The following issues were found
third_party/miniz-2.0.8/miniz.c
37 issues
Line: 29
Column: 18
CWE codes:
119
120
Suggestion:
Perform bounds checking, use functions that limit length, or ensure that the size is larger than the maximum possible length
#include "miniz.h"
typedef unsigned char mz_validate_uint16[sizeof(mz_uint16) == 2 ? 1 : -1];
typedef unsigned char mz_validate_uint32[sizeof(mz_uint32) == 4 ? 1 : -1];
typedef unsigned char mz_validate_uint64[sizeof(mz_uint64) == 8 ? 1 : -1];
#ifdef __cplusplus
extern "C" {
Reported by FlawFinder.
Line: 30
Column: 18
CWE codes:
119
120
Suggestion:
Perform bounds checking, use functions that limit length, or ensure that the size is larger than the maximum possible length
#include "miniz.h"
typedef unsigned char mz_validate_uint16[sizeof(mz_uint16) == 2 ? 1 : -1];
typedef unsigned char mz_validate_uint32[sizeof(mz_uint32) == 4 ? 1 : -1];
typedef unsigned char mz_validate_uint64[sizeof(mz_uint64) == 8 ? 1 : -1];
#ifdef __cplusplus
extern "C" {
#endif
Reported by FlawFinder.
Line: 31
Column: 18
CWE codes:
119
120
Suggestion:
Perform bounds checking, use functions that limit length, or ensure that the size is larger than the maximum possible length
typedef unsigned char mz_validate_uint16[sizeof(mz_uint16) == 2 ? 1 : -1];
typedef unsigned char mz_validate_uint32[sizeof(mz_uint32) == 4 ? 1 : -1];
typedef unsigned char mz_validate_uint64[sizeof(mz_uint64) == 8 ? 1 : -1];
#ifdef __cplusplus
extern "C" {
#endif
Reported by FlawFinder.
Line: 477
Column: 9
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
if (pState->m_dict_avail)
{
n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
pStream->next_out += n;
pStream->avail_out -= n;
pStream->total_out += n;
pState->m_dict_avail -= n;
pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);
Reported by FlawFinder.
Line: 502
Column: 9
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
pState->m_dict_avail = (mz_uint)out_bytes;
n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
pStream->next_out += n;
pStream->avail_out -= n;
pStream->total_out += n;
pState->m_dict_avail -= n;
pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);
Reported by FlawFinder.
Line: 989
Column: 5
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
if (d->m_huff_code_sizes[1][num_dist_codes - 1])
break;
memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes);
memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0], num_dist_codes);
total_code_sizes_to_pack = num_lit_codes + num_dist_codes;
num_packed_code_sizes = 0;
rle_z_count = 0;
rle_repeat_count = 0;
Reported by FlawFinder.
Line: 990
Column: 5
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
break;
memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes);
memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0], num_dist_codes);
total_code_sizes_to_pack = num_lit_codes + num_dist_codes;
num_packed_code_sizes = 0;
rle_z_count = 0;
rle_repeat_count = 0;
Reported by FlawFinder.
Line: 1363
Column: 13
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
else if (pOutput_buf_start == d->m_output_buf)
{
int bytes_to_copy = (int)MZ_MIN((size_t)n, (size_t)(*d->m_pOut_buf_size - d->m_out_buf_ofs));
memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf, bytes_to_copy);
d->m_out_buf_ofs += bytes_to_copy;
if ((n -= bytes_to_copy) != 0)
{
d->m_output_flush_ofs = bytes_to_copy;
d->m_output_flush_remaining = n;
Reported by FlawFinder.
Line: 1385
Column: 2
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
static inline mz_uint16 TDEFL_READ_UNALIGNED_WORD(const mz_uint8* p)
{
mz_uint16 ret;
memcpy(&ret, p, sizeof(mz_uint16));
return ret;
}
static inline mz_uint16 TDEFL_READ_UNALIGNED_WORD2(const mz_uint16* p)
{
mz_uint16 ret;
Reported by FlawFinder.
Line: 1391
Column: 2
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
static inline mz_uint16 TDEFL_READ_UNALIGNED_WORD2(const mz_uint16* p)
{
mz_uint16 ret;
memcpy(&ret, p, sizeof(mz_uint16));
return ret;
}
#else
#define TDEFL_READ_UNALIGNED_WORD(p) *(const mz_uint16 *)(p)
#define TDEFL_READ_UNALIGNED_WORD2(p) *(const mz_uint16 *)(p)
Reported by FlawFinder.
benchmarks/operator_benchmark/pt/unary_test.py
37 issues
Line: 3
Column: 1
import operator_benchmark as op_bench
import torch
"""Microbenchmarks for point-wise unary operator."""
# Configs for pointwise unary ops
Reported by Pylint.
Line: 10
Column: 27
# Configs for pointwise unary ops
unary_ops_configs_short = op_bench.config_list(
attr_names=['M', 'N'],
attrs=[
[512, 512],
],
cross_product_configs={
Reported by Pylint.
Line: 21
Column: 26
tags=['short']
)
unary_ops_configs_long = op_bench.cross_product_configs(
M=[256, 1024],
N=[256, 1024],
device=['cpu', 'cuda'],
tags=['long']
)
Reported by Pylint.
Line: 28
Column: 24
tags=['long']
)
class UnaryOpBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, device, op_func):
self.inputs = {
"input": torch.rand(M, N, device=device)
}
self.op_func = op_func
Reported by Pylint.
Line: 68
Column: 18
def long_(input):
return input.long()
unary_ops_list = op_bench.op_list(
attr_names=['op_name', 'op_func'],
attrs=[
['abs', torch.abs],
['abs_', torch.abs_],
['acos', torch.acos],
Reported by Pylint.
Line: 155
Column: 1
)
op_bench.generate_pt_tests_from_op_list(unary_ops_list,
unary_ops_configs_short + unary_ops_configs_long,
UnaryOpBenchmark)
if __name__ == "__main__":
Reported by Pylint.
Line: 6
Column: 1
import torch
"""Microbenchmarks for point-wise unary operator."""
# Configs for pointwise unary ops
unary_ops_configs_short = op_bench.config_list(
attr_names=['M', 'N'],
Reported by Pylint.
Line: 30
Column: 9
class UnaryOpBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, device, op_func):
self.inputs = {
"input": torch.rand(M, N, device=device)
}
self.op_func = op_func
def forward(self, input):
Reported by Pylint.
Line: 33
Column: 9
self.inputs = {
"input": torch.rand(M, N, device=device)
}
self.op_func = op_func
def forward(self, input):
return self.op_func(input)
def bernoulli_(input):
Reported by Pylint.
Line: 35
Column: 23
}
self.op_func = op_func
def forward(self, input):
return self.op_func(input)
def bernoulli_(input):
return input.bernoulli_()
Reported by Pylint.
test/test_throughput_benchmark.py
37 issues
Line: 2
Column: 1
import torch
from torch.utils import ThroughputBenchmark
from torch.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase, TemporaryFileName
class TwoLayerNet(torch.jit.ScriptModule):
def __init__(self, D_in, H, D_out):
Reported by Pylint.
Line: 3
Column: 1
import torch
from torch.utils import ThroughputBenchmark
from torch.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase, TemporaryFileName
class TwoLayerNet(torch.jit.ScriptModule):
def __init__(self, D_in, H, D_out):
Reported by Pylint.
Line: 4
Column: 1
import torch
from torch.utils import ThroughputBenchmark
from torch.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase, TemporaryFileName
class TwoLayerNet(torch.jit.ScriptModule):
def __init__(self, D_in, H, D_out):
Reported by Pylint.
Line: 6
Column: 1
from torch.utils import ThroughputBenchmark
from torch.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase, TemporaryFileName
class TwoLayerNet(torch.jit.ScriptModule):
def __init__(self, D_in, H, D_out):
super(TwoLayerNet, self).__init__()
self.linear1 = torch.nn.Linear(D_in, H)
Reported by Pylint.
Line: 51
Column: 13
inputs.append([torch.randn(B, D_in), torch.randn(B, D_in)])
bench = ThroughputBenchmark(module)
for input in inputs:
# can do both args and kwargs here
bench.add_input(input[0], x2=input[1])
for i in range(NUM_INPUTS):
# or just unpack the list of inputs
Reported by Pylint.
Line: 1
Column: 1
import torch
from torch.utils import ThroughputBenchmark
from torch.testing import assert_allclose
from torch.testing._internal.common_utils import run_tests, TestCase, TemporaryFileName
class TwoLayerNet(torch.jit.ScriptModule):
def __init__(self, D_in, H, D_out):
Reported by Pylint.
Line: 8
Column: 1
from torch.testing._internal.common_utils import run_tests, TestCase, TemporaryFileName
class TwoLayerNet(torch.jit.ScriptModule):
def __init__(self, D_in, H, D_out):
super(TwoLayerNet, self).__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(2 * H, D_out)
Reported by Pylint.
Line: 8
Column: 1
from torch.testing._internal.common_utils import run_tests, TestCase, TemporaryFileName
class TwoLayerNet(torch.jit.ScriptModule):
def __init__(self, D_in, H, D_out):
super(TwoLayerNet, self).__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(2 * H, D_out)
Reported by Pylint.
Line: 9
Column: 5
from torch.testing._internal.common_utils import run_tests, TestCase, TemporaryFileName
class TwoLayerNet(torch.jit.ScriptModule):
def __init__(self, D_in, H, D_out):
super(TwoLayerNet, self).__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(2 * H, D_out)
@torch.jit.script_method
Reported by Pylint.
Line: 9
Column: 5
from torch.testing._internal.common_utils import run_tests, TestCase, TemporaryFileName
class TwoLayerNet(torch.jit.ScriptModule):
def __init__(self, D_in, H, D_out):
super(TwoLayerNet, self).__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(2 * H, D_out)
@torch.jit.script_method
Reported by Pylint.
test/test_jit_fuser_legacy.py
37 issues
Line: 3
Column: 1
import sys
sys.argv.append("--jit_executor=legacy")
from test_jit_fuser import * # noqa: F403
if __name__ == '__main__':
run_tests()
Reported by Pylint.
Line: 3
Column: 1
import sys
sys.argv.append("--jit_executor=legacy")
from test_jit_fuser import * # noqa: F403
if __name__ == '__main__':
run_tests()
Reported by Pylint.
Line: 3
Column: 1
import sys
sys.argv.append("--jit_executor=legacy")
from test_jit_fuser import * # noqa: F403
if __name__ == '__main__':
run_tests()
Reported by Pylint.
Line: 3
Column: 1
import sys
sys.argv.append("--jit_executor=legacy")
from test_jit_fuser import * # noqa: F403
if __name__ == '__main__':
run_tests()
Reported by Pylint.
Line: 3
Column: 1
import sys
sys.argv.append("--jit_executor=legacy")
from test_jit_fuser import * # noqa: F403
if __name__ == '__main__':
run_tests()
Reported by Pylint.
Line: 3
Column: 1
import sys
sys.argv.append("--jit_executor=legacy")
from test_jit_fuser import * # noqa: F403
if __name__ == '__main__':
run_tests()
Reported by Pylint.
Line: 3
Column: 1
import sys
sys.argv.append("--jit_executor=legacy")
from test_jit_fuser import * # noqa: F403
if __name__ == '__main__':
run_tests()
Reported by Pylint.
Line: 3
Column: 1
import sys
sys.argv.append("--jit_executor=legacy")
from test_jit_fuser import * # noqa: F403
if __name__ == '__main__':
run_tests()
Reported by Pylint.
Line: 3
Column: 1
import sys
sys.argv.append("--jit_executor=legacy")
from test_jit_fuser import * # noqa: F403
if __name__ == '__main__':
run_tests()
Reported by Pylint.
Line: 3
Column: 1
import sys
sys.argv.append("--jit_executor=legacy")
from test_jit_fuser import * # noqa: F403
if __name__ == '__main__':
run_tests()
Reported by Pylint.
torch/fx/experimental/unification/core.py
37 issues
Line: 4
Column: 1
from collections.abc import Iterator # type: ignore[import]
from functools import partial
from .unification_tools import assoc # type: ignore[import]
from .utils import transitive_get as walk
from .variable import isvar
from .dispatch import dispatch
################
Reported by Pylint.
Line: 5
Column: 1
from functools import partial
from .unification_tools import assoc # type: ignore[import]
from .utils import transitive_get as walk
from .variable import isvar
from .dispatch import dispatch
################
# Reificiation #
Reported by Pylint.
Line: 6
Column: 1
from .unification_tools import assoc # type: ignore[import]
from .utils import transitive_get as walk
from .variable import isvar
from .dispatch import dispatch
################
# Reificiation #
################
Reported by Pylint.
Line: 7
Column: 1
from .unification_tools import assoc # type: ignore[import]
from .utils import transitive_get as walk
from .variable import isvar
from .dispatch import dispatch
################
# Reificiation #
################
Reported by Pylint.
Line: 64
Column: 13
if len(u) != len(v):
return False
for uu, vv in zip(u, v): # avoiding recursion
s = unify(uu, vv, s)
if s is False:
return False
return s
#
# @dispatch((set, frozenset), (set, frozenset), dict)
Reported by Pylint.
Line: 114
Column: 1
unify
@dispatch(object, object) # type: ignore[no-redef]
def unify(u, v):
return unify(u, v, {})
Reported by Pylint.
Line: 115
Column: 12
@dispatch(object, object) # type: ignore[no-redef]
def unify(u, v):
return unify(u, v, {})
Reported by Pylint.
Line: 17
Column: 1
def _reify(t, s):
return map(partial(reify, s=s), t)
# return (reify(arg, s) for arg in t)
_reify
@dispatch(tuple, dict) # type: ignore[no-redef]
def _reify(t, s):
return tuple(reify(iter(t), s))
_reify
Reported by Pylint.
Line: 22
Column: 1
@dispatch(tuple, dict) # type: ignore[no-redef]
def _reify(t, s):
return tuple(reify(iter(t), s))
_reify
@dispatch(list, dict) # type: ignore[no-redef]
def _reify(t, s):
return list(reify(iter(t), s))
_reify
Reported by Pylint.
Line: 27
Column: 1
@dispatch(list, dict) # type: ignore[no-redef]
def _reify(t, s):
return list(reify(iter(t), s))
_reify
@dispatch(dict, dict) # type: ignore[no-redef]
def _reify(d, s):
return dict((k, reify(v, s)) for k, v in d.items())
_reify
Reported by Pylint.
benchmarks/fastrnns/test.py
37 issues
Line: 2
Column: 1
import argparse
import torch
import torch.nn as nn
from .factory import pytorch_lstm_creator, varlen_pytorch_lstm_creator
from .runner import get_nn_runners
def barf():
Reported by Pylint.
Line: 3
Column: 1
import argparse
import torch
import torch.nn as nn
from .factory import pytorch_lstm_creator, varlen_pytorch_lstm_creator
from .runner import get_nn_runners
def barf():
Reported by Pylint.
Line: 5
Column: 1
import torch
import torch.nn as nn
from .factory import pytorch_lstm_creator, varlen_pytorch_lstm_creator
from .runner import get_nn_runners
def barf():
import pdb
Reported by Pylint.
Line: 6
Column: 1
import torch.nn as nn
from .factory import pytorch_lstm_creator, varlen_pytorch_lstm_creator
from .runner import get_nn_runners
def barf():
import pdb
pdb.set_trace()
Reported by Pylint.
Line: 27
Column: 49
return [t for t in tensors if t.requires_grad]
def test_rnns(experim_creator, control_creator, check_grad=True, verbose=False,
seqLength=100, numLayers=1, inputSize=512, hiddenSize=512,
miniBatch=64, device='cuda', seed=17):
creator_args = dict(seqLength=seqLength, numLayers=numLayers,
inputSize=inputSize, hiddenSize=hiddenSize,
miniBatch=miniBatch, device=device, seed=seed)
Reported by Pylint.
Line: 67
Column: 1
print('')
def test_vl_py(**test_args):
# XXX: This compares vl_py with vl_lstm.
# It's done this way because those two don't give the same outputs so
# the result isn't an apples-to-apples comparison right now.
control_creator = varlen_pytorch_lstm_creator
name, experim_creator, context = get_nn_runners('vl_py')[0]
Reported by Pylint.
Line: 68
Column: 3
def test_vl_py(**test_args):
# XXX: This compares vl_py with vl_lstm.
# It's done this way because those two don't give the same outputs so
# the result isn't an apples-to-apples comparison right now.
control_creator = varlen_pytorch_lstm_creator
name, experim_creator, context = get_nn_runners('vl_py')[0]
with context():
Reported by Pylint.
Line: 72
Column: 5
# It's done this way because those two don't give the same outputs so
# the result isn't an apples-to-apples comparison right now.
control_creator = varlen_pytorch_lstm_creator
name, experim_creator, context = get_nn_runners('vl_py')[0]
with context():
print('testing {}...'.format(name))
creator_keys = [
'seqLength', 'numLayers', 'inputSize',
'hiddenSize', 'miniBatch', 'device', 'seed'
Reported by Pylint.
Line: 72
Column: 28
# It's done this way because those two don't give the same outputs so
# the result isn't an apples-to-apples comparison right now.
control_creator = varlen_pytorch_lstm_creator
name, experim_creator, context = get_nn_runners('vl_py')[0]
with context():
print('testing {}...'.format(name))
creator_keys = [
'seqLength', 'numLayers', 'inputSize',
'hiddenSize', 'miniBatch', 'device', 'seed'
Reported by Pylint.
Line: 1
Column: 1
import argparse
import torch
import torch.nn as nn
from .factory import pytorch_lstm_creator, varlen_pytorch_lstm_creator
from .runner import get_nn_runners
def barf():
Reported by Pylint.
caffe2/python/operator_test/rmac_regions_op_test.py
37 issues
Line: 7
Column: 1
from caffe2.python import core
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
Reported by Pylint.
Line: 9
Column: 1
from caffe2.python import core
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
class RMACRegionsOpTest(hu.HypothesisTestCase):
@given(
Reported by Pylint.
Line: 22
Column: 41
**hu.gcs
)
@settings(deadline=10000)
def test(self, n, h, w, scales, gc, dc):
X = np.random.rand(n, 64, h, w).astype(np.float32)
overlap = 0.4
def ref_op(X):
N, H, W = X.shape[0], X.shape[2], X.shape[3]
Reported by Pylint.
Line: 1
Column: 1
from caffe2.python import core
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
Reported by Pylint.
Line: 13
Column: 1
import numpy as np
class RMACRegionsOpTest(hu.HypothesisTestCase):
@given(
n=st.integers(500, 500),
h=st.integers(1, 10),
w=st.integers(1, 10),
scales=st.integers(1, 3),
Reported by Pylint.
Line: 21
Column: 5
scales=st.integers(1, 3),
**hu.gcs
)
@settings(deadline=10000)
def test(self, n, h, w, scales, gc, dc):
X = np.random.rand(n, 64, h, w).astype(np.float32)
overlap = 0.4
def ref_op(X):
Reported by Pylint.
Line: 21
Column: 5
scales=st.integers(1, 3),
**hu.gcs
)
@settings(deadline=10000)
def test(self, n, h, w, scales, gc, dc):
X = np.random.rand(n, 64, h, w).astype(np.float32)
overlap = 0.4
def ref_op(X):
Reported by Pylint.
Line: 21
Column: 5
scales=st.integers(1, 3),
**hu.gcs
)
@settings(deadline=10000)
def test(self, n, h, w, scales, gc, dc):
X = np.random.rand(n, 64, h, w).astype(np.float32)
overlap = 0.4
def ref_op(X):
Reported by Pylint.
Line: 21
Column: 5
scales=st.integers(1, 3),
**hu.gcs
)
@settings(deadline=10000)
def test(self, n, h, w, scales, gc, dc):
X = np.random.rand(n, 64, h, w).astype(np.float32)
overlap = 0.4
def ref_op(X):
Reported by Pylint.
Line: 21
Column: 5
scales=st.integers(1, 3),
**hu.gcs
)
@settings(deadline=10000)
def test(self, n, h, w, scales, gc, dc):
X = np.random.rand(n, 64, h, w).astype(np.float32)
overlap = 0.4
def ref_op(X):
Reported by Pylint.
torch/utils/benchmark/examples/blas_compare.py
37 issues
Line: 134
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b602_subprocess_popen_with_shell_equals_true.html
f"--DETAIL_env {env}",
env=env_vars,
stdout=subprocess.PIPE,
shell=True
)
with open(result_file, "rb") as f:
result_bytes = f.read()
Reported by Bandit.
Line: 201
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b602_subprocess_popen_with_shell_equals_true.html
f"source activate {env_path} && "
f"python {os.path.abspath(__file__)} "
"--DETAIL_in_compare",
shell=True
)
if __name__ == "__main__":
# These flags are for subprocess control, not controlling the main loop.
Reported by Bandit.
Line: 17
Column: 1
import time
from typing import Tuple, Dict
from . import blas_compare_setup
MIN_RUN_TIME = 1
NUM_REPLICATES = 20
NUM_THREAD_SETTINGS = (1, 2, 4)
Reported by Pylint.
Line: 35
Column: 15
_RESULT_FILE_LOCK = threading.Lock()
_WORKER_POOL: queue.Queue[Tuple[str, str, int]] = queue.Queue()
def clear_worker_pool():
while not _WORKER_POOL.empty():
_, result_file, _ = _WORKER_POOL.get_nowait()
os.remove(result_file)
Reported by Pylint.
Line: 75
Column: 57
torch.manual_seed(seed)
results = []
for n in [4, 8, 16, 32, 64, 128, 256, 512, 1024, 7, 96, 150, 225]:
dtypes = (("Single", torch.float32), ("Double", torch.float64))
shapes = (
# Square MatMul
((n, n), (n, n), "(n x n) x (n x n)", "Matrix-Matrix Product"),
# Matrix-Vector product
Reported by Pylint.
Line: 75
Column: 30
torch.manual_seed(seed)
results = []
for n in [4, 8, 16, 32, 64, 128, 256, 512, 1024, 7, 96, 150, 225]:
dtypes = (("Single", torch.float32), ("Double", torch.float64))
shapes = (
# Square MatMul
((n, n), (n, n), "(n x n) x (n x n)", "Matrix-Matrix Product"),
# Matrix-Vector product
Reported by Pylint.
Line: 91
Column: 26
description=f"n = {n}",
env=os.path.split(env or "")[1] or None,
globals={
"x": torch.rand(x_shape, dtype=dtype),
"y": torch.rand(y_shape, dtype=dtype),
},
num_threads=num_threads,
).blocked_autorange(min_run_time=MIN_RUN_TIME)
results.append(t)
Reported by Pylint.
Line: 92
Column: 26
env=os.path.split(env or "")[1] or None,
globals={
"x": torch.rand(x_shape, dtype=dtype),
"y": torch.rand(y_shape, dtype=dtype),
},
num_threads=num_threads,
).blocked_autorange(min_run_time=MIN_RUN_TIME)
results.append(t)
Reported by Pylint.
Line: 103
Column: 20
pickle.dump(results, f)
def run_subprocess(args):
seed, env, sub_label, extra_env_vars = args
core_str = None
try:
core_str, result_file, num_threads = _WORKER_POOL.get()
with open(result_file, "wb"):
Reported by Pylint.
Line: 122
Column: 9
}
env_vars.update(extra_env_vars or {})
subprocess.run(
f"source activate {env} && "
f"taskset --cpu-list {core_str} "
f"python {os.path.abspath(__file__)} "
"--DETAIL_in_subprocess "
f"--DETAIL_seed {seed} "
Reported by Pylint.
caffe2/contrib/playground/resnetdemo/explicit_resnet_forward.py
37 issues
Line: 24
Column: 40
}
def gen_forward_pass_builder_fun(self, model, dataset, is_train):
split = 'train' if is_train else 'test'
opts = self.opts
def model_creator(model, loss_scale):
model, softmax, loss = resnet_imagenet_create_model(
Reported by Pylint.
Line: 28
Column: 30
split = 'train' if is_train else 'test'
opts = self.opts
def model_creator(model, loss_scale):
model, softmax, loss = resnet_imagenet_create_model(
model=model,
data='data',
labels='label',
split=split,
Reported by Pylint.
Line: 29
Column: 16
opts = self.opts
def model_creator(model, loss_scale):
model, softmax, loss = resnet_imagenet_create_model(
model=model,
data='data',
labels='label',
split=split,
opts=opts,
Reported by Pylint.
Line: 41
Column: 68
return model_creator
def resnet_imagenet_create_model(model, data, labels, split, opts, dataset):
model_helper = ResNetModelHelper(model, split, opts)
opts_depth = opts['model_param']['num_layer']
engine = opts['model_param']['engine']
log.info(' | ResNet-{} Imagenet'.format(opts_depth))
assert opts_depth in BLOCK_CONFIG.keys(), \
Reported by Pylint.
Line: 45
Column: 14
model_helper = ResNetModelHelper(model, split, opts)
opts_depth = opts['model_param']['num_layer']
engine = opts['model_param']['engine']
log.info(' | ResNet-{} Imagenet'.format(opts_depth))
assert opts_depth in BLOCK_CONFIG.keys(), \
'Block config is not defined for specified model depth. Please check.'
(n1, n2, n3, n4) = BLOCK_CONFIG[opts_depth]
num_features = 2048
Reported by Pylint.
Line: 76
Column: 3
relu_blob = model.Relu(bn_blob, bn_blob)
max_pool = model.MaxPool(relu_blob, 'pool1', kernel=3, stride=2, pad=1)
# TODO: This can be further optimized by passing dim_in, dim_out = features,
# dim_out = features * 4
if opts_depth in [50, 101, 152, 200, 264, 284]:
blob_in, dim_in = model_helper.residual_layer(
residual_block, max_pool, 64, 256, stride=1, num_blocks=n1,
prefix='res2', dim_inner=64
Reported by Pylint.
Line: 260
Column: 68
# bottleneck residual layer for 50, 101, 152 layer networks
def bottleneck_block(
self, blob_in, dim_in, dim_out, stride, prefix, dim_inner, group=None
):
blob_out = self.conv_bn_relu(
blob_in, dim_in, dim_inner, 1, 1, prefix + "_branch2a", pad=0,
)
blob_out = self.conv_bn_relu(
Reported by Pylint.
Line: 284
Column: 57
# basic layer for the 18 and 34 layer networks and the CIFAR data netwrorks
def basic_block(
self, blob_in, dim_in, dim_out, stride, prefix, dim_inner=None,
group=None,
):
blob_out = self.conv_bn_relu(
blob_in, dim_in, dim_out, 3, stride, prefix + "_branch2a"
)
Reported by Pylint.
Line: 285
Column: 9
# basic layer for the 18 and 34 layer networks and the CIFAR data netwrorks
def basic_block(
self, blob_in, dim_in, dim_out, stride, prefix, dim_inner=None,
group=None,
):
blob_out = self.conv_bn_relu(
blob_in, dim_in, dim_out, 3, stride, prefix + "_branch2a"
)
bn_blob = self.conv_bn(
Reported by Pylint.
Line: 1
Column: 1
import logging
logging.basicConfig()
log = logging.getLogger("AnyExp")
log.setLevel(logging.DEBUG)
Reported by Pylint.
torch/distributed/benchmarks/benchmark_ddp_rpc.py
37 issues
Line: 10
Column: 1
import time
import numpy as np
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.distributed.autograd as dist_autograd
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
Reported by Pylint.
Line: 11
Column: 1
import numpy as np
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.distributed.autograd as dist_autograd
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
import torch.optim as optim
Reported by Pylint.
Line: 12
Column: 1
import numpy as np
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.distributed.autograd as dist_autograd
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
import torch.optim as optim
from torch.distributed.optim import DistributedOptimizer
Reported by Pylint.
Line: 13
Column: 1
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.distributed.autograd as dist_autograd
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
import torch.optim as optim
from torch.distributed.optim import DistributedOptimizer
from torch.distributed.rpc import RRef, TensorPipeRpcBackendOptions
Reported by Pylint.
Line: 14
Column: 1
import torch.nn as nn
import torch.distributed as dist
import torch.distributed.autograd as dist_autograd
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
import torch.optim as optim
from torch.distributed.optim import DistributedOptimizer
from torch.distributed.rpc import RRef, TensorPipeRpcBackendOptions
from torch.distributed.rpc.backend_registry import BackendType
Reported by Pylint.
Line: 15
Column: 1
import torch.distributed as dist
import torch.distributed.autograd as dist_autograd
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
import torch.optim as optim
from torch.distributed.optim import DistributedOptimizer
from torch.distributed.rpc import RRef, TensorPipeRpcBackendOptions
from torch.distributed.rpc.backend_registry import BackendType
from torch.nn.parallel import DistributedDataParallel as DDP
Reported by Pylint.
Line: 16
Column: 1
import torch.distributed.autograd as dist_autograd
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
import torch.optim as optim
from torch.distributed.optim import DistributedOptimizer
from torch.distributed.rpc import RRef, TensorPipeRpcBackendOptions
from torch.distributed.rpc.backend_registry import BackendType
from torch.nn.parallel import DistributedDataParallel as DDP
Reported by Pylint.
Line: 17
Column: 1
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
import torch.optim as optim
from torch.distributed.optim import DistributedOptimizer
from torch.distributed.rpc import RRef, TensorPipeRpcBackendOptions
from torch.distributed.rpc.backend_registry import BackendType
from torch.nn.parallel import DistributedDataParallel as DDP
Reported by Pylint.
Line: 18
Column: 1
import torch.multiprocessing as mp
import torch.optim as optim
from torch.distributed.optim import DistributedOptimizer
from torch.distributed.rpc import RRef, TensorPipeRpcBackendOptions
from torch.distributed.rpc.backend_registry import BackendType
from torch.nn.parallel import DistributedDataParallel as DDP
# Config
Reported by Pylint.
Line: 19
Column: 1
import torch.optim as optim
from torch.distributed.optim import DistributedOptimizer
from torch.distributed.rpc import RRef, TensorPipeRpcBackendOptions
from torch.distributed.rpc.backend_registry import BackendType
from torch.nn.parallel import DistributedDataParallel as DDP
# Config
NUM_TRAINERS = 8
Reported by Pylint.