The following issues were found
torch/distributions/relaxed_bernoulli.py
32 issues
Line: 45
Column: 27
self.logits, = broadcast_all(logits)
self._param = self.probs if probs is not None else self.logits
if is_scalar:
batch_shape = torch.Size()
else:
batch_shape = self._param.size()
super(LogitRelaxedBernoulli, self).__init__(batch_shape, validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
Reported by Pylint.
Line: 52
Column: 23
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(LogitRelaxedBernoulli, _instance)
batch_shape = torch.Size(batch_shape)
new.temperature = self.temperature
if 'probs' in self.__dict__:
new.probs = self.probs.expand(batch_shape)
new._param = new.probs
if 'logits' in self.__dict__:
Reported by Pylint.
Line: 68
Column: 5
return self._param.new(*args, **kwargs)
@lazy_property
def logits(self):
return probs_to_logits(self.probs, is_binary=True)
@lazy_property
def probs(self):
return logits_to_probs(self.logits, is_binary=True)
Reported by Pylint.
Line: 72
Column: 5
return probs_to_logits(self.probs, is_binary=True)
@lazy_property
def probs(self):
return logits_to_probs(self.logits, is_binary=True)
@property
def param_shape(self):
return self._param.size()
Reported by Pylint.
Line: 79
Column: 36
def param_shape(self):
return self._param.size()
def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
probs = clamp_probs(self.probs.expand(shape))
uniforms = clamp_probs(torch.rand(shape, dtype=probs.dtype, device=probs.device))
return (uniforms.log() - (-uniforms).log1p() + probs.log() - (-probs).log1p()) / self.temperature
Reported by Pylint.
Line: 82
Column: 32
def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
probs = clamp_probs(self.probs.expand(shape))
uniforms = clamp_probs(torch.rand(shape, dtype=probs.dtype, device=probs.device))
return (uniforms.log() - (-uniforms).log1p() + probs.log() - (-probs).log1p()) / self.temperature
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
Reported by Pylint.
Line: 10
Column: 1
from torch.distributions.utils import broadcast_all, probs_to_logits, logits_to_probs, lazy_property, clamp_probs
class LogitRelaxedBernoulli(Distribution):
r"""
Creates a LogitRelaxedBernoulli distribution parameterized by :attr:`probs`
or :attr:`logits` (but not both), which is the logit of a RelaxedBernoulli
distribution.
Reported by Pylint.
Line: 10
Column: 1
from torch.distributions.utils import broadcast_all, probs_to_logits, logits_to_probs, lazy_property, clamp_probs
class LogitRelaxedBernoulli(Distribution):
r"""
Creates a LogitRelaxedBernoulli distribution parameterized by :attr:`probs`
or :attr:`logits` (but not both), which is the logit of a RelaxedBernoulli
distribution.
Reported by Pylint.
Line: 10
Column: 1
from torch.distributions.utils import broadcast_all, probs_to_logits, logits_to_probs, lazy_property, clamp_probs
class LogitRelaxedBernoulli(Distribution):
r"""
Creates a LogitRelaxedBernoulli distribution parameterized by :attr:`probs`
or :attr:`logits` (but not both), which is the logit of a RelaxedBernoulli
distribution.
Reported by Pylint.
Line: 10
Column: 1
from torch.distributions.utils import broadcast_all, probs_to_logits, logits_to_probs, lazy_property, clamp_probs
class LogitRelaxedBernoulli(Distribution):
r"""
Creates a LogitRelaxedBernoulli distribution parameterized by :attr:`probs`
or :attr:`logits` (but not both), which is the logit of a RelaxedBernoulli
distribution.
Reported by Pylint.
test/jit/test_script_profile.py
32 issues
Line: 4
Column: 1
import os
import sys
import torch
from torch import nn
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
Reported by Pylint.
Line: 5
Column: 1
import sys
import torch
from torch import nn
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase
Reported by Pylint.
Line: 10
Column: 1
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
Reported by Pylint.
Line: 24
Column: 23
self.lstm2 = nn.LSTMCell(51, 51)
self.linear = nn.Linear(51, 1)
def forward(self, input):
outputs = []
h_t = torch.zeros(input.size(0), 51)
c_t = torch.zeros(input.size(0), 51)
h_t2 = torch.zeros(input.size(0), 51)
c_t2 = torch.zeros(input.size(0), 51)
Reported by Pylint.
Line: 43
Column: 13
def test_basic(self):
seq = torch.jit.script(Sequence())
p = torch.jit._ScriptProfile()
p.enable()
seq(torch.rand((10, 100)))
p.disable()
self.assertNotEqual(p.dump_string(), "")
Reported by Pylint.
Line: 54
Column: 17
@torch.jit.script
def fn():
p = torch.jit._ScriptProfile()
p.enable()
_ = seq(torch.rand((10, 100)))
p.disable()
return p
Reported by Pylint.
Line: 64
Column: 21
def test_multi(self):
seq = torch.jit.script(Sequence())
profiles = [torch.jit._ScriptProfile() for _ in range(5)]
for p in profiles:
p.enable()
last = None
while len(profiles) > 0:
Reported by Pylint.
Line: 84
Column: 17
@torch.jit.script
def fn():
p = torch.jit._ScriptProfile()
p.enable()
_ = seq(torch.rand((10, 100)))
p.disable()
stats0 = p.dump_string()
Reported by Pylint.
Line: 106
Column: 13
self.assertNotEqual(s1, s2)
def test_empty(self):
p = torch.jit._ScriptProfile()
p.enable()
p.disable()
self.assertEqual(p.dump_string(), "")
Reported by Pylint.
Line: 1
Column: 1
import os
import sys
import torch
from torch import nn
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
Reported by Pylint.
torch/distributions/relaxed_categorical.py
32 issues
Line: 46
Column: 23
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(ExpRelaxedCategorical, _instance)
batch_shape = torch.Size(batch_shape)
new.temperature = self.temperature
new._categorical = self._categorical.expand(batch_shape)
super(ExpRelaxedCategorical, new).__init__(batch_shape, self.event_shape, validate_args=False)
new._validate_args = self._validate_args
return new
Reported by Pylint.
Line: 68
Column: 36
def probs(self):
return self._categorical.probs
def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
uniforms = clamp_probs(torch.rand(shape, dtype=self.logits.dtype, device=self.logits.device))
gumbels = -((-(uniforms.log())).log())
scores = (self.logits + gumbels) / self.temperature
return scores - scores.logsumexp(dim=-1, keepdim=True)
Reported by Pylint.
Line: 70
Column: 32
def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
uniforms = clamp_probs(torch.rand(shape, dtype=self.logits.dtype, device=self.logits.device))
gumbels = -((-(uniforms.log())).log())
scores = (self.logits + gumbels) / self.temperature
return scores - scores.logsumexp(dim=-1, keepdim=True)
def log_prob(self, value):
Reported by Pylint.
Line: 80
Column: 22
if self._validate_args:
self._validate_sample(value)
logits, value = broadcast_all(self.logits, value)
log_scale = (torch.full_like(self.temperature, float(K)).lgamma() -
self.temperature.log().mul(-(K - 1)))
score = logits - value.mul(self.temperature)
score = (score - score.logsumexp(dim=-1, keepdim=True)).sum(-1)
return score + log_scale
Reported by Pylint.
Line: 10
Column: 1
from torch.distributions.transforms import ExpTransform
class ExpRelaxedCategorical(Distribution):
r"""
Creates a ExpRelaxedCategorical parameterized by
:attr:`temperature`, and either :attr:`probs` or :attr:`logits` (but not both).
Returns the log of a point in the simplex. Based on the interface to
:class:`OneHotCategorical`.
Reported by Pylint.
Line: 10
Column: 1
from torch.distributions.transforms import ExpTransform
class ExpRelaxedCategorical(Distribution):
r"""
Creates a ExpRelaxedCategorical parameterized by
:attr:`temperature`, and either :attr:`probs` or :attr:`logits` (but not both).
Returns the log of a point in the simplex. Based on the interface to
:class:`OneHotCategorical`.
Reported by Pylint.
Line: 10
Column: 1
from torch.distributions.transforms import ExpTransform
class ExpRelaxedCategorical(Distribution):
r"""
Creates a ExpRelaxedCategorical parameterized by
:attr:`temperature`, and either :attr:`probs` or :attr:`logits` (but not both).
Returns the log of a point in the simplex. Based on the interface to
:class:`OneHotCategorical`.
Reported by Pylint.
Line: 10
Column: 1
from torch.distributions.transforms import ExpTransform
class ExpRelaxedCategorical(Distribution):
r"""
Creates a ExpRelaxedCategorical parameterized by
:attr:`temperature`, and either :attr:`probs` or :attr:`logits` (but not both).
Returns the log of a point in the simplex. Based on the interface to
:class:`OneHotCategorical`.
Reported by Pylint.
Line: 10
Column: 1
from torch.distributions.transforms import ExpTransform
class ExpRelaxedCategorical(Distribution):
r"""
Creates a ExpRelaxedCategorical parameterized by
:attr:`temperature`, and either :attr:`probs` or :attr:`logits` (but not both).
Returns the log of a point in the simplex. Based on the interface to
:class:`OneHotCategorical`.
Reported by Pylint.
Line: 10
Column: 1
from torch.distributions.transforms import ExpTransform
class ExpRelaxedCategorical(Distribution):
r"""
Creates a ExpRelaxedCategorical parameterized by
:attr:`temperature`, and either :attr:`probs` or :attr:`logits` (but not both).
Returns the log of a point in the simplex. Based on the interface to
:class:`OneHotCategorical`.
Reported by Pylint.
benchmarks/operator_benchmark/pt/cat_test.py
32 issues
Line: 2
Column: 1
import operator_benchmark as op_bench
import torch
import random
from typing import List
"""Microbenchmarks for Cat operator"""
cross_product_configs = {
Reported by Pylint.
Line: 14
Column: 21
}
# Configs for PT Cat operator
cat_configs_short = op_bench.config_list(
attr_names=['sizes', 'N', 'dim'],
attrs=[
[(1, 1, 1), 2, 0], # noqa: E241
[(512, 512, 2), 2, 1], # noqa: E241
[(128, 1024, 2), 2, 1], # noqa: E241
Reported by Pylint.
Line: 26
Column: 30
)
# Configs specific to static runtime feature - a fast path runtime for pared down models
cat_configs_static_runtime = op_bench.config_list(
attr_names=['sizes', 'N', 'dim'],
attrs=[
[[(1, 160), (1, 14)], -1, 1],
[[(1, 20, 40), (1, 4, 40), (1, 5, 40)], -1, 1],
[[(1, 580), (1, 174)], -1, 1],
Reported by Pylint.
Line: 40
Column: 20
tags=['static_runtime'],
)
cat_configs_long = op_bench.config_list(
attr_names=['sizes', 'N', 'dim'],
attrs=[
[(2**10, 2**10, 2), 2, 0], # noqa: E241
[(2**10+1, 2**10-1, 2), 2, 1], # noqa: E226,E241
[(2**10, 2**10, 2), 2, 2], # noqa: E241
Reported by Pylint.
Line: 66
Column: 24
)
# There is a different codepath on CUDA for >4 dimensions
cat_configs_multidim = op_bench.config_list(
attr_names=['sizes', 'N', 'dim'],
attrs=[
[(2**6, 2**5, 2**2, 2**4, 2**5), 2, 2], # noqa: E241
[(2**4, 2**5, 2**2, 2**4, 2**5), 8, 2], # noqa: E241
[(2**3+1, 2**5-1, 2**2+1, 2**4-1, 2**5+1), 17, 4], # noqa: E226,E241
Reported by Pylint.
Line: 77
Column: 26
tags=['multidim'],
)
cat_configs_manyinputs = op_bench.config_list(
attr_names=['sizes', 'N', 'dim'],
attrs=[
[[lambda: random.randint(1, 10000)], 100, 0],
[[lambda: random.randint(1, 1000)], 1000, 0],
[[lambda: random.randint(1, 500)], 2000, 0],
Reported by Pylint.
Line: 89
Column: 20
tags=['manyinputs'],
)
class CatBenchmark(op_bench.TorchBenchmarkBase):
def init(self, sizes, N, dim, device):
random.seed(42)
inputs = []
gen_sizes = []
if type(sizes) == list and N == -1:
Reported by Pylint.
Line: 114
Column: 1
return torch.cat(inputs, dim=dim, out=result)
op_bench.generate_pt_test(cat_configs_short +
cat_configs_long +
cat_configs_multidim +
cat_configs_manyinputs +
cat_configs_static_runtime,
CatBenchmark)
Reported by Pylint.
Line: 7
Column: 1
from typing import List
"""Microbenchmarks for Cat operator"""
cross_product_configs = {
'device': ['cpu', 'cuda'],
}
Reported by Pylint.
Line: 97
Column: 17
if type(sizes) == list and N == -1:
gen_sizes = sizes
else:
for i in range(N):
gen_sizes.append([old_size() if callable(old_size) else old_size for old_size in sizes])
for s in gen_sizes:
inputs.append(torch.rand(s, device=device))
result = torch.empty(0, device=device)
Reported by Pylint.
torch/distributed/pipeline/sync/pipeline.py
32 issues
Line: 17
Column: 1
from torch import Tensor, nn
from torch.autograd.profiler import record_function
from .checkpoint import Checkpointing
from .copy import Copy, Wait
from .dependency import fork, join
from .microbatch import Batch
from .skip.layout import SkipLayout
from .skip.tracker import SkipTrackerThroughPotals, use_skip_tracker
Reported by Pylint.
Line: 18
Column: 1
from torch.autograd.profiler import record_function
from .checkpoint import Checkpointing
from .copy import Copy, Wait
from .dependency import fork, join
from .microbatch import Batch
from .skip.layout import SkipLayout
from .skip.tracker import SkipTrackerThroughPotals, use_skip_tracker
from .stream import AbstractStream, current_stream, use_device
Reported by Pylint.
Line: 19
Column: 1
from .checkpoint import Checkpointing
from .copy import Copy, Wait
from .dependency import fork, join
from .microbatch import Batch
from .skip.layout import SkipLayout
from .skip.tracker import SkipTrackerThroughPotals, use_skip_tracker
from .stream import AbstractStream, current_stream, use_device
from .worker import Task, create_workers
Reported by Pylint.
Line: 20
Column: 1
from .checkpoint import Checkpointing
from .copy import Copy, Wait
from .dependency import fork, join
from .microbatch import Batch
from .skip.layout import SkipLayout
from .skip.tracker import SkipTrackerThroughPotals, use_skip_tracker
from .stream import AbstractStream, current_stream, use_device
from .worker import Task, create_workers
Reported by Pylint.
Line: 21
Column: 1
from .copy import Copy, Wait
from .dependency import fork, join
from .microbatch import Batch
from .skip.layout import SkipLayout
from .skip.tracker import SkipTrackerThroughPotals, use_skip_tracker
from .stream import AbstractStream, current_stream, use_device
from .worker import Task, create_workers
__all__: List[str] = []
Reported by Pylint.
Line: 22
Column: 1
from .dependency import fork, join
from .microbatch import Batch
from .skip.layout import SkipLayout
from .skip.tracker import SkipTrackerThroughPotals, use_skip_tracker
from .stream import AbstractStream, current_stream, use_device
from .worker import Task, create_workers
__all__: List[str] = []
Reported by Pylint.
Line: 23
Column: 1
from .microbatch import Batch
from .skip.layout import SkipLayout
from .skip.tracker import SkipTrackerThroughPotals, use_skip_tracker
from .stream import AbstractStream, current_stream, use_device
from .worker import Task, create_workers
__all__: List[str] = []
Reported by Pylint.
Line: 24
Column: 1
from .skip.layout import SkipLayout
from .skip.tracker import SkipTrackerThroughPotals, use_skip_tracker
from .stream import AbstractStream, current_stream, use_device
from .worker import Task, create_workers
__all__: List[str] = []
Tensors = Sequence[Tensor]
Reported by Pylint.
Line: 37
Column: 15
# Queue is generic only in stubs.
# https://mypy.readthedocs.io/en/latest/common_issues.html#using-classes-that-are-generic-in-stubs-but-not-at-runtime
if TYPE_CHECKING:
InQueue = Queue[Optional["Task"]]
OutQueue = Queue[Tuple[bool, Union[Tuple["Task", Batch], ExcInfo, None]]]
else:
InQueue = Queue
OutQueue = Queue
Reported by Pylint.
Line: 38
Column: 16
# https://mypy.readthedocs.io/en/latest/common_issues.html#using-classes-that-are-generic-in-stubs-but-not-at-runtime
if TYPE_CHECKING:
InQueue = Queue[Optional["Task"]]
OutQueue = Queue[Tuple[bool, Union[Tuple["Task", Batch], ExcInfo, None]]]
else:
InQueue = Queue
OutQueue = Queue
Reported by Pylint.
torch/distributed/algorithms/quantization.py
32 issues
Line: 9
Column: 18
from enum import Enum
TORCH_HALF_MIN = torch.finfo(torch.float16).min
TORCH_HALF_MAX = torch.finfo(torch.float16).max
class DQuantType(Enum):
FP16 = "fp16"
Reported by Pylint.
Line: 9
Column: 30
from enum import Enum
TORCH_HALF_MIN = torch.finfo(torch.float16).min
TORCH_HALF_MAX = torch.finfo(torch.float16).max
class DQuantType(Enum):
FP16 = "fp16"
Reported by Pylint.
Line: 10
Column: 30
TORCH_HALF_MIN = torch.finfo(torch.float16).min
TORCH_HALF_MAX = torch.finfo(torch.float16).max
class DQuantType(Enum):
FP16 = "fp16"
def __str__(self) -> str:
Reported by Pylint.
Line: 10
Column: 18
TORCH_HALF_MIN = torch.finfo(torch.float16).min
TORCH_HALF_MAX = torch.finfo(torch.float16).max
class DQuantType(Enum):
FP16 = "fp16"
def __str__(self) -> str:
Reported by Pylint.
Line: 15
Column: 5
class DQuantType(Enum):
FP16 = "fp16"
def __str__(self) -> str:
return self.value
def _fp32_to_fp16_with_clamp(tensor: torch.Tensor) -> torch.Tensor:
return torch.clamp(tensor, TORCH_HALF_MIN, TORCH_HALF_MAX).half()
Reported by Pylint.
Line: 20
Column: 12
def _fp32_to_fp16_with_clamp(tensor: torch.Tensor) -> torch.Tensor:
return torch.clamp(tensor, TORCH_HALF_MIN, TORCH_HALF_MAX).half()
def _quantize_tensor(tensor, qtype):
if not isinstance(tensor, torch.Tensor):
raise RuntimeError(
f"_quantize_tensor expecting torch.Tensor as input but found {type(tensor)}"
Reported by Pylint.
Line: 55
Column: 28
f"_dequantize_tensor expecting torch.Tensor as input but found {type(tensor)}"
)
if (qtype == DQuantType.FP16):
if tensor.dtype != torch.float16:
raise RuntimeError(
f"tensor dtype is {tensor.dtype} while expected to be FP16."
)
elif tensor.dtype == torch.float16 and quant_loss is None:
return tensor.float()
Reported by Pylint.
Line: 59
Column: 30
raise RuntimeError(
f"tensor dtype is {tensor.dtype} while expected to be FP16."
)
elif tensor.dtype == torch.float16 and quant_loss is None:
return tensor.float()
else:
return tensor.float() / quant_loss
else:
raise RuntimeError(
Reported by Pylint.
Line: 69
Column: 49
)
def _dequantize_tensor_list(tensor_list, qtype, quant_loss=None):
if not isinstance(tensor_list, list) or not all(
isinstance(p, torch.Tensor) for p in tensor_list
):
raise RuntimeError(
f"_dequantize_tensor_list expecting list of torch.Tensor as input but found {type(tensor_list)}"
Reported by Pylint.
Line: 110
Column: 13
raise RuntimeError(
'The async_op=True mode is not supported yet.'
)
if (func == dist.all_gather):
tensors = args[0]
input_tensors = _quantize_tensor(args[1], qtype)
out_tensors = _quantize_tensor_list(tensors, qtype)
dist.all_gather(out_tensors, input_tensors, group=group, async_op=async_op)
for i, t in enumerate(_dequantize_tensor_list(out_tensors, qtype, quant_loss=quant_loss)):
Reported by Pylint.
caffe2/quantization/server/elementwise_add_dnnlowp_op_test.py
32 issues
Line: 6
Column: 1
import collections
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server.dnnlowp_test_utils import check_quantized_results_close
from hypothesis import given
Reported by Pylint.
Line: 10
Column: 1
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server.dnnlowp_test_utils import check_quantized_results_close
from hypothesis import given
dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
Reported by Pylint.
Line: 27
Column: 71
**hu.gcs_cpu_only
)
def test_dnnlowp_elementwise_add_int(
self, N, is_empty, in_quantized, out_quantized, in_place, gc, dc
):
if is_empty:
N = 0
# FIXME: DNNLOWP Add doesn't support inplace operation and
# dequantize_output=1 at the same time
Reported by Pylint.
Line: 31
Column: 3
):
if is_empty:
N = 0
# FIXME: DNNLOWP Add doesn't support inplace operation and
# dequantize_output=1 at the same time
if in_place[0] or in_place[1]:
in_quantized = True
out_quantized = True
Reported by Pylint.
Line: 106
Column: 58
check_quantized_results_close(outputs)
@given(**hu.gcs_cpu_only)
def test_dnnlowp_elementwise_add_broadcast(self, gc, dc):
# Set broadcast and no axis, i.e. broadcasting last dimensions.
min_ = -100
max_ = min_ + 255
A = np.round(np.random.rand(2, 3, 4, 5) * (max_ - min_) + min_)
A = A.astype(np.float32)
Reported by Pylint.
Line: 148
Column: 63
check_quantized_results_close(outputs)
@given(**hu.gcs_cpu_only)
def test_dnnlowp_elementwise_add_broadcast_axis(self, gc, dc):
for bdim, axis in [
((3, 4), 1), # broadcasting intermediate dimensions
((2,), 0), # broadcasting the first dimension
((1, 4, 1), 1),
]:
Reported by Pylint.
Line: 1
Column: 1
import collections
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server.dnnlowp_test_utils import check_quantized_results_close
Reported by Pylint.
Line: 17
Column: 1
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
class DNNLowPAddOpTest(hu.HypothesisTestCase):
@given(
N=st.integers(32, 256),
is_empty=st.booleans(),
in_quantized=st.booleans(),
out_quantized=st.booleans(),
Reported by Pylint.
Line: 25
Column: 5
out_quantized=st.booleans(),
in_place=st.sampled_from([(False, False), (True, False), (False, True)]),
**hu.gcs_cpu_only
)
def test_dnnlowp_elementwise_add_int(
self, N, is_empty, in_quantized, out_quantized, in_place, gc, dc
):
if is_empty:
N = 0
Reported by Pylint.
Line: 25
Column: 5
out_quantized=st.booleans(),
in_place=st.sampled_from([(False, False), (True, False), (False, True)]),
**hu.gcs_cpu_only
)
def test_dnnlowp_elementwise_add_int(
self, N, is_empty, in_quantized, out_quantized, in_place, gc, dc
):
if is_empty:
N = 0
Reported by Pylint.
caffe2/python/ideep/leaky_relu_op_test.py
32 issues
Line: 7
Column: 1
import unittest
import hypothesis.strategies as st
from hypothesis import given, settings
import numpy as np
from caffe2.python import core, workspace, model_helper
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu
Reported by Pylint.
Line: 8
Column: 1
import unittest
import hypothesis.strategies as st
from hypothesis import given, settings
import numpy as np
from caffe2.python import core, workspace, model_helper
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu
Reported by Pylint.
Line: 15
Column: 22
import caffe2.python.ideep_test_util as mu
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class LeakyReluTest(hu.HypothesisTestCase):
def _get_inputs(self, N, C, H, W, order):
input_data = np.random.rand(N, C, H, W).astype(np.float32) - 0.5
# default step size is 0.05
Reported by Pylint.
Line: 17
Column: 39
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class LeakyReluTest(hu.HypothesisTestCase):
def _get_inputs(self, N, C, H, W, order):
input_data = np.random.rand(N, C, H, W).astype(np.float32) - 0.5
# default step size is 0.05
input_data[np.logical_and(
input_data >= 0, input_data <= 0.051)] = 0.051
Reported by Pylint.
Line: 28
Column: 45
return input_data,
def _get_op(self, device_option, alpha, order, inplace=False):
outputs = ['output' if not inplace else "input"]
op = core.CreateOperator(
'LeakyRelu',
['input'],
outputs,
Reported by Pylint.
Line: 1
Column: 1
import unittest
import hypothesis.strategies as st
from hypothesis import given, settings
import numpy as np
Reported by Pylint.
Line: 16
Column: 1
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class LeakyReluTest(hu.HypothesisTestCase):
def _get_inputs(self, N, C, H, W, order):
input_data = np.random.rand(N, C, H, W).astype(np.float32) - 0.5
# default step size is 0.05
input_data[np.logical_and(
Reported by Pylint.
Line: 17
Column: 5
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class LeakyReluTest(hu.HypothesisTestCase):
def _get_inputs(self, N, C, H, W, order):
input_data = np.random.rand(N, C, H, W).astype(np.float32) - 0.5
# default step size is 0.05
input_data[np.logical_and(
input_data >= 0, input_data <= 0.051)] = 0.051
Reported by Pylint.
Line: 17
Column: 5
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class LeakyReluTest(hu.HypothesisTestCase):
def _get_inputs(self, N, C, H, W, order):
input_data = np.random.rand(N, C, H, W).astype(np.float32) - 0.5
# default step size is 0.05
input_data[np.logical_and(
input_data >= 0, input_data <= 0.051)] = 0.051
Reported by Pylint.
Line: 17
Column: 5
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class LeakyReluTest(hu.HypothesisTestCase):
def _get_inputs(self, N, C, H, W, order):
input_data = np.random.rand(N, C, H, W).astype(np.float32) - 0.5
# default step size is 0.05
input_data[np.logical_and(
input_data >= 0, input_data <= 0.051)] = 0.051
Reported by Pylint.
test/onnx/model_defs/op_test.py
32 issues
Line: 1
Column: 1
import torch
import torch.nn as nn
class DummyNet(nn.Module):
def __init__(self, num_classes=1000):
super(DummyNet, self).__init__()
self.features = nn.Sequential(
Reported by Pylint.
Line: 2
Column: 1
import torch
import torch.nn as nn
class DummyNet(nn.Module):
def __init__(self, num_classes=1000):
super(DummyNet, self).__init__()
self.features = nn.Sequential(
Reported by Pylint.
Line: 7
Column: 24
class DummyNet(nn.Module):
def __init__(self, num_classes=1000):
super(DummyNet, self).__init__()
self.features = nn.Sequential(
nn.LeakyReLU(0.02),
nn.BatchNorm2d(3),
nn.AvgPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False)
Reported by Pylint.
Line: 22
Column: 5
class ConcatNet(nn.Module):
def __init__(self):
super(ConcatNet, self).__init__()
def forward(self, inputs):
return torch.cat(inputs, 1)
Reported by Pylint.
Line: 31
Column: 5
class PermuteNet(nn.Module):
def __init__(self):
super(PermuteNet, self).__init__()
def forward(self, input):
return input.permute(2, 3, 0, 1)
Reported by Pylint.
Line: 34
Column: 23
def __init__(self):
super(PermuteNet, self).__init__()
def forward(self, input):
return input.permute(2, 3, 0, 1)
class PReluNet(nn.Module):
Reported by Pylint.
Line: 1
Column: 1
import torch
import torch.nn as nn
class DummyNet(nn.Module):
def __init__(self, num_classes=1000):
super(DummyNet, self).__init__()
self.features = nn.Sequential(
Reported by Pylint.
Line: 5
Column: 1
import torch.nn as nn
class DummyNet(nn.Module):
def __init__(self, num_classes=1000):
super(DummyNet, self).__init__()
self.features = nn.Sequential(
nn.LeakyReLU(0.02),
Reported by Pylint.
Line: 5
Column: 1
import torch.nn as nn
class DummyNet(nn.Module):
def __init__(self, num_classes=1000):
super(DummyNet, self).__init__()
self.features = nn.Sequential(
nn.LeakyReLU(0.02),
Reported by Pylint.
Line: 8
Column: 9
class DummyNet(nn.Module):
def __init__(self, num_classes=1000):
super(DummyNet, self).__init__()
self.features = nn.Sequential(
nn.LeakyReLU(0.02),
nn.BatchNorm2d(3),
nn.AvgPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False)
)
Reported by Pylint.
caffe2/python/operator_test/channel_shuffle_test.py
32 issues
Line: 5
Column: 1
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core
class ChannelShuffleOpsTest(serial.SerializedTestCase):
Reported by Pylint.
Line: 1
Column: 1
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core
Reported by Pylint.
Line: 10
Column: 1
from caffe2.python import core
class ChannelShuffleOpsTest(serial.SerializedTestCase):
def _channel_shuffle_nchw_ref(self, X, group):
dims = X.shape
N = dims[0]
C = dims[1]
G = group
Reported by Pylint.
Line: 11
Column: 5
class ChannelShuffleOpsTest(serial.SerializedTestCase):
def _channel_shuffle_nchw_ref(self, X, group):
dims = X.shape
N = dims[0]
C = dims[1]
G = group
K = int(C / G)
Reported by Pylint.
Line: 11
Column: 5
class ChannelShuffleOpsTest(serial.SerializedTestCase):
def _channel_shuffle_nchw_ref(self, X, group):
dims = X.shape
N = dims[0]
C = dims[1]
G = group
K = int(C / G)
Reported by Pylint.
Line: 13
Column: 9
class ChannelShuffleOpsTest(serial.SerializedTestCase):
def _channel_shuffle_nchw_ref(self, X, group):
dims = X.shape
N = dims[0]
C = dims[1]
G = group
K = int(C / G)
X = X.reshape(N, G, K, np.prod(dims[2:]))
Y = np.transpose(X, axes=(0, 2, 1, 3))
Reported by Pylint.
Line: 14
Column: 9
def _channel_shuffle_nchw_ref(self, X, group):
dims = X.shape
N = dims[0]
C = dims[1]
G = group
K = int(C / G)
X = X.reshape(N, G, K, np.prod(dims[2:]))
Y = np.transpose(X, axes=(0, 2, 1, 3))
return [Y.reshape(dims)]
Reported by Pylint.
Line: 15
Column: 9
dims = X.shape
N = dims[0]
C = dims[1]
G = group
K = int(C / G)
X = X.reshape(N, G, K, np.prod(dims[2:]))
Y = np.transpose(X, axes=(0, 2, 1, 3))
return [Y.reshape(dims)]
Reported by Pylint.
Line: 16
Column: 9
N = dims[0]
C = dims[1]
G = group
K = int(C / G)
X = X.reshape(N, G, K, np.prod(dims[2:]))
Y = np.transpose(X, axes=(0, 2, 1, 3))
return [Y.reshape(dims)]
def _channel_shuffle_nhwc_ref(self, X, group):
Reported by Pylint.
Line: 18
Column: 9
G = group
K = int(C / G)
X = X.reshape(N, G, K, np.prod(dims[2:]))
Y = np.transpose(X, axes=(0, 2, 1, 3))
return [Y.reshape(dims)]
def _channel_shuffle_nhwc_ref(self, X, group):
dims = X.shape
N = dims[0]
Reported by Pylint.