that N * N won't be a multiple of 4,
# which should ensure we test the vectorized and non-vectorized
# kernel code paths.
Reported by Pylint.
Line: 251
Column: 31
for _, scalarlist in getScalarLists(N):
self._test_binary_op_scalarlist(device, dtype, op, N, scalarlist, False, False)
def _pointwise_test(self, dtype, op, ref, inputs, is_fastpath, is_inplace, *, values=None):
ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1], inputs[2]] if is_inplace else inputs
try:
actual = op(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
Reported by Pylint.
Line: 323
Column: 35
# note(mkozuki): fastpath test uses dtypes which fastpath implementation supports.
# To confirm the dtypes of `OpInfo` cover the dtypes that the function support,
# this test does not use `try-except` for fastpath.
def _regular_unary_test(self, dtype, op, ref, inputs, is_fastpath):
if is_fastpath:
self.assertEqual(ref(inputs), op(inputs, self.is_cuda, is_fastpath))
return
try:
actual = op(inputs, self.is_cuda, is_fastpath)
Reported by Pylint.
Line: 342
Column: 35
# - for integer inputs, trigonometric functions and exponential function returns float outputs,
# which causes "result type Float can't be case to the desired type" error.
# Thus, `try-except` is used even if `is_fastpath` is `True`.
def _inplace_unary_test(self, dtype, inplace, inplace_ref, inputs, is_fastpath):
copied_inputs = [[t.clone().detach() for t in tensors] for tensors in inputs]
try:
inplace(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
Reported by Pylint.
Line: 350
Column: 13
with self.assertRaisesRegex(type(e), re.escape(str(e))):
inplace_ref(copied_inputs)
else:
inplace_ref(copied_inputs),
self.assertEqual(copied_inputs, inputs)
def _test_unary(self, device, dtype, opinfo, N, is_fastpath):
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, 1)
inputs = opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
Reported by Pylint.
Line: 415
Column: 72
self._minmax_test(op, inputs, True, 1)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
# TODO: enable empty list case
for tensors in [[torch.randn([0])]]:
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, tensors)
Reported by Pylint.
Line: 415
Column: 64
self._minmax_test(op, inputs, True, 1)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
# TODO: enable empty list case
for tensors in [[torch.randn([0])]]:
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, tensors)
Reported by Pylint.
caffe2/python/rnn_cell.py
186 issues
Line: 1457
Column: 9
forward_only=False,
drop_states=False,
)
super(MILSTMWithAttentionCell, self).__init__(
encoder_output_dim=encoder_output_dim,
encoder_outputs=encoder_outputs,
decoder_cell=decoder_cell,
decoder_state_dim=decoder_state_dim,
name=name,
Reported by Pylint.
Line: 1660
Column: 9
outputs_with_grads)
for i in outputs_without_grad:
model.net.ZeroGradient(outputs[i], [])
logging.debug("Added 0 gradients for blobs:",
[outputs[i] for i in outputs_without_grad])
final_output = self.cell._prepare_output_sequence(model, outputs)
return final_output, outputs
Reported by Pylint.
Line: 180
Column: 21
extra_inputs = _RectifyNames(extra_input_names)
extra_inputs = zip(extra_input_names, extra_input_sizes)
arg_names = inspect.getargspec(self.apply_override).args
rectified = [input_t, seq_lengths, states, timestep]
if 'extra_inputs' in arg_names:
rectified.append(extra_inputs)
return rectified
Reported by Pylint.
Line: 214
Column: 29
'''
raise NotImplementedError('Abstract method')
def prepare_input(self, model, input_blob):
'''
If some operations in _apply method depend only on the input,
not on recurrent states, they could be computed in advance.
model: ModelHelper object new operators would be added to
Reported by Pylint.
Line: 255
Column: 31
'''
raise NotImplementedError('Abstract method')
def _prepare_output(self, model, states):
'''
Allows arbitrary post-processing of primary output.
'''
return states[self.get_output_state_index()]
Reported by Pylint.
Line: 261
Column: 40
'''
return states[self.get_output_state_index()]
def _prepare_output_sequence(self, model, state_outputs):
'''
Allows arbitrary post-processing of primary sequence output.
(Note that state_outputs alternates between full-sequence and final
output for each state, thus the index multiplier 2.)
Reported by Pylint.
