The following issues were found
pandas/tests/base/test_value_counts.py
36 issues
Line: 6
Column: 1
from io import StringIO
import numpy as np
import pytest
from pandas._libs import iNaT
from pandas.compat import np_array_datetime64_compat
from pandas.core.dtypes.common import needs_i8_conversion
Reported by Pylint.
Line: 38
Column: 3
if isinstance(obj, pd.MultiIndex):
expected.index = Index(expected.index)
# TODO: Order of entries with the same count is inconsistent on CI (gh-32449)
if obj.duplicated().any():
result = result.sort_index()
expected = expected.sort_index()
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 75
Column: 3
result = obj.value_counts()
if obj.duplicated().any():
# TODO:
# Order of entries with the same count is inconsistent on CI (gh-32449)
expected = expected.sort_index()
result = result.sort_index()
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 88
Column: 3
result = obj.value_counts(dropna=False)
if obj.duplicated().any():
# TODO:
# Order of entries with the same count is inconsistent on CI (gh-32449)
expected = expected.sort_index()
result = result.sort_index()
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 1
Column: 1
import collections
from datetime import timedelta
from io import StringIO
import numpy as np
import pytest
from pandas._libs import iNaT
from pandas.compat import np_array_datetime64_compat
Reported by Pylint.
Line: 27
Column: 1
from pandas.tests.base.common import allow_na_ops
def test_value_counts(index_or_series_obj):
obj = index_or_series_obj
obj = np.repeat(obj, range(1, len(obj) + 1))
result = obj.value_counts()
counter = collections.Counter(obj)
Reported by Pylint.
Line: 46
Column: 1
@pytest.mark.parametrize("null_obj", [np.nan, None])
def test_value_counts_null(null_obj, index_or_series_obj):
orig = index_or_series_obj
obj = orig.copy()
if not allow_na_ops(obj):
pytest.skip("type doesn't allow for NA operations")
Reported by Pylint.
Line: 95
Column: 1
tm.assert_series_equal(result, expected)
def test_value_counts_inferred(index_or_series):
klass = index_or_series
s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
s = klass(s_values)
expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"])
tm.assert_series_equal(s.value_counts(), expected)
Reported by Pylint.
Line: 98
Column: 5
def test_value_counts_inferred(index_or_series):
klass = index_or_series
s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
s = klass(s_values)
expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"])
tm.assert_series_equal(s.value_counts(), expected)
if isinstance(s, Index):
exp = Index(np.unique(np.array(s_values, dtype=np.object_)))
Reported by Pylint.
Line: 109
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
exp = np.unique(np.array(s_values, dtype=np.object_))
tm.assert_numpy_array_equal(s.unique(), exp)
assert s.nunique() == 4
# don't sort, have to sort after the fact as not sorting is
# platform-dep
hist = s.value_counts(sort=False).sort_values()
expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values()
tm.assert_series_equal(hist, expected)
Reported by Bandit.
pandas/tests/arrays/floating/test_function.py
36 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas.compat import IS64
import pandas as pd
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas.compat import IS64
import pandas as pd
import pandas._testing as tm
Reported by Pylint.
Line: 12
Column: 1
@pytest.mark.parametrize("ufunc", [np.abs, np.sign])
# np.sign emits a warning with nans, <https://github.com/numpy/numpy/issues/15127>
@pytest.mark.filterwarnings("ignore:invalid value encountered in sign")
def test_ufuncs_single(ufunc):
a = pd.array([1, 2, -3, np.nan], dtype="Float64")
result = ufunc(a)
expected = pd.array(ufunc(a.astype(float)), dtype="Float64")
tm.assert_extension_array_equal(result, expected)
Reported by Pylint.
Line: 14
Column: 5
# np.sign emits a warning with nans, <https://github.com/numpy/numpy/issues/15127>
@pytest.mark.filterwarnings("ignore:invalid value encountered in sign")
def test_ufuncs_single(ufunc):
a = pd.array([1, 2, -3, np.nan], dtype="Float64")
result = ufunc(a)
expected = pd.array(ufunc(a.astype(float)), dtype="Float64")
tm.assert_extension_array_equal(result, expected)
s = pd.Series(a)
Reported by Pylint.
Line: 19
Column: 5
expected = pd.array(ufunc(a.astype(float)), dtype="Float64")
tm.assert_extension_array_equal(result, expected)
s = pd.Series(a)
result = ufunc(s)
expected = pd.Series(expected)
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 26
Column: 1
@pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt])
def test_ufuncs_single_float(ufunc):
a = pd.array([1.0, 0.2, 3.0, np.nan], dtype="Float64")
with np.errstate(invalid="ignore"):
result = ufunc(a)
expected = pd.array(ufunc(a.astype(float)), dtype="Float64")
tm.assert_extension_array_equal(result, expected)
Reported by Pylint.
Line: 27
Column: 5
@pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt])
def test_ufuncs_single_float(ufunc):
a = pd.array([1.0, 0.2, 3.0, np.nan], dtype="Float64")
with np.errstate(invalid="ignore"):
result = ufunc(a)
expected = pd.array(ufunc(a.astype(float)), dtype="Float64")
tm.assert_extension_array_equal(result, expected)
Reported by Pylint.
Line: 33
Column: 5
expected = pd.array(ufunc(a.astype(float)), dtype="Float64")
tm.assert_extension_array_equal(result, expected)
s = pd.Series(a)
with np.errstate(invalid="ignore"):
result = ufunc(s)
expected = pd.Series(ufunc(s.astype(float)), dtype="Float64")
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 41
Column: 1
@pytest.mark.parametrize("ufunc", [np.add, np.subtract])
def test_ufuncs_binary_float(ufunc):
# two FloatingArrays
a = pd.array([1, 0.2, -3, np.nan], dtype="Float64")
result = ufunc(a, a)
expected = pd.array(ufunc(a.astype(float), a.astype(float)), dtype="Float64")
tm.assert_extension_array_equal(result, expected)
Reported by Pylint.
Line: 43
Column: 5
@pytest.mark.parametrize("ufunc", [np.add, np.subtract])
def test_ufuncs_binary_float(ufunc):
# two FloatingArrays
a = pd.array([1, 0.2, -3, np.nan], dtype="Float64")
result = ufunc(a, a)
expected = pd.array(ufunc(a.astype(float), a.astype(float)), dtype="Float64")
tm.assert_extension_array_equal(result, expected)
# FloatingArray with numpy array
Reported by Pylint.
pandas/tests/arrays/floating/test_construction.py
36 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import FloatingArray
from pandas.core.arrays.floating import (
Float32Dtype,
Float64Dtype,
Reported by Pylint.
Line: 40
Column: 9
msg = r"__init__\(\) missing 1 required positional argument: 'mask'"
with pytest.raises(TypeError, match=msg):
FloatingArray(values)
def test_floating_array_constructor_copy():
values = np.array([1, 2, 3, 4], dtype="float64")
mask = np.array([False, False, False, True], dtype="bool")
Reported by Pylint.
Line: 25
Column: 33
result = FloatingArray(values, mask)
expected = pd.array([1, 2, 3, np.nan], dtype="Float64")
tm.assert_extension_array_equal(result, expected)
tm.assert_numpy_array_equal(result._data, values)
tm.assert_numpy_array_equal(result._mask, mask)
msg = r".* should be .* numpy array. Use the 'pd.array' function instead"
with pytest.raises(TypeError, match=msg):
FloatingArray(values.tolist(), mask)
Reported by Pylint.
Line: 26
Column: 33
expected = pd.array([1, 2, 3, np.nan], dtype="Float64")
tm.assert_extension_array_equal(result, expected)
tm.assert_numpy_array_equal(result._data, values)
tm.assert_numpy_array_equal(result._mask, mask)
msg = r".* should be .* numpy array. Use the 'pd.array' function instead"
with pytest.raises(TypeError, match=msg):
FloatingArray(values.tolist(), mask)
Reported by Pylint.
Line: 48
Column: 12
mask = np.array([False, False, False, True], dtype="bool")
result = FloatingArray(values, mask)
assert result._data is values
assert result._mask is mask
result = FloatingArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
Reported by Pylint.
Line: 49
Column: 12
result = FloatingArray(values, mask)
assert result._data is values
assert result._mask is mask
result = FloatingArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
Reported by Pylint.
Line: 52
Column: 12
assert result._mask is mask
result = FloatingArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
def test_to_array():
result = pd.array([0.1, 0.2, 0.3, 0.4])
Reported by Pylint.
Line: 53
Column: 12
result = FloatingArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
def test_to_array():
result = pd.array([0.1, 0.2, 0.3, 0.4])
expected = pd.array([0.1, 0.2, 0.3, 0.4], dtype="Float64")
Reported by Pylint.
Line: 138
Column: 3
tm.assert_extension_array_equal(result, expected)
# for integer dtypes, the itemsize is not preserved
# TODO can we specify "floating" in general?
result = pd.array(np.array([1, 2], dtype="int32"), dtype="Float64")
assert result.dtype == Float64Dtype()
@pytest.mark.parametrize(
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import FloatingArray
from pandas.core.arrays.floating import (
Float32Dtype,
Float64Dtype,
Reported by Pylint.
pandas/tests/indexing/test_datetime.py
36 issues
Line: 114
Column: 34
result = indexer_sl(ser)[sel]
expected = ser.copy()
if sel is not index:
expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected)
# setitem
result = ser.copy()
indexer_sl(result)[sel] = 1
Reported by Pylint.
Line: 1
Column: 1
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
Timestamp,
date_range,
)
import pandas._testing as tm
Reported by Pylint.
Line: 12
Column: 1
import pandas._testing as tm
class TestDatetimeIndex:
def test_datetimeindex_transpose_empty_df(self):
"""
Regression test for:
https://github.com/pandas-dev/pandas/issues/41382
"""
Reported by Pylint.
Line: 13
Column: 5
class TestDatetimeIndex:
def test_datetimeindex_transpose_empty_df(self):
"""
Regression test for:
https://github.com/pandas-dev/pandas/issues/41382
"""
df = DataFrame(index=pd.DatetimeIndex([]))
Reported by Pylint.
Line: 18
Column: 9
Regression test for:
https://github.com/pandas-dev/pandas/issues/41382
"""
df = DataFrame(index=pd.DatetimeIndex([]))
expected = pd.DatetimeIndex([], dtype="datetime64[ns]", freq=None)
result1 = df.T.sum().index
result2 = df.sum(axis=1).index
Reported by Pylint.
Line: 28
Column: 5
tm.assert_index_equal(result1, expected)
tm.assert_index_equal(result2, expected)
def test_indexing_with_datetime_tz(self):
# GH#8260
# support datetime64 with tz
idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")
Reported by Pylint.
Line: 28
Column: 5
tm.assert_index_equal(result1, expected)
tm.assert_index_equal(result2, expected)
def test_indexing_with_datetime_tz(self):
# GH#8260
# support datetime64 with tz
idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")
Reported by Pylint.
Line: 34
Column: 9
# support datetime64 with tz
idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")
dr = date_range("20130110", periods=3)
df = DataFrame({"A": idx, "B": dr})
df["C"] = idx
df.iloc[1, 1] = pd.NaT
df.iloc[1, 2] = pd.NaT
Reported by Pylint.
Line: 35
Column: 9
idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")
dr = date_range("20130110", periods=3)
df = DataFrame({"A": idx, "B": dr})
df["C"] = idx
df.iloc[1, 1] = pd.NaT
df.iloc[1, 2] = pd.NaT
expected = Series(
Reported by Pylint.
Line: 53
Column: 5
result = df.loc[1]
tm.assert_series_equal(result, expected)
def test_indexing_fast_xs(self):
# indexing - fast_xs
df = DataFrame({"a": date_range("2014-01-01", periods=10, tz="UTC")})
result = df.iloc[5]
expected = Series(
[Timestamp("2014-01-06 00:00:00+0000", tz="UTC")], index=["a"], name=5
Reported by Pylint.
pandas/_version.py
36 issues
Line: 41
Column: 5
# these strings are filled in when 'setup.py versioneer' creates
# _version.py
cfg = VersioneerConfig()
cfg.VCS = "git"
cfg.style = "pep440"
cfg.tag_prefix = "v"
cfg.parentdir_prefix = "pandas-"
cfg.versionfile_source = "pandas/_version.py"
cfg.verbose = False
Reported by Pylint.
Line: 42
Column: 5
# _version.py
cfg = VersioneerConfig()
cfg.VCS = "git"
cfg.style = "pep440"
cfg.tag_prefix = "v"
cfg.parentdir_prefix = "pandas-"
cfg.versionfile_source = "pandas/_version.py"
cfg.verbose = False
return cfg
Reported by Pylint.
Line: 43
Column: 5
cfg = VersioneerConfig()
cfg.VCS = "git"
cfg.style = "pep440"
cfg.tag_prefix = "v"
cfg.parentdir_prefix = "pandas-"
cfg.versionfile_source = "pandas/_version.py"
cfg.verbose = False
return cfg
Reported by Pylint.
