The following issues were found

caffe2/python/onnx/helper.py
28 issues
Unable to import 'onnx.backend.base'
Error

Line: 9 Column: 1

              

from caffe2.proto import caffe2_pb2
from onnx.backend.base import namedtupledict

from caffe2.python.onnx.workspace import Workspace
import logging
import time


            

Reported by Pylint.

Unused argument 'training'
Error

Line: 103 Column: 44

                  return results[0]


def benchmark_pytorch_model(model, inputs, training=False, warmup_iters=3,
                            main_iters=10, verbose=False):
    '''
        Run the model several times, and measure the execution time.
        Return the execution time per iteration (millisecond).
    '''

            

Reported by Pylint.

Unused argument 'verbose'
Error

Line: 104 Column: 44

              

def benchmark_pytorch_model(model, inputs, training=False, warmup_iters=3,
                            main_iters=10, verbose=False):
    '''
        Run the model several times, and measure the execution time.
        Return the execution time per iteration (millisecond).
    '''
    for _i in range(warmup_iters):

            

Reported by Pylint.

Use lazy % formatting in logging functions
Error

Line: 117 Column: 14

                      model(*inputs)
        te = time.time()
        total_pytorch_time += te - ts
    log.info("The PyTorch model execution time per iter is {} milliseconds, "
             "{} iters per second.".format(total_pytorch_time / main_iters * 1000,
                                           main_iters / total_pytorch_time))
    return total_pytorch_time * 1000 / main_iters

            

Reported by Pylint.

Missing module docstring
Error

Line: 1 Column: 1

              ## @package onnx
# Module caffe2.python.onnx.helper





from caffe2.proto import caffe2_pb2
from onnx.backend.base import namedtupledict

            

Reported by Pylint.

third party import "from caffe2.python.onnx.workspace import Workspace" should be placed before "from onnx.backend.base import namedtupledict"
Error

Line: 11 Column: 1

              from caffe2.proto import caffe2_pb2
from onnx.backend.base import namedtupledict

from caffe2.python.onnx.workspace import Workspace
import logging
import time


log = logging.getLogger(__name__)

            

Reported by Pylint.

Imports from package caffe2 are not grouped
Error

Line: 11 Column: 1

              from caffe2.proto import caffe2_pb2
from onnx.backend.base import namedtupledict

from caffe2.python.onnx.workspace import Workspace
import logging
import time


log = logging.getLogger(__name__)

            

Reported by Pylint.

standard import "import logging" should be placed before "from caffe2.proto import caffe2_pb2"
Error

Line: 12 Column: 1

              from onnx.backend.base import namedtupledict

from caffe2.python.onnx.workspace import Workspace
import logging
import time


log = logging.getLogger(__name__)


            

Reported by Pylint.

standard import "import time" should be placed before "from caffe2.proto import caffe2_pb2"
Error

Line: 13 Column: 1

              
from caffe2.python.onnx.workspace import Workspace
import logging
import time


log = logging.getLogger(__name__)



            

Reported by Pylint.

Missing function or method docstring
Error

Line: 19 Column: 1

              log = logging.getLogger(__name__)


def c2_native_run_op(op_def, inputs):
    ws = Workspace()
    if isinstance(inputs, dict):
        for key, value in inputs.items():
            ws.FeedBlob(key, value, op_def.device_option)
    else:

            

Reported by Pylint.

caffe2/quantization/server/resize_nearest_dnnlowp_op_test.py
28 issues
Unable to import 'hypothesis.strategies'
Error

Line: 4 Column: 1

              

import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from hypothesis import given, settings



            

Reported by Pylint.

Unable to import 'hypothesis'
Error

Line: 7 Column: 1

              import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from hypothesis import given, settings


dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])


            

Reported by Pylint.

Unused argument 'gc'
Error

Line: 25 Column: 65

                      **hu.gcs_cpu_only
    )
    @settings(deadline=None, max_examples=50)
    def test_resize_nearest(self, N, H, W, C, scale_w, scale_h, gc, dc):
        X = np.round(np.random.rand(N, H, W, C) * 255).astype(np.float32)

        quantize = core.CreateOperator("Quantize", ["X"], ["X_q"], engine="DNNLOWP")
        resize_nearest = core.CreateOperator(
            "Int8ResizeNearest",

            

Reported by Pylint.

Unused argument 'dc'
Error

Line: 25 Column: 69

                      **hu.gcs_cpu_only
    )
    @settings(deadline=None, max_examples=50)
    def test_resize_nearest(self, N, H, W, C, scale_w, scale_h, gc, dc):
        X = np.round(np.random.rand(N, H, W, C) * 255).astype(np.float32)

        quantize = core.CreateOperator("Quantize", ["X"], ["X_q"], engine="DNNLOWP")
        resize_nearest = core.CreateOperator(
            "Int8ResizeNearest",

            

Reported by Pylint.

Missing module docstring
Error

Line: 1 Column: 1

              

import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from hypothesis import given, settings



            

Reported by Pylint.

Missing class docstring
Error

Line: 14 Column: 1

              workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])


class DNNLowPResizeNearestOpTest(hu.HypothesisTestCase):
    @given(
        N=st.integers(0, 3),
        H=st.integers(10, 300),
        W=st.integers(10, 300),
        C=st.integers(1, 32),

            

Reported by Pylint.

Argument name "H" doesn't conform to snake_case naming style
Error

Line: 24 Column: 5

                      scale_h=st.floats(0.25, 4.0) | st.just(2.0),
        **hu.gcs_cpu_only
    )
    @settings(deadline=None, max_examples=50)
    def test_resize_nearest(self, N, H, W, C, scale_w, scale_h, gc, dc):
        X = np.round(np.random.rand(N, H, W, C) * 255).astype(np.float32)

        quantize = core.CreateOperator("Quantize", ["X"], ["X_q"], engine="DNNLOWP")
        resize_nearest = core.CreateOperator(

            

Reported by Pylint.

Argument name "W" doesn't conform to snake_case naming style
Error

Line: 24 Column: 5

                      scale_h=st.floats(0.25, 4.0) | st.just(2.0),
        **hu.gcs_cpu_only
    )
    @settings(deadline=None, max_examples=50)
    def test_resize_nearest(self, N, H, W, C, scale_w, scale_h, gc, dc):
        X = np.round(np.random.rand(N, H, W, C) * 255).astype(np.float32)

        quantize = core.CreateOperator("Quantize", ["X"], ["X_q"], engine="DNNLOWP")
        resize_nearest = core.CreateOperator(

            

Reported by Pylint.

Argument name "C" doesn't conform to snake_case naming style
Error

Line: 24 Column: 5

                      scale_h=st.floats(0.25, 4.0) | st.just(2.0),
        **hu.gcs_cpu_only
    )
    @settings(deadline=None, max_examples=50)
    def test_resize_nearest(self, N, H, W, C, scale_w, scale_h, gc, dc):
        X = np.round(np.random.rand(N, H, W, C) * 255).astype(np.float32)

        quantize = core.CreateOperator("Quantize", ["X"], ["X_q"], engine="DNNLOWP")
        resize_nearest = core.CreateOperator(

            

Reported by Pylint.

Argument name "gc" doesn't conform to snake_case naming style
Error

Line: 24 Column: 5

                      scale_h=st.floats(0.25, 4.0) | st.just(2.0),
        **hu.gcs_cpu_only
    )
    @settings(deadline=None, max_examples=50)
    def test_resize_nearest(self, N, H, W, C, scale_w, scale_h, gc, dc):
        X = np.round(np.random.rand(N, H, W, C) * 255).astype(np.float32)

        quantize = core.CreateOperator("Quantize", ["X"], ["X_q"], engine="DNNLOWP")
        resize_nearest = core.CreateOperator(

            

Reported by Pylint.

caffe2/python/mkl/rewrite_graph_test.py
28 issues
Unable to import 'hypothesis'
Error

Line: 9 Column: 1

              import unittest
import numpy as np
import copy
from hypothesis import given
import hypothesis.strategies as st

from caffe2.python.model_helper import ModelHelper
from caffe2.python.models import resnet
from caffe2.python import workspace, brew

            

Reported by Pylint.

Unable to import 'hypothesis.strategies'
Error

Line: 10 Column: 1

              import numpy as np
import copy
from hypothesis import given
import hypothesis.strategies as st

from caffe2.python.model_helper import ModelHelper
from caffe2.python.models import resnet
from caffe2.python import workspace, brew
import caffe2.python.hypothesis_test_util as hu

            

Reported by Pylint.

Module 'caffe2.python._import_c_extension' has no 'use_mkldnn' member
Error

Line: 183 Column: 22

                  return model, [(1, 1, 224, 224)]


@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class MKLRewriteTest(hu.HypothesisTestCase):
    @given(gen=st.sampled_from([simple_relu, simple_fc,
                                simple_mlp, simple_cnn]))
    def test_mkl_simple_rewrite(self, gen):
        cpu_model, (shape,) = gen()

            

Reported by Pylint.

Reimport 'unittest' (imported line 6)
Error

Line: 254 Column: 5

                                                 atol=1e-4, rtol=1e-4)

if __name__ == "__main__":
    import unittest
    unittest.main()

            

Reported by Pylint.

Missing module docstring
Error

Line: 1 Column: 1

              




import unittest
import numpy as np
import copy
from hypothesis import given

            

Reported by Pylint.

standard import "import copy" should be placed before "import numpy as np"
Error

Line: 8 Column: 1

              
import unittest
import numpy as np
import copy
from hypothesis import given
import hypothesis.strategies as st

from caffe2.python.model_helper import ModelHelper
from caffe2.python.models import resnet

            

Reported by Pylint.

Missing function or method docstring
Error

Line: 19 Column: 1

              import caffe2.python.mkl.rewrite_graph as rewrite_graph


def deterministic_io(model):
    model = copy.deepcopy(model)
    for i, op in enumerate(model.InitProto().op):
        op.device_option.random_seed = i + 1
    if not model.Proto().external_output:
        model.Proto().external_output.extend([model.Proto().op[-1].output[0]])

            

Reported by Pylint.

Variable name "op" doesn't conform to snake_case naming style
Error

Line: 21 Column: 12

              
def deterministic_io(model):
    model = copy.deepcopy(model)
    for i, op in enumerate(model.InitProto().op):
        op.device_option.random_seed = i + 1
    if not model.Proto().external_output:
        model.Proto().external_output.extend([model.Proto().op[-1].output[0]])
    return model


            

Reported by Pylint.

Missing function or method docstring
Error

Line: 27 Column: 1

                      model.Proto().external_output.extend([model.Proto().op[-1].output[0]])
    return model

def simple_fc():
    model = ModelHelper(name="r")
    brew.fc(model, "data", "fc", 10, 10)
    return model, [(1, 10)]

def double_matmul():

            

Reported by Pylint.

Missing function or method docstring
Error

Line: 32 Column: 1

                  brew.fc(model, "data", "fc", 10, 10)
    return model, [(1, 10)]

def double_matmul():
    model = ModelHelper(name="r")
    fc0 = brew.fc(model, "data", "fc0", 10, 10)
    fc1 = brew.fc(model, fc0, "fc1", 10, 10)
    model.Proto().external_output[:] = [str(fc0), str(fc1)]
    return model, [(1, 10)]

            

Reported by Pylint.

torch/distributions/dirichlet.py
28 issues
Module 'torch' has no '_dirichlet_grad' member
Error

Line: 11 Column: 12

              # This helper is exposed for testing.
def _Dirichlet_backward(x, concentration, grad_output):
    total = concentration.sum(-1, True).expand_as(concentration)
    grad = torch._dirichlet_grad(x, concentration, total)
    return grad * (grad_output - (x * grad_output).sum(-1, True))


class _Dirichlet(Function):
    @staticmethod

            

Reported by Pylint.

Module 'torch' has no '_sample_dirichlet' member
Error

Line: 18 Column: 13

              class _Dirichlet(Function):
    @staticmethod
    def forward(ctx, concentration):
        x = torch._sample_dirichlet(concentration)
        ctx.save_for_backward(x, concentration)
        return x

    @staticmethod
    @once_differentiable

            

Reported by Pylint.

Module 'torch' has no 'Size' member
Error

Line: 56 Column: 23

              
    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Dirichlet, _instance)
        batch_shape = torch.Size(batch_shape)
        new.concentration = self.concentration.expand(batch_shape + self.event_shape)
        super(Dirichlet, new).__init__(batch_shape, self.event_shape, validate_args=False)
        new._validate_args = self._validate_args
        return new


            

Reported by Pylint.

Module 'torch' has no 'log' member
Error

Line: 70 Column: 18

                  def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        return ((torch.log(value) * (self.concentration - 1.0)).sum(-1) +
                torch.lgamma(self.concentration.sum(-1)) -
                torch.lgamma(self.concentration).sum(-1))

    @property
    def mean(self):

            

Reported by Pylint.

Module 'torch' has no 'lgamma' member
Error

Line: 71 Column: 17

                      if self._validate_args:
            self._validate_sample(value)
        return ((torch.log(value) * (self.concentration - 1.0)).sum(-1) +
                torch.lgamma(self.concentration.sum(-1)) -
                torch.lgamma(self.concentration).sum(-1))

    @property
    def mean(self):
        return self.concentration / self.concentration.sum(-1, True)

            

Reported by Pylint.

Module 'torch' has no 'lgamma' member
Error

Line: 72 Column: 17

                          self._validate_sample(value)
        return ((torch.log(value) * (self.concentration - 1.0)).sum(-1) +
                torch.lgamma(self.concentration.sum(-1)) -
                torch.lgamma(self.concentration).sum(-1))

    @property
    def mean(self):
        return self.concentration / self.concentration.sum(-1, True)


            

Reported by Pylint.

Module 'torch' has no 'lgamma' member
Error

Line: 86 Column: 17

                  def entropy(self):
        k = self.concentration.size(-1)
        a0 = self.concentration.sum(-1)
        return (torch.lgamma(self.concentration).sum(-1) - torch.lgamma(a0) -
                (k - a0) * torch.digamma(a0) -
                ((self.concentration - 1.0) * torch.digamma(self.concentration)).sum(-1))

    @property
    def _natural_params(self):

            

Reported by Pylint.

Module 'torch' has no 'lgamma' member
Error

Line: 86 Column: 60

                  def entropy(self):
        k = self.concentration.size(-1)
        a0 = self.concentration.sum(-1)
        return (torch.lgamma(self.concentration).sum(-1) - torch.lgamma(a0) -
                (k - a0) * torch.digamma(a0) -
                ((self.concentration - 1.0) * torch.digamma(self.concentration)).sum(-1))

    @property
    def _natural_params(self):

            

Reported by Pylint.

Module 'torch' has no 'digamma' member
Error

Line: 87 Column: 28

                      k = self.concentration.size(-1)
        a0 = self.concentration.sum(-1)
        return (torch.lgamma(self.concentration).sum(-1) - torch.lgamma(a0) -
                (k - a0) * torch.digamma(a0) -
                ((self.concentration - 1.0) * torch.digamma(self.concentration)).sum(-1))

    @property
    def _natural_params(self):
        return (self.concentration, )

            

Reported by Pylint.

Module 'torch' has no 'digamma' member
Error

Line: 88 Column: 47

                      a0 = self.concentration.sum(-1)
        return (torch.lgamma(self.concentration).sum(-1) - torch.lgamma(a0) -
                (k - a0) * torch.digamma(a0) -
                ((self.concentration - 1.0) * torch.digamma(self.concentration)).sum(-1))

    @property
    def _natural_params(self):
        return (self.concentration, )


            

Reported by Pylint.

torch/sparse/__init__.py
28 issues
Module 'torch' has no '_sparse_addmm' member
Error

Line: 42 Column: 12

                      beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
        alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
    """
    return torch._sparse_addmm(mat, mat1, mat2, beta=beta, alpha=alpha)


def mm(mat1: Tensor, mat2: Tensor) -> Tensor:
    r"""
    Performs a matrix multiplication of the sparse matrix :attr:`mat1`

            

Reported by Pylint.

Module 'torch' has no '_sparse_sparse_matmul' member
Error

Line: 90 Column: 16

                             size=(2, 3), nnz=6, layout=torch.sparse_coo)
    """
    if mat1.is_sparse and mat2.is_sparse:
        return torch._sparse_sparse_matmul(mat1, mat2)
    return torch._sparse_mm(mat1, mat2)


def sum(input: Tensor, dim: DimOrDims = None,
        dtype: Optional[DType] = None) -> Tensor:

            

Reported by Pylint.

Module 'torch' has no '_sparse_mm' member
Error

Line: 91 Column: 12

                  """
    if mat1.is_sparse and mat2.is_sparse:
        return torch._sparse_sparse_matmul(mat1, mat2)
    return torch._sparse_mm(mat1, mat2)


def sum(input: Tensor, dim: DimOrDims = None,
        dtype: Optional[DType] = None) -> Tensor:
    r"""

            

Reported by Pylint.

Module 'torch' has no '_sparse_sum' member
Error

Line: 152 Column: 20

                  """
    if dtype is None:
        if dim is not None:
            return torch._sparse_sum(input, dim)
        else:
            return torch._sparse_sum(input)
    else:
        if dim is not None:
            return torch._sparse_sum(input, dim, dtype=dtype)

            

Reported by Pylint.

Module 'torch' has no '_sparse_sum' member
Error

Line: 154 Column: 20

                      if dim is not None:
            return torch._sparse_sum(input, dim)
        else:
            return torch._sparse_sum(input)
    else:
        if dim is not None:
            return torch._sparse_sum(input, dim, dtype=dtype)
        else:
            return torch._sparse_sum(input, dtype=dtype)

            

Reported by Pylint.

Module 'torch' has no '_sparse_sum' member
Error

Line: 157 Column: 20

                          return torch._sparse_sum(input)
    else:
        if dim is not None:
            return torch._sparse_sum(input, dim, dtype=dtype)
        else:
            return torch._sparse_sum(input, dtype=dtype)


def softmax(input: Tensor, dim: int, dtype: Optional[DType] = None) -> Tensor:

            

Reported by Pylint.

Module 'torch' has no '_sparse_sum' member
Error

Line: 159 Column: 20

                      if dim is not None:
            return torch._sparse_sum(input, dim, dtype=dtype)
        else:
            return torch._sparse_sum(input, dtype=dtype)


def softmax(input: Tensor, dim: int, dtype: Optional[DType] = None) -> Tensor:
    r"""Applies a softmax function.


            

Reported by Pylint.

Module 'torch' has no '_sparse_softmax' member
Error

Line: 186 Column: 12

                        performed. This is useful for preventing data type
          overflows. Default: None
    """
    return torch._sparse_softmax(input, dim, dtype=dtype)


def log_softmax(input: Tensor, dim: int, dtype: Optional[DType] = None) -> Tensor:
    r"""Applies a softmax function followed by logarithm.


            

Reported by Pylint.

Module 'torch' has no '_sparse_log_softmax' member
Error

Line: 203 Column: 12

                        performed. This is useful for preventing data type
          overflows. Default: None
    """
    return torch._sparse_log_softmax(input, dim, dtype=dtype)

            

Reported by Pylint.

Access to a protected member _sparse_addmm of a client class
Error

Line: 42 Column: 12

                      beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
        alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
    """
    return torch._sparse_addmm(mat, mat1, mat2, beta=beta, alpha=alpha)


def mm(mat1: Tensor, mat2: Tensor) -> Tensor:
    r"""
    Performs a matrix multiplication of the sparse matrix :attr:`mat1`

            

Reported by Pylint.

caffe2/contrib/tensorboard/tensorboard.py
28 issues
Unable to import 'IPython.display'
Error

Line: 61 Column: 5

              

def _show_graph(graph_def):
    import IPython.display

    code = CODE_TEMPLATE.format(
        data=repr(str(graph_def)),
        id='graph' + str(np.random.rand()),
        height=Config.HEIGHT)

            

Reported by Pylint.

Unable to import 'google.protobuf.text_format'
Error

Line: 118 Column: 9

                  log.setLevel(logging.INFO)

    def parse_net_def(path):
        import google.protobuf.text_format  # type: ignore[import]
        net_def = caffe2_pb2.NetDef()
        with open(path) as f:
            google.protobuf.text_format.Merge(f.read(), net_def)
        return core.Net(net_def)


            

Reported by Pylint.

Catching too general exception Exception
Error

Line: 148 Column: 16

                          with open(filename) as f:
                rows = [(float(el) for el in line.split()) for line in f]
                return [S(*r) for r in rows]
        except Exception as e:
            log.exception(e)
            return None

    def get_named_summaries(root):
        summaries = [

            

Reported by Pylint.

Missing module docstring
Error

Line: 1 Column: 1

              




import click
import collections
import logging
import numpy as np

            

Reported by Pylint.

standard import "import collections" should be placed before "import click"
Error

Line: 7 Column: 1

              

import click
import collections
import logging
import numpy as np
import os

from caffe2.proto import caffe2_pb2

            

Reported by Pylint.

standard import "import logging" should be placed before "import click"
Error

Line: 8 Column: 1

              
import click
import collections
import logging
import numpy as np
import os

from caffe2.proto import caffe2_pb2
from caffe2.python import core

            

Reported by Pylint.

standard import "import os" should be placed before "import click"
Error

Line: 10 Column: 1

              import collections
import logging
import numpy as np
import os

from caffe2.proto import caffe2_pb2
from caffe2.python import core
import caffe2.contrib.tensorboard.tensorboard_exporter as tb_exporter


            

Reported by Pylint.

Class 'Config' inherits from object, can be safely removed from bases in python3
Error

Line: 31 Column: 1

                      # tensorflow<=0.12.1
        from tensorflow.train import SummaryWriter as FileWriter

class Config(object):
    HEIGHT = 600
    ASPECT_RATIO = 1.6


CODE_TEMPLATE = """

            

Reported by Pylint.

Too few public methods (0/2)
Error

Line: 31 Column: 1

                      # tensorflow<=0.12.1
        from tensorflow.train import SummaryWriter as FileWriter

class Config(object):
    HEIGHT = 600
    ASPECT_RATIO = 1.6


CODE_TEMPLATE = """

            

Reported by Pylint.

Missing class docstring
Error

Line: 31 Column: 1

                      # tensorflow<=0.12.1
        from tensorflow.train import SummaryWriter as FileWriter

class Config(object):
    HEIGHT = 600
    ASPECT_RATIO = 1.6


CODE_TEMPLATE = """

            

Reported by Pylint.

caffe2/contrib/fakelowp/test/test_sls_8bit_nnpi_fp32.py
27 issues
Unable to import 'caffe2.python.fakelowp.init_shared_libs'
Error

Line: 4 Column: 1

              import unittest

# Must happen before importing caffe2.python.*
import caffe2.python.fakelowp.init_shared_libs  # noqa
import datetime
import numpy as np
from hypothesis import given, settings
from hypothesis import strategies as st
from caffe2.proto import caffe2_pb2

            

Reported by Pylint.

Unable to import 'hypothesis'
Error

Line: 7 Column: 1

              import caffe2.python.fakelowp.init_shared_libs  # noqa
import datetime
import numpy as np
from hypothesis import given, settings
from hypothesis import strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from caffe2.python.onnx.onnxifi import onnxifi_caffe2_net
from caffe2.python.fakelowp.test_utils import print_test_debug_info

            

Reported by Pylint.

Unable to import 'hypothesis'
Error

Line: 8 Column: 1

              import datetime
import numpy as np
from hypothesis import given, settings
from hypothesis import strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from caffe2.python.onnx.onnxifi import onnxifi_caffe2_net
from caffe2.python.fakelowp.test_utils import print_test_debug_info
import caffe2.python.serialized_test.serialized_test_util as serial

            

Reported by Pylint.

Unable to import 'caffe2.proto'
Error

Line: 9 Column: 1

              import numpy as np
from hypothesis import given, settings
from hypothesis import strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from caffe2.python.onnx.onnxifi import onnxifi_caffe2_net
from caffe2.python.fakelowp.test_utils import print_test_debug_info
import caffe2.python.serialized_test.serialized_test_util as serial


            

Reported by Pylint.

Unable to import 'caffe2.python'
Error

Line: 10 Column: 1

              from hypothesis import given, settings
from hypothesis import strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from caffe2.python.onnx.onnxifi import onnxifi_caffe2_net
from caffe2.python.fakelowp.test_utils import print_test_debug_info
import caffe2.python.serialized_test.serialized_test_util as serial

workspace.GlobalInit(

            

Reported by Pylint.

Unable to import 'caffe2.python.onnx.onnxifi'
Error

Line: 11 Column: 1

              from hypothesis import strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from caffe2.python.onnx.onnxifi import onnxifi_caffe2_net
from caffe2.python.fakelowp.test_utils import print_test_debug_info
import caffe2.python.serialized_test.serialized_test_util as serial

workspace.GlobalInit(
    [

            

Reported by Pylint.

Unable to import 'caffe2.python.fakelowp.test_utils'
Error

Line: 12 Column: 1

              from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from caffe2.python.onnx.onnxifi import onnxifi_caffe2_net
from caffe2.python.fakelowp.test_utils import print_test_debug_info
import caffe2.python.serialized_test.serialized_test_util as serial

workspace.GlobalInit(
    [
        "caffe2",

            

Reported by Pylint.

Unable to import 'caffe2.python.serialized_test.serialized_test_util'
Error

Line: 13 Column: 1

              from caffe2.python import core, workspace
from caffe2.python.onnx.onnxifi import onnxifi_caffe2_net
from caffe2.python.fakelowp.test_utils import print_test_debug_info
import caffe2.python.serialized_test.serialized_test_util as serial

workspace.GlobalInit(
    [
        "caffe2",
        "--glow_global_fp16=0",

            

Reported by Pylint.

Unused import caffe2.python.fakelowp.init_shared_libs
Error

Line: 4 Column: 1

              import unittest

# Must happen before importing caffe2.python.*
import caffe2.python.fakelowp.init_shared_libs  # noqa
import datetime
import numpy as np
from hypothesis import given, settings
from hypothesis import strategies as st
from caffe2.proto import caffe2_pb2

            

Reported by Pylint.

Missing module docstring
Error

Line: 1 Column: 1

              import unittest

# Must happen before importing caffe2.python.*
import caffe2.python.fakelowp.init_shared_libs  # noqa
import datetime
import numpy as np
from hypothesis import given, settings
from hypothesis import strategies as st
from caffe2.proto import caffe2_pb2

            

Reported by Pylint.

torch/optim/rmsprop.py
27 issues
Attempted relative import beyond top-level package
Error

Line: 2 Column: 1

              import torch
from . import _functional as F
from .optimizer import Optimizer


class RMSprop(Optimizer):
    r"""Implements RMSprop algorithm.

    Proposed by G. Hinton in his

            

Reported by Pylint.

Attempted relative import beyond top-level package
Error

Line: 3 Column: 1

              import torch
from . import _functional as F
from .optimizer import Optimizer


class RMSprop(Optimizer):
    r"""Implements RMSprop algorithm.

    Proposed by G. Hinton in his

            

Reported by Pylint.

Module 'torch' has no 'preserve_format' member
Error

Line: 90 Column: 77

                              # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    state['square_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    if group['momentum'] > 0:
                        state['momentum_buffer'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    if group['centered']:
                        state['grad_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)


            

Reported by Pylint.

Module 'torch' has no 'zeros_like' member
Error

Line: 90 Column: 43

                              # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    state['square_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    if group['momentum'] > 0:
                        state['momentum_buffer'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    if group['centered']:
                        state['grad_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)


            

Reported by Pylint.

Module 'torch' has no 'zeros_like' member
Error

Line: 92 Column: 52

                                  state['step'] = 0
                    state['square_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    if group['momentum'] > 0:
                        state['momentum_buffer'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    if group['centered']:
                        state['grad_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)

                square_avgs.append(state['square_avg'])


            

Reported by Pylint.

Module 'torch' has no 'preserve_format' member
Error

Line: 92 Column: 86

                                  state['step'] = 0
                    state['square_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    if group['momentum'] > 0:
                        state['momentum_buffer'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    if group['centered']:
                        state['grad_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)

                square_avgs.append(state['square_avg'])


            

Reported by Pylint.

Module 'torch' has no 'zeros_like' member
Error

Line: 94 Column: 45

                                  if group['momentum'] > 0:
                        state['momentum_buffer'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    if group['centered']:
                        state['grad_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)

                square_avgs.append(state['square_avg'])

                if group['momentum'] > 0:
                    momentum_buffer_list.append(state['momentum_buffer'])

            

Reported by Pylint.

Module 'torch' has no 'preserve_format' member
Error

Line: 94 Column: 79

                                  if group['momentum'] > 0:
                        state['momentum_buffer'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    if group['centered']:
                        state['grad_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)

                square_avgs.append(state['square_avg'])

                if group['momentum'] > 0:
                    momentum_buffer_list.append(state['momentum_buffer'])

            

Reported by Pylint.

Missing module docstring
Error

Line: 1 Column: 1

              import torch
from . import _functional as F
from .optimizer import Optimizer


class RMSprop(Optimizer):
    r"""Implements RMSprop algorithm.

    Proposed by G. Hinton in his

            

Reported by Pylint.

Line too long (106/100)
Error

Line: 35 Column: 1

              
    """

    def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= momentum:

            

Reported by Pylint.

caffe2/python/operator_test/sparse_to_dense_mask_op_test.py
27 issues
Unable to import 'hypothesis'
Error

Line: 7 Column: 1

              

from caffe2.python import core
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np



            

Reported by Pylint.

Unable to import 'hypothesis.strategies'
Error

Line: 9 Column: 1

              from caffe2.python import core
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np


class TestFcOperator(hu.HypothesisTestCase):


            

Reported by Pylint.

Missing module docstring
Error

Line: 1 Column: 1

              




from caffe2.python import core
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st

            

Reported by Pylint.

Missing class docstring
Error

Line: 13 Column: 1

              import numpy as np


class TestFcOperator(hu.HypothesisTestCase):

    @given(n=st.integers(1, 10), k=st.integers(1, 5),
           use_length=st.booleans(), **hu.gcs_cpu_only)
    @settings(deadline=10000)
    def test_sparse_to_dense_mask(self, n, k, use_length, gc, dc):

            

Reported by Pylint.

Too many arguments (6/5)
Error

Line: 18 Column: 5

                  @given(n=st.integers(1, 10), k=st.integers(1, 5),
           use_length=st.booleans(), **hu.gcs_cpu_only)
    @settings(deadline=10000)
    def test_sparse_to_dense_mask(self, n, k, use_length, gc, dc):
        lengths = np.random.randint(k, size=n).astype(np.int32) + 1
        N = sum(lengths)
        indices = np.random.randint(5, size=N)
        values = np.random.rand(N, 2).astype(np.float32)
        default = np.random.rand(2).astype(np.float32)

            

Reported by Pylint.

Missing function or method docstring
Error

Line: 18 Column: 5

                  @given(n=st.integers(1, 10), k=st.integers(1, 5),
           use_length=st.booleans(), **hu.gcs_cpu_only)
    @settings(deadline=10000)
    def test_sparse_to_dense_mask(self, n, k, use_length, gc, dc):
        lengths = np.random.randint(k, size=n).astype(np.int32) + 1
        N = sum(lengths)
        indices = np.random.randint(5, size=N)
        values = np.random.rand(N, 2).astype(np.float32)
        default = np.random.rand(2).astype(np.float32)

            

Reported by Pylint.

Argument name "dc" doesn't conform to snake_case naming style
Error

Line: 18 Column: 5

                  @given(n=st.integers(1, 10), k=st.integers(1, 5),
           use_length=st.booleans(), **hu.gcs_cpu_only)
    @settings(deadline=10000)
    def test_sparse_to_dense_mask(self, n, k, use_length, gc, dc):
        lengths = np.random.randint(k, size=n).astype(np.int32) + 1
        N = sum(lengths)
        indices = np.random.randint(5, size=N)
        values = np.random.rand(N, 2).astype(np.float32)
        default = np.random.rand(2).astype(np.float32)

            

Reported by Pylint.

Argument name "gc" doesn't conform to snake_case naming style
Error

Line: 18 Column: 5

                  @given(n=st.integers(1, 10), k=st.integers(1, 5),
           use_length=st.booleans(), **hu.gcs_cpu_only)
    @settings(deadline=10000)
    def test_sparse_to_dense_mask(self, n, k, use_length, gc, dc):
        lengths = np.random.randint(k, size=n).astype(np.int32) + 1
        N = sum(lengths)
        indices = np.random.randint(5, size=N)
        values = np.random.rand(N, 2).astype(np.float32)
        default = np.random.rand(2).astype(np.float32)

            

Reported by Pylint.

Argument name "n" doesn't conform to snake_case naming style
Error

Line: 18 Column: 5

                  @given(n=st.integers(1, 10), k=st.integers(1, 5),
           use_length=st.booleans(), **hu.gcs_cpu_only)
    @settings(deadline=10000)
    def test_sparse_to_dense_mask(self, n, k, use_length, gc, dc):
        lengths = np.random.randint(k, size=n).astype(np.int32) + 1
        N = sum(lengths)
        indices = np.random.randint(5, size=N)
        values = np.random.rand(N, 2).astype(np.float32)
        default = np.random.rand(2).astype(np.float32)

            

Reported by Pylint.

Too many local variables (16/15)
Error

Line: 18 Column: 5

                  @given(n=st.integers(1, 10), k=st.integers(1, 5),
           use_length=st.booleans(), **hu.gcs_cpu_only)
    @settings(deadline=10000)
    def test_sparse_to_dense_mask(self, n, k, use_length, gc, dc):
        lengths = np.random.randint(k, size=n).astype(np.int32) + 1
        N = sum(lengths)
        indices = np.random.randint(5, size=N)
        values = np.random.rand(N, 2).astype(np.float32)
        default = np.random.rand(2).astype(np.float32)

            

Reported by Pylint.

caffe2/python/operator_test/trigonometric_op_test.py
27 issues
Unable to import 'hypothesis'
Error

Line: 7 Column: 1

              

from caffe2.python import core
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial

import numpy as np
import unittest

            

Reported by Pylint.

Redefining built-in 'input'
Error

Line: 44 Column: 50

                  def test_tan(self, X, gc, dc):
        self.assertTrigonometricChecks("Tan", X, lambda x: (np.tan(X),), gc, dc)

    def assertTrigonometricChecks(self, op_name, input, reference, gc, dc):
        op = core.CreateOperator(op_name, ["X"], ["Y"])
        self.assertReferenceChecks(gc, op, [input], reference)
        self.assertDeviceChecks(dc, op, [input], [0])
        self.assertGradientChecks(gc, op, [input], 0, [0])


            

Reported by Pylint.

Missing module docstring
Error

Line: 1 Column: 1

              




from caffe2.python import core
from hypothesis import given, settings
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial

            

Reported by Pylint.

standard import "import unittest" should be placed before "from caffe2.python import core"
Error

Line: 12 Column: 1

              import caffe2.python.serialized_test.serialized_test_util as serial

import numpy as np
import unittest


class TestTrigonometricOp(serial.SerializedTestCase):
    @given(
        X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)),

            

Reported by Pylint.

Missing class docstring
Error

Line: 15 Column: 1

              import unittest


class TestTrigonometricOp(serial.SerializedTestCase):
    @given(
        X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)),
        **hu.gcs)
    @settings(deadline=None, max_examples=50)
    def test_acos(self, X, gc, dc):

            

Reported by Pylint.

Missing function or method docstring
Error

Line: 20 Column: 5

                      X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)),
        **hu.gcs)
    @settings(deadline=None, max_examples=50)
    def test_acos(self, X, gc, dc):
        self.assertTrigonometricChecks("Acos", X, lambda x: (np.arccos(X),), gc, dc)

    @given(
        X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)),
        **hu.gcs)

            

Reported by Pylint.

Argument name "gc" doesn't conform to snake_case naming style
Error

Line: 20 Column: 5

                      X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)),
        **hu.gcs)
    @settings(deadline=None, max_examples=50)
    def test_acos(self, X, gc, dc):
        self.assertTrigonometricChecks("Acos", X, lambda x: (np.arccos(X),), gc, dc)

    @given(
        X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)),
        **hu.gcs)

            

Reported by Pylint.

Argument name "X" doesn't conform to snake_case naming style
Error

Line: 20 Column: 5

                      X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)),
        **hu.gcs)
    @settings(deadline=None, max_examples=50)
    def test_acos(self, X, gc, dc):
        self.assertTrigonometricChecks("Acos", X, lambda x: (np.arccos(X),), gc, dc)

    @given(
        X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)),
        **hu.gcs)

            

Reported by Pylint.

Argument name "dc" doesn't conform to snake_case naming style
Error

Line: 20 Column: 5

                      X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)),
        **hu.gcs)
    @settings(deadline=None, max_examples=50)
    def test_acos(self, X, gc, dc):
        self.assertTrigonometricChecks("Acos", X, lambda x: (np.arccos(X),), gc, dc)

    @given(
        X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)),
        **hu.gcs)

            

Reported by Pylint.

Missing function or method docstring
Error

Line: 27 Column: 5

                      X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)),
        **hu.gcs)
    @settings(deadline=None, max_examples=50)
    def test_asin(self, X, gc, dc):
        self.assertTrigonometricChecks("Asin", X, lambda x: (np.arcsin(X),), gc, dc)

    @given(
        X=hu.tensor(elements=hu.floats(min_value=-100, max_value=100)),
        **hu.gcs)

            

Reported by Pylint.