Line: 294
Column: 1
# based on https://pytorch.org/docs/master/nn.html#torch.nn.RNNCell
class BasicRNNCell(RNNCell):
def __init__(
self,
input_size,
hidden_size,
forget_bias,
Reported by Pylint.
Line: 299
Column: 9
self,
input_size,
hidden_size,
forget_bias,
memory_optimization,
drop_states=False,
initializer=None,
activation=None,
**kwargs
Reported by Pylint.
Line: 300
Column: 9
input_size,
hidden_size,
forget_bias,
memory_optimization,
drop_states=False,
initializer=None,
activation=None,
**kwargs
):
Reported by Pylint.
Line: 317
Column: 5
'BasicRNNCell with unknown activation function (%s)'
% self.activation)
def apply_override(
self,
model,
input_t,
seq_lengths,
states,
Reported by Pylint.
test/jit/test_autodiff_subgraph_slicing.py
185 issues
Line: 4
Column: 1
import os
import sys
import unittest
from torch.testing._internal.common_utils import GRAPH_EXECUTOR, ProfilingMode, \
num_profiled_runs, enable_profiling_mode_for_profiling_tests
from torch.testing._internal.common_jit import check_against_reference
import torch
# Make the helper files in test/ importable
Reported by Pylint.
Line: 6
Column: 1
import unittest
from torch.testing._internal.common_utils import GRAPH_EXECUTOR, ProfilingMode, \
num_profiled_runs, enable_profiling_mode_for_profiling_tests
from torch.testing._internal.common_jit import check_against_reference
import torch
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
Reported by Pylint.
Line: 7
Column: 1
from torch.testing._internal.common_utils import GRAPH_EXECUTOR, ProfilingMode, \
num_profiled_runs, enable_profiling_mode_for_profiling_tests
from torch.testing._internal.common_jit import check_against_reference
import torch
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase, disable_autodiff_subgraph_inlining
Reported by Pylint.
Line: 12
Column: 1
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase, disable_autodiff_subgraph_inlining
from torch.testing import FileCheck
from typing import List, Tuple, Optional
if __name__ == '__main__':
Reported by Pylint.
Line: 13
Column: 1
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase, disable_autodiff_subgraph_inlining
from torch.testing import FileCheck
from typing import List, Tuple, Optional
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
Reported by Pylint.
Line: 52
Column: 26
input = torch.rand(6, 10).requires_grad_()
with disable_autodiff_subgraph_inlining():
with enable_profiling_mode_for_profiling_tests():
output = func(input, profile_and_replay=True)
self.assertAutodiffNode(func.graph_for(input), True, ['prim::ConstantChunk'], [])
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "This threshold is only valid for Profiling Executor")
def test_diff_graph_inline_threshold(self):
Reported by Pylint.
Line: 25
Column: 3
@unittest.skipIf(GRAPH_EXECUTOR == ProfilingMode.SIMPLE, "Simple Executor doesn't support gradients")
class TestAutodiffSubgraphSlicing(JitTestCase):
# TODO: It is better if we can test directly on graphs instead of the current
# end-to-end fashion.
def _perform_ad_subgraph_slicing(self, fn, *input_sizes):
with disable_autodiff_subgraph_inlining():
with enable_profiling_mode_for_profiling_tests():
ge = torch.jit.script(fn)
Reported by Pylint.
Line: 49
Column: 9
x1, x2 = torch.chunk(x, 2)
return (x1, x2)
input = torch.rand(6, 10).requires_grad_()
with disable_autodiff_subgraph_inlining():
with enable_profiling_mode_for_profiling_tests():
output = func(input, profile_and_replay=True)
self.assertAutodiffNode(func.graph_for(input), True, ['prim::ConstantChunk'], [])
Reported by Pylint.
Line: 52
Column: 17
input = torch.rand(6, 10).requires_grad_()
with disable_autodiff_subgraph_inlining():
with enable_profiling_mode_for_profiling_tests():
output = func(input, profile_and_replay=True)
self.assertAutodiffNode(func.graph_for(input), True, ['prim::ConstantChunk'], [])
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "This threshold is only valid for Profiling Executor")
def test_diff_graph_inline_threshold(self):
Reported by Pylint.
Line: 73
Column: 17
# two nodes should NOT be fused
return torch.sigmoid(x)
input = torch.rand([4, 4], requires_grad=True)
foo(input)
foo(input)
bar(input)
bar(input)
Reported by Pylint.