The following issues were found

test/jit/test_peephole.py
327 issues
Unable to import 'torch'
Error

Line: 1 Column: 1

              import torch
from torch.testing._internal.jit_utils import JitTestCase, RUN_CUDA, _inline_everything
from torch import nn
from torch.testing import FileCheck
from typing import List

import unittest

if __name__ == '__main__':

            

Reported by Pylint.

Unable to import 'torch.testing._internal.jit_utils'
Error

Line: 2 Column: 1

              import torch
from torch.testing._internal.jit_utils import JitTestCase, RUN_CUDA, _inline_everything
from torch import nn
from torch.testing import FileCheck
from typing import List

import unittest

if __name__ == '__main__':

            

Reported by Pylint.

Unable to import 'torch'
Error

Line: 3 Column: 1

              import torch
from torch.testing._internal.jit_utils import JitTestCase, RUN_CUDA, _inline_everything
from torch import nn
from torch.testing import FileCheck
from typing import List

import unittest

if __name__ == '__main__':

            

Reported by Pylint.

Unable to import 'torch.testing'
Error

Line: 4 Column: 1

              import torch
from torch.testing._internal.jit_utils import JitTestCase, RUN_CUDA, _inline_everything
from torch import nn
from torch.testing import FileCheck
from typing import List

import unittest

if __name__ == '__main__':

            

Reported by Pylint.

function already defined line 81
Error

Line: 88 Column: 9

                      FileCheck().check("value=3").check_next("return").run(foo.graph)

        @torch.jit.script
        def foo(x, y, z):
            li = [x, y, z]
            for i in range(len(x)):
                li.append(x)
            return len([x, y, z])


            

Reported by Pylint.

function already defined line 81
Error

Line: 98 Column: 9

                      FileCheck().check_not("aten::len").run(foo.graph)

        @torch.jit.script
        def foo(x, y, z):
            li = [x, y, z]
            return li[1], li[-2]

        FileCheck().check("aten::__getitem__").run(foo.graph)
        self.run_pass('peephole', foo.graph)

            

Reported by Pylint.

function already defined line 81
Error

Line: 107 Column: 9

                      FileCheck().check_not("aten::__getitem__").run(foo.graph)

        @torch.jit.script
        def foo(x, y, z):
            li = [x, y, z]
            return li[-7]

        self.run_pass('peephole', foo.graph)
        FileCheck().check("aten::__getitem__").run(foo.graph)

            

Reported by Pylint.

function already defined line 81
Error

Line: 115 Column: 9

                      FileCheck().check("aten::__getitem__").run(foo.graph)

        @torch.jit.script
        def foo(x, y, z):
            li = [x, y, z]
            for i in range(len(x)):
                li.append(x)
            return li[-2]


            

Reported by Pylint.

function already defined line 252
Error

Line: 264 Column: 9

                          foo(2, 4)

        @torch.jit.script
        def foo(x: List[int], y: List[int]):
            if len(x) == 4 and len(y) == 5:
                pass
            else:
                raise Exception("hi")


            

Reported by Pylint.

function already defined line 252
Error

Line: 278 Column: 9

                          foo(2, 4)

        @torch.jit.script
        def foo(x: List[int], y: List[int], z: List[int]):
            if len(x) != 4:
                raise Exception("..")
            else:
                if len(y) != 8:
                    raise Exception("...")

            

Reported by Pylint.

test/test_mkldnn.py
324 issues
Unable to import 'torch'
Error

Line: 14 Column: 1

              
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")

import torch
import torch.nn.functional as F
import torch.jit
import torch.backends.mkldnn
from torch.utils import mkldnn as mkldnn_utils
from torch.testing._internal.common_utils import TestCase, \

            

Reported by Pylint.

Unable to import 'torch.nn.functional'
Error

Line: 15 Column: 1

              skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")

import torch
import torch.nn.functional as F
import torch.jit
import torch.backends.mkldnn
from torch.utils import mkldnn as mkldnn_utils
from torch.testing._internal.common_utils import TestCase, \
    run_tests, TemporaryFileName, gradcheck, gradgradcheck, IS_WINDOWS

            

Reported by Pylint.

Unable to import 'torch.jit'
Error

Line: 16 Column: 1

              
import torch
import torch.nn.functional as F
import torch.jit
import torch.backends.mkldnn
from torch.utils import mkldnn as mkldnn_utils
from torch.testing._internal.common_utils import TestCase, \
    run_tests, TemporaryFileName, gradcheck, gradgradcheck, IS_WINDOWS


            

Reported by Pylint.

Unable to import 'torch.backends.mkldnn'
Error

Line: 17 Column: 1

              import torch
import torch.nn.functional as F
import torch.jit
import torch.backends.mkldnn
from torch.utils import mkldnn as mkldnn_utils
from torch.testing._internal.common_utils import TestCase, \
    run_tests, TemporaryFileName, gradcheck, gradgradcheck, IS_WINDOWS

# batched grad doesn't support mkldnn

            

Reported by Pylint.

Unable to import 'torch.utils'
Error

Line: 18 Column: 1

              import torch.nn.functional as F
import torch.jit
import torch.backends.mkldnn
from torch.utils import mkldnn as mkldnn_utils
from torch.testing._internal.common_utils import TestCase, \
    run_tests, TemporaryFileName, gradcheck, gradgradcheck, IS_WINDOWS

# batched grad doesn't support mkldnn
gradcheck = functools.partial(gradcheck, check_batched_grad=False)

            

Reported by Pylint.

Unable to import 'torch.testing._internal.common_utils'
Error

Line: 19 Column: 1

              import torch.jit
import torch.backends.mkldnn
from torch.utils import mkldnn as mkldnn_utils
from torch.testing._internal.common_utils import TestCase, \
    run_tests, TemporaryFileName, gradcheck, gradgradcheck, IS_WINDOWS

# batched grad doesn't support mkldnn
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
gradgradcheck = functools.partial(gradgradcheck, check_batched_grad=False)

            

Reported by Pylint.

Access to a protected member _C of a client class
Error

Line: 42 Column: 22

              types = [torch.float, torch.bfloat16]

# Comment the line below to find out the CI machines having MKL-DNN build disabled
@unittest.skipIf(not torch._C.has_mkldnn, "MKL-DNN build is disabled")
class TestMkldnn(TestCase):
    def test_conversion(self):
        for cpu_tensor in [torch.randn((1, 2, 3, 4),
                                       dtype=torch.float, device=torch.device('cpu')),
                           torch.randn((1, 2, 3, 4, 5),

            

Reported by Pylint.

Cell variable mkldnn_tensor defined in loop
Error

Line: 73 Column: 48

                                  self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor.element_size() / 2)
                self.assertRaisesRegex(RuntimeError,
                                       "Cannot access data pointer of Tensor that doesn't have storage",
                                       lambda: mkldnn_tensor.data_ptr() != 0)

            # bfloat cpu tensor to mkldnn float tensor or bfloat tensor.
            cpu_tensor_bf16 = cpu_tensor.bfloat16()
            for dtype1 in types:
                mkldnn_tensor = cpu_tensor_bf16.to_mkldnn(dtype1)

            

Reported by Pylint.

Unused variable 'context'
Error

Line: 123 Column: 53

                      # unsupported types and unsupported types with gpu
        for dtype in [torch.double, torch.half, torch.uint8, torch.int8,
                      torch.short, torch.int, torch.long]:
            with self.assertRaises(RuntimeError) as context:
                torch.randn(1, 2, 3, 4, dtype=dtype, device=torch.device('cpu')).to_mkldnn()
            if torch.cuda.is_available():
                with self.assertRaises(RuntimeError) as context:
                    torch.randn(1, 2, 3, 4, dtype=dtype, device=torch.device('cuda')).to_mkldnn()
        # supported type with gpu

            

Reported by Pylint.

Access to a protected member _mkldnn of a client class
Error

Line: 135 Column: 91

                      # some factory functions
        for creator in [torch.ones, torch.randn, torch.rand]:
            with self.assertRaises(RuntimeError) as context:
                creator(1, 2, 3, 4, dtype=torch.float, device=torch.device('cpu'), layout=torch._mkldnn)

    def test_autograd_to_mkldnn(self):
        # MKLDNN only supports float32
        root = torch.randn(4, 5, dtype=torch.float32, requires_grad=True)


            

Reported by Pylint.

test/quantization/core/test_workflow_ops.py
321 issues
Unable to import 'torch'
Error

Line: 1 Column: 1

              import torch
import math
from typing import Tuple
from torch.quantization import (
    FakeQuantize,
    MovingAverageMinMaxObserver,
    default_observer,
    default_affine_fixed_qparams_fake_quant,
)

            

Reported by Pylint.

Unable to import 'torch.quantization'
Error

Line: 4 Column: 1

              import torch
import math
from typing import Tuple
from torch.quantization import (
    FakeQuantize,
    MovingAverageMinMaxObserver,
    default_observer,
    default_affine_fixed_qparams_fake_quant,
)

            

Reported by Pylint.

Unable to import 'torch.quantization._learnable_fake_quantize'
Error

Line: 11 Column: 1

                  default_affine_fixed_qparams_fake_quant,
)

from torch.quantization._learnable_fake_quantize import _LearnableFakeQuantize
from torch.testing._internal.common_quantized import (
    _fake_quantize_per_channel_affine_reference,
    _fake_quantize_per_channel_affine_grad_reference,
    to_tensor,
)

            

Reported by Pylint.

Unable to import 'torch.testing._internal.common_quantized'
Error

Line: 12 Column: 1

              )

from torch.quantization._learnable_fake_quantize import _LearnableFakeQuantize
from torch.testing._internal.common_quantized import (
    _fake_quantize_per_channel_affine_reference,
    _fake_quantize_per_channel_affine_grad_reference,
    to_tensor,
)
import torch.nn as nn

            

Reported by Pylint.

Unable to import 'torch.nn'
Error

Line: 17 Column: 1

                  _fake_quantize_per_channel_affine_grad_reference,
    to_tensor,
)
import torch.nn as nn

# Standard library
import io
import itertools
import unittest

            

Reported by Pylint.

Unable to import 'hypothesis'
Error

Line: 26 Column: 1

              import numpy as np

# Testing utils
from hypothesis import given, settings
from hypothesis import strategies as st
import torch.testing._internal.hypothesis_utils as hu
hu.assert_deadline_disabled()
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import TestCase

            

Reported by Pylint.

Unable to import 'hypothesis'
Error

Line: 27 Column: 1

              
# Testing utils
from hypothesis import given, settings
from hypothesis import strategies as st
import torch.testing._internal.hypothesis_utils as hu
hu.assert_deadline_disabled()
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import TestCase


            

Reported by Pylint.

Unable to import 'torch.testing._internal.hypothesis_utils'
Error

Line: 28 Column: 1

              # Testing utils
from hypothesis import given, settings
from hypothesis import strategies as st
import torch.testing._internal.hypothesis_utils as hu
hu.assert_deadline_disabled()
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import TestCase

# Reference method for fake quantize

            

Reported by Pylint.

Unable to import 'torch.testing._internal.common_cuda'
Error

Line: 30 Column: 1

              from hypothesis import strategies as st
import torch.testing._internal.hypothesis_utils as hu
hu.assert_deadline_disabled()
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import TestCase

# Reference method for fake quantize
# Note: because scale/zero_point are left as float in the actual kernel, this mimics how fake_quant works for float16/64
def _fake_quantize_per_tensor_affine_reference(X, scale, zero_point, quant_min, quant_max):

            

Reported by Pylint.

Unable to import 'torch.testing._internal.common_utils'
Error

Line: 31 Column: 1

              import torch.testing._internal.hypothesis_utils as hu
hu.assert_deadline_disabled()
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import TestCase

# Reference method for fake quantize
# Note: because scale/zero_point are left as float in the actual kernel, this mimics how fake_quant works for float16/64
def _fake_quantize_per_tensor_affine_reference(X, scale, zero_point, quant_min, quant_max):
    dtype = X.dtype

            

Reported by Pylint.

test/jit/test_type_sharing.py
317 issues
Unable to import 'torch'
Error

Line: 5 Column: 1

              import sys
import io

import torch

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase

            

Reported by Pylint.

Unable to import 'torch.testing._internal.jit_utils'
Error

Line: 10 Column: 1

              # Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase
from torch.testing._internal.common_utils import suppress_warnings

if __name__ == '__main__':
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_jit.py TESTNAME\n\n"

            

Reported by Pylint.

Unable to import 'torch.testing._internal.common_utils'
Error

Line: 11 Column: 1

              pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase
from torch.testing._internal.common_utils import suppress_warnings

if __name__ == '__main__':
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_jit.py TESTNAME\n\n"
                       "instead.")

            

Reported by Pylint.

Access to a protected member _c of a client class
Error

Line: 24 Column: 41

                          m1 = torch.jit.script(m1)
        if not isinstance(m2, torch.jit.ScriptModule):
            m2 = torch.jit.script(m2)
        self.assertEqual(m1._c._type(), m2._c._type())

    def assertDifferentType(self, m1, m2):
        if not isinstance(m1, torch.jit.ScriptModule):
            m1 = torch.jit.script(m1)
        if not isinstance(m2, torch.jit.ScriptModule):

            

Reported by Pylint.

Access to a protected member _type of a client class
Error

Line: 24 Column: 26

                          m1 = torch.jit.script(m1)
        if not isinstance(m2, torch.jit.ScriptModule):
            m2 = torch.jit.script(m2)
        self.assertEqual(m1._c._type(), m2._c._type())

    def assertDifferentType(self, m1, m2):
        if not isinstance(m1, torch.jit.ScriptModule):
            m1 = torch.jit.script(m1)
        if not isinstance(m2, torch.jit.ScriptModule):

            

Reported by Pylint.

Access to a protected member _type of a client class
Error

Line: 24 Column: 41

                          m1 = torch.jit.script(m1)
        if not isinstance(m2, torch.jit.ScriptModule):
            m2 = torch.jit.script(m2)
        self.assertEqual(m1._c._type(), m2._c._type())

    def assertDifferentType(self, m1, m2):
        if not isinstance(m1, torch.jit.ScriptModule):
            m1 = torch.jit.script(m1)
        if not isinstance(m2, torch.jit.ScriptModule):

            

Reported by Pylint.

Access to a protected member _c of a client class
Error

Line: 24 Column: 26

                          m1 = torch.jit.script(m1)
        if not isinstance(m2, torch.jit.ScriptModule):
            m2 = torch.jit.script(m2)
        self.assertEqual(m1._c._type(), m2._c._type())

    def assertDifferentType(self, m1, m2):
        if not isinstance(m1, torch.jit.ScriptModule):
            m1 = torch.jit.script(m1)
        if not isinstance(m2, torch.jit.ScriptModule):

            

Reported by Pylint.

Access to a protected member _c of a client class
Error

Line: 31 Column: 44

                          m1 = torch.jit.script(m1)
        if not isinstance(m2, torch.jit.ScriptModule):
            m2 = torch.jit.script(m2)
        self.assertNotEqual(m1._c._type(), m2._c._type())

    def test_basic(self):
        class M(torch.nn.Module):
            def __init__(self, a, b, c):
                super(M, self).__init__()

            

Reported by Pylint.

Access to a protected member _type of a client class
Error

Line: 31 Column: 29

                          m1 = torch.jit.script(m1)
        if not isinstance(m2, torch.jit.ScriptModule):
            m2 = torch.jit.script(m2)
        self.assertNotEqual(m1._c._type(), m2._c._type())

    def test_basic(self):
        class M(torch.nn.Module):
            def __init__(self, a, b, c):
                super(M, self).__init__()

            

Reported by Pylint.

Access to a protected member _c of a client class
Error

Line: 31 Column: 29

                          m1 = torch.jit.script(m1)
        if not isinstance(m2, torch.jit.ScriptModule):
            m2 = torch.jit.script(m2)
        self.assertNotEqual(m1._c._type(), m2._c._type())

    def test_basic(self):
        class M(torch.nn.Module):
            def __init__(self, a, b, c):
                super(M, self).__init__()

            

Reported by Pylint.

test/jit/test_module_containers.py
304 issues
Unable to import 'torch'
Error

Line: 6 Column: 1

              
from typing import Any, List, Tuple
from collections import OrderedDict
import torch
import torch.nn as nn
from torch.testing._internal.jit_utils import JitTestCase

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))

            

Reported by Pylint.

Unable to import 'torch.nn'
Error

Line: 7 Column: 1

              from typing import Any, List, Tuple
from collections import OrderedDict
import torch
import torch.nn as nn
from torch.testing._internal.jit_utils import JitTestCase

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)

            

Reported by Pylint.

Unable to import 'torch.testing._internal.jit_utils'
Error

Line: 8 Column: 1

              from collections import OrderedDict
import torch
import torch.nn as nn
from torch.testing._internal.jit_utils import JitTestCase

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)


            

Reported by Pylint.

Useless super delegation in method '__init__'
Error

Line: 22 Column: 13

              class TestModuleContainers(JitTestCase):
    def test_sequential_intermediary_types(self):
        class A(torch.nn.Module):
            def __init__(self):
                super(A, self).__init__()

            def forward(self, x):
                return x + 3


            

Reported by Pylint.

Useless super delegation in method '__init__'
Error

Line: 29 Column: 13

                              return x + 3

        class B(torch.nn.Module):
            def __init__(self):
                super(B, self).__init__()

            def forward(self, x):
                return {"1": x}


            

Reported by Pylint.

Useless super delegation in method '__init__'
Error

Line: 91 Column: 13

                              return x, names

        class M2(M):
            def __init__(self):
                super(M2, self).__init__()

            def forward(self, x, skip_name):
                # type: (Tensor, str)
                names = torch.jit.annotate(List[str], [])

            

Reported by Pylint.

Redefining built-in 'iter'
Error

Line: 99 Column: 17

                              names = torch.jit.annotate(List[str], [])
                values = []
                x2 = x
                iter = 0
                for name in self.moduledict:
                    names.append(name)

                for i, (name, mod) in enumerate(self.moduledict.items()):
                    iter += i

            

Reported by Pylint.

Redeclared variable 'mod' in assignment
Error

Line: 119 Column: 21

                                  iter += i
                    names.append(key)

                for mod, mod in zip(self.moduledict.values(), self.moduledict.values()):
                    iter += i
                    x2 = mod(mod(x2))

                return x, x2, names, iter


            

Reported by Pylint.

Useless super delegation in method '__init__'
Error

Line: 234 Column: 13

                      self.checkModule(MForward(), (torch.tensor(1),))

        class M2(M):
            def __init__(self):
                super(M2, self).__init__()

            def forward(self, v):
                return self.mods[-11].forward(v)


            

Reported by Pylint.

Useless super delegation in method '__init__'
Error

Line: 244 Column: 13

                          torch.jit.script(M2())

        class M3(M):
            def __init__(self):
                super(M3, self).__init__()

            def forward(self, v):
                i = 3
                return self.mods[i].forward(v)

            

Reported by Pylint.

test/test_datapipe.py
301 issues
Unable to import 'torch'
Error

Line: 36 Column: 1

              
import numpy as np

import torch
import torch.nn as nn
import torch.utils.data.backward_compatibility
import torch.utils.data.datapipes as dp
import torch.utils.data.graph
import torch.utils.data.sharding

            

Reported by Pylint.

Unable to import 'torch.nn'
Error

Line: 37 Column: 1

              import numpy as np

import torch
import torch.nn as nn
import torch.utils.data.backward_compatibility
import torch.utils.data.datapipes as dp
import torch.utils.data.graph
import torch.utils.data.sharding
from torch.testing._internal.common_utils import TestCase, run_tests

            

Reported by Pylint.

Unable to import 'torch.utils.data.backward_compatibility'
Error

Line: 38 Column: 1

              
import torch
import torch.nn as nn
import torch.utils.data.backward_compatibility
import torch.utils.data.datapipes as dp
import torch.utils.data.graph
import torch.utils.data.sharding
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.utils.data import (

            

Reported by Pylint.

Unable to import 'torch.utils.data.datapipes'
Error

Line: 39 Column: 1

              import torch
import torch.nn as nn
import torch.utils.data.backward_compatibility
import torch.utils.data.datapipes as dp
import torch.utils.data.graph
import torch.utils.data.sharding
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.utils.data import (
    DataLoader,

            

Reported by Pylint.

Unable to import 'torch.utils.data.graph'
Error

Line: 40 Column: 1

              import torch.nn as nn
import torch.utils.data.backward_compatibility
import torch.utils.data.datapipes as dp
import torch.utils.data.graph
import torch.utils.data.sharding
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.utils.data import (
    DataLoader,
    DataChunk,

            

Reported by Pylint.

Unable to import 'torch.utils.data.sharding'
Error

Line: 41 Column: 1

              import torch.utils.data.backward_compatibility
import torch.utils.data.datapipes as dp
import torch.utils.data.graph
import torch.utils.data.sharding
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.utils.data import (
    DataLoader,
    DataChunk,
    IterDataPipe,

            

Reported by Pylint.

Unable to import 'torch.testing._internal.common_utils'
Error

Line: 42 Column: 1

              import torch.utils.data.datapipes as dp
import torch.utils.data.graph
import torch.utils.data.sharding
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.utils.data import (
    DataLoader,
    DataChunk,
    IterDataPipe,
    MapDataPipe,

            

Reported by Pylint.

Unable to import 'torch.utils.data'
Error

Line: 43 Column: 1

              import torch.utils.data.graph
import torch.utils.data.sharding
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.utils.data import (
    DataLoader,
    DataChunk,
    IterDataPipe,
    MapDataPipe,
    RandomSampler,

            

Reported by Pylint.

Unable to import 'torch.utils.data.datapipes.utils.decoder'
Error

Line: 53 Column: 1

                  runtime_validation,
    runtime_validation_disabled,
)
from torch.utils.data.datapipes.utils.decoder import (
    basichandlers as decoder_basichandlers,
)

try:
    import torchvision.transforms

            

Reported by Pylint.

Unable to import 'torch.utils.data.datapipes.iter'
Error

Line: 197 Column: 9

              
    def test_loadfilesfromdisk_iterable_datapipe(self):
        # test import datapipe class directly
        from torch.utils.data.datapipes.iter import (
            ListDirFiles,
            LoadFilesFromDisk,
        )

        temp_dir = self.temp_dir.name

            

Reported by Pylint.

caffe2/python/layers_test.py
299 issues
Unable to import 'hypothesis.strategies'
Error

Line: 6 Column: 1

              


import hypothesis.strategies as st
import numpy as np
import numpy.testing as npt
from hypothesis import given, settings

import caffe2.python.hypothesis_test_util as hu

            

Reported by Pylint.

Unable to import 'hypothesis'
Error

Line: 9 Column: 1

              import hypothesis.strategies as st
import numpy as np
import numpy.testing as npt
from hypothesis import given, settings

import caffe2.python.hypothesis_test_util as hu

from caffe2.python import (
    layer_model_instantiator,

            

Reported by Pylint.

Unused variable 'train_init_net'
Error

Line: 273 Column: 9

                          core.BlobReference("fc_with_bootstrap/bootstrap_iteration_1/preds") == fc_with_bootstrap[3].field_blobs()[0]
        )

        train_init_net, train_net = self.get_training_nets()
        predict_net = layer_model_instantiator.generate_predict_net(self.model)

        train_proto = train_net.Proto()
        eval_proto = predict_net.Proto()


            

Reported by Pylint.

Unused variable 'train_init_net'
Error

Line: 345 Column: 9

                          fc_out
        )

        train_init_net, train_net = self.get_training_nets()

    def testFCTransposed(self):
        input_dim = 10
        output_dim = 30
        max_length = 20

            

Reported by Pylint.

Unused variable 'train_net'
Error

Line: 345 Column: 25

                          fc_out
        )

        train_init_net, train_net = self.get_training_nets()

    def testFCTransposed(self):
        input_dim = 10
        output_dim = 30
        max_length = 20

            

Reported by Pylint.

Unused variable 'train_net'
Error

Line: 366 Column: 25

                          fc_transposed_out
        )

        train_init_net, train_net = self.get_training_nets()

    def testFCTransposedWithMaxFCSize(self):
        input_dim = 10
        output_dim = 30
        max_length = 20

            

Reported by Pylint.

Unused variable 'train_init_net'
Error

Line: 366 Column: 9

                          fc_transposed_out
        )

        train_init_net, train_net = self.get_training_nets()

    def testFCTransposedWithMaxFCSize(self):
        input_dim = 10
        output_dim = 30
        max_length = 20

            

Reported by Pylint.

Unused variable 'train_init_net'
Error

Line: 388 Column: 9

                          fc_transposed_out
        )

        train_init_net, train_net = self.get_training_nets()

    def testSparseLookupSumPoolingWithEviction(self):
        # Create test embedding table of 1 row
        record = schema.NewRecord(self.model.net, schema.Struct(
            ('sparse', schema.Struct(

            

Reported by Pylint.

Unused variable 'train_net'
Error

Line: 388 Column: 25

                          fc_transposed_out
        )

        train_init_net, train_net = self.get_training_nets()

    def testSparseLookupSumPoolingWithEviction(self):
        # Create test embedding table of 1 row
        record = schema.NewRecord(self.model.net, schema.Struct(
            ('sparse', schema.Struct(

            

Reported by Pylint.

Access to a protected member _evicted_values of a client class
Error

Line: 401 Column: 31

                      embedding_dim = 8
        lengths_blob = record.sparse.sparse_feature_0.lengths.get()
        values_blob = record.sparse.sparse_feature_0.items.get()
        evicted_values_blob = record.sparse.sparse_feature_0._evicted_values.get()
        lengths = np.array([1]).astype(np.int32)
        values = np.array([0]).astype(np.int64)
        # Need to reset row 0
        evicted_values = np.array([0]).astype(np.int64)
        workspace.FeedBlob(lengths_blob, lengths)

            

Reported by Pylint.

tools/codegen/model.py
298 issues
__str__ does not return str
Error

Line: 117 Column: 5

                  PrivateUse2_PreAutograd = AutogradPrivateUse2
    PrivateUse3_PreAutograd = AutogradPrivateUse3

    def __str__(self) -> str:
        return self.name

    def lower(self) -> str:
        return str(self).lower()


            

Reported by Pylint.

Using variable 'structured_delegate' before assignment
Error

Line: 309 Column: 103

                      assert isinstance(structured, bool), f'not a bool: {structured}'

        structured_delegate_s = e.pop('structured_delegate', None)
        assert structured_delegate_s is None or isinstance(structured_delegate_s, str), f'not a str: {structured_delegate}'
        structured_delegate: Optional[OperatorName] = None
        if structured_delegate_s is not None:
            structured_delegate = OperatorName.parse(structured_delegate_s)

        structured_inherits = e.pop('structured_inherits', None)

            

Reported by Pylint.

Using variable 'Return' before assignment
Error

Line: 832 Column: 37

                        some variants have return names but some not
        """

        def strip_ret_annotation(r: Return) -> Return:
            return Return(
                name=None,
                type=r.type,
                annotation=None,
            )

            

Reported by Pylint.

TODO: put this somewhere else, maybe
Error

Line: 10 Column: 3

              
# A little trick from https://github.com/python/mypy/issues/6366
# for getting mypy to do exhaustiveness checking
# TODO: put this somewhere else, maybe
def assert_never(x: NoReturn) -> NoReturn:
    raise AssertionError("Unhandled type: {}".format(type(x).__name__))

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#

            

Reported by Pylint.

TODO: figure out what this does
Error

Line: 191 Column: 3

                  # What python module to put the function in
    python_module: Optional[str]

    # TODO: figure out what this does
    category_override: Optional[str]

    # If no variants are specified in native_functions.yaml, this is
    # assumed to be {'function'}.
    variants: Set[Variant]

            

Reported by Pylint.

TODO: probably better to accumulate these errors and report them all
Error

Line: 407 Column: 3

              

    def validate_unstructured(self) -> None:
        # TODO: probably better to accumulate these errors and report them all
        # at once
        assert not self.structured, "This function is structured, but there was " \
            "no valid functional variant of it."
        assert self.structured_delegate, "This function delegates to another structured out function, " \
            "but no valid function was found (the delegate may not exist, or it has the wrong type)"

            

Reported by Pylint.

TODO: This discrepancy isn't required; we could also generated
Error

Line: 649 Column: 3

                      if self.external:
            return f'{str(self.dispatch_key)}NativeFunctions'
        else:
            # TODO: This discrepancy isn't required; we could also generated
            # a class for in-tree kernels. It'll just require carefully
            # updating every kernel definition + callsite of every in-tree aten kernel.
            return None



            

Reported by Pylint.

TODO: Need to handle collisions with argument names at some point
Error

Line: 715 Column: 3

              
    arguments: 'Arguments'

    # TODO: Need to handle collisions with argument names at some point
    returns: Tuple['Return', ...]

    def schema_order_arguments(self) -> Iterator['Argument']:
        return itertools.chain(
            self.arguments.flat_positional,

            

Reported by Pylint.

TODO: fixme
Error

Line: 763 Column: 3

                          assert len(self.arguments.out) == len(self.returns), \
                "Must return as many arguments as there are out arguments"
        if self.name.name.inplace:
            # TODO: fixme
            if not is_foreach_op(str(self.name)):
                assert len(self.returns) == 1

    def is_out_fn(self) -> bool:
        # Note [is_out_fn]

            

Reported by Pylint.

Consider explicitly re-raising using the 'from' keyword
Error

Line: 915 Column: 13

                      try:
            return BaseType(BaseTy[t])
        except KeyError:
            raise RuntimeError(f"unrecognized type {t}")

    def __str__(self) -> str:
        raise NotImplementedError

    # WARNING: These concepts are not very well-defined.  For example,

            

Reported by Pylint.

torch/testing/_internal/autocast_test_lists.py
296 issues
Module 'torch' has no 'randn' member
Error

Line: 7 Column: 18

              
class AutocastTestLists(object):
    def _rnn_cell_args(self, n, num_chunks, is_lstm, dev, dtype):
        input = (torch.randn((n, n), device=dev, dtype=torch.float32),)

        hx = ((torch.randn((n, n), device=dev, dtype=torch.float32),
               torch.randn((n, n), device=dev, dtype=torch.float32)) if is_lstm else
              torch.randn((n, n), device=dev, dtype=torch.float32),)


            

Reported by Pylint.

Module 'torch' has no 'float32' member
Error

Line: 7 Column: 56

              
class AutocastTestLists(object):
    def _rnn_cell_args(self, n, num_chunks, is_lstm, dev, dtype):
        input = (torch.randn((n, n), device=dev, dtype=torch.float32),)

        hx = ((torch.randn((n, n), device=dev, dtype=torch.float32),
               torch.randn((n, n), device=dev, dtype=torch.float32)) if is_lstm else
              torch.randn((n, n), device=dev, dtype=torch.float32),)


            

Reported by Pylint.

Module 'torch' has no 'randn' member
Error

Line: 9 Column: 16

                  def _rnn_cell_args(self, n, num_chunks, is_lstm, dev, dtype):
        input = (torch.randn((n, n), device=dev, dtype=torch.float32),)

        hx = ((torch.randn((n, n), device=dev, dtype=torch.float32),
               torch.randn((n, n), device=dev, dtype=torch.float32)) if is_lstm else
              torch.randn((n, n), device=dev, dtype=torch.float32),)

        weights = (torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_ih
                   torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_hh

            

Reported by Pylint.

Module 'torch' has no 'float32' member
Error

Line: 9 Column: 54

                  def _rnn_cell_args(self, n, num_chunks, is_lstm, dev, dtype):
        input = (torch.randn((n, n), device=dev, dtype=torch.float32),)

        hx = ((torch.randn((n, n), device=dev, dtype=torch.float32),
               torch.randn((n, n), device=dev, dtype=torch.float32)) if is_lstm else
              torch.randn((n, n), device=dev, dtype=torch.float32),)

        weights = (torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_ih
                   torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_hh

            

Reported by Pylint.

Module 'torch' has no 'float32' member
Error

Line: 10 Column: 54

                      input = (torch.randn((n, n), device=dev, dtype=torch.float32),)

        hx = ((torch.randn((n, n), device=dev, dtype=torch.float32),
               torch.randn((n, n), device=dev, dtype=torch.float32)) if is_lstm else
              torch.randn((n, n), device=dev, dtype=torch.float32),)

        weights = (torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_ih
                   torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_hh
                   torch.randn((num_chunks * n), device=dev, dtype=torch.float32),  # bias_ih

            

Reported by Pylint.

Module 'torch' has no 'randn' member
Error

Line: 10 Column: 16

                      input = (torch.randn((n, n), device=dev, dtype=torch.float32),)

        hx = ((torch.randn((n, n), device=dev, dtype=torch.float32),
               torch.randn((n, n), device=dev, dtype=torch.float32)) if is_lstm else
              torch.randn((n, n), device=dev, dtype=torch.float32),)

        weights = (torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_ih
                   torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_hh
                   torch.randn((num_chunks * n), device=dev, dtype=torch.float32),  # bias_ih

            

Reported by Pylint.

Module 'torch' has no 'randn' member
Error

Line: 11 Column: 15

              
        hx = ((torch.randn((n, n), device=dev, dtype=torch.float32),
               torch.randn((n, n), device=dev, dtype=torch.float32)) if is_lstm else
              torch.randn((n, n), device=dev, dtype=torch.float32),)

        weights = (torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_ih
                   torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_hh
                   torch.randn((num_chunks * n), device=dev, dtype=torch.float32),  # bias_ih
                   torch.randn((num_chunks * n), device=dev, dtype=torch.float32))  # bias_hh

            

Reported by Pylint.

Module 'torch' has no 'float32' member
Error

Line: 11 Column: 53

              
        hx = ((torch.randn((n, n), device=dev, dtype=torch.float32),
               torch.randn((n, n), device=dev, dtype=torch.float32)) if is_lstm else
              torch.randn((n, n), device=dev, dtype=torch.float32),)

        weights = (torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_ih
                   torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_hh
                   torch.randn((num_chunks * n), device=dev, dtype=torch.float32),  # bias_ih
                   torch.randn((num_chunks * n), device=dev, dtype=torch.float32))  # bias_hh

            

Reported by Pylint.

Module 'torch' has no 'randn' member
Error

Line: 13 Column: 20

                             torch.randn((n, n), device=dev, dtype=torch.float32)) if is_lstm else
              torch.randn((n, n), device=dev, dtype=torch.float32),)

        weights = (torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_ih
                   torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_hh
                   torch.randn((num_chunks * n), device=dev, dtype=torch.float32),  # bias_ih
                   torch.randn((num_chunks * n), device=dev, dtype=torch.float32))  # bias_hh

        # returns args as a tuple

            

Reported by Pylint.

Module 'torch' has no 'float32' member
Error

Line: 13 Column: 71

                             torch.randn((n, n), device=dev, dtype=torch.float32)) if is_lstm else
              torch.randn((n, n), device=dev, dtype=torch.float32),)

        weights = (torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_ih
                   torch.randn((num_chunks * n, n), device=dev, dtype=torch.float32),  # weight_hh
                   torch.randn((num_chunks * n), device=dev, dtype=torch.float32),  # bias_ih
                   torch.randn((num_chunks * n), device=dev, dtype=torch.float32))  # bias_hh

        # returns args as a tuple

            

Reported by Pylint.

test/test_xnnpack_integration.py
291 issues
Unable to import 'torch'
Error

Line: 3 Column: 1

              import unittest

import torch
import torch.backends.xnnpack
from torch.nn import functional as F
from torch.utils.mobile_optimizer import optimize_for_mobile
from torch.testing import FileCheck
import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import TestCase, run_tests, slowTest

            

Reported by Pylint.

Unable to import 'torch.backends.xnnpack'
Error

Line: 4 Column: 1

              import unittest

import torch
import torch.backends.xnnpack
from torch.nn import functional as F
from torch.utils.mobile_optimizer import optimize_for_mobile
from torch.testing import FileCheck
import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import TestCase, run_tests, slowTest

            

Reported by Pylint.

Unable to import 'torch.nn'
Error

Line: 5 Column: 1

              
import torch
import torch.backends.xnnpack
from torch.nn import functional as F
from torch.utils.mobile_optimizer import optimize_for_mobile
from torch.testing import FileCheck
import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import TestCase, run_tests, slowTest
from hypothesis import given, assume

            

Reported by Pylint.

Unable to import 'torch.utils.mobile_optimizer'
Error

Line: 6 Column: 1

              import torch
import torch.backends.xnnpack
from torch.nn import functional as F
from torch.utils.mobile_optimizer import optimize_for_mobile
from torch.testing import FileCheck
import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import TestCase, run_tests, slowTest
from hypothesis import given, assume
from hypothesis import strategies as st

            

Reported by Pylint.

Unable to import 'torch.testing'
Error

Line: 7 Column: 1

              import torch.backends.xnnpack
from torch.nn import functional as F
from torch.utils.mobile_optimizer import optimize_for_mobile
from torch.testing import FileCheck
import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import TestCase, run_tests, slowTest
from hypothesis import given, assume
from hypothesis import strategies as st
import io

            

Reported by Pylint.

Unable to import 'torch.testing._internal.hypothesis_utils'
Error

Line: 8 Column: 1

              from torch.nn import functional as F
from torch.utils.mobile_optimizer import optimize_for_mobile
from torch.testing import FileCheck
import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import TestCase, run_tests, slowTest
from hypothesis import given, assume
from hypothesis import strategies as st
import io
import itertools

            

Reported by Pylint.

Unable to import 'torch.testing._internal.common_utils'
Error

Line: 9 Column: 1

              from torch.utils.mobile_optimizer import optimize_for_mobile
from torch.testing import FileCheck
import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import TestCase, run_tests, slowTest
from hypothesis import given, assume
from hypothesis import strategies as st
import io
import itertools


            

Reported by Pylint.

Unable to import 'hypothesis'
Error

Line: 10 Column: 1

              from torch.testing import FileCheck
import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import TestCase, run_tests, slowTest
from hypothesis import given, assume
from hypothesis import strategies as st
import io
import itertools

from torch.testing._internal.common_utils import TEST_WITH_TSAN

            

Reported by Pylint.

Unable to import 'hypothesis'
Error

Line: 11 Column: 1

              import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import TestCase, run_tests, slowTest
from hypothesis import given, assume
from hypothesis import strategies as st
import io
import itertools

from torch.testing._internal.common_utils import TEST_WITH_TSAN


            

Reported by Pylint.

Unable to import 'torch.testing._internal.common_utils'
Error

Line: 15 Column: 1

              import io
import itertools

from torch.testing._internal.common_utils import TEST_WITH_TSAN

@unittest.skipUnless(torch.backends.xnnpack.enabled,
                     " XNNPACK must be enabled for these tests."
                     " Please build with USE_XNNPACK=1.")
@unittest.skipIf(TEST_WITH_TSAN, "TSAN fails with XNNPACK. Does not seem to have a good reason for failures.")

            

Reported by Pylint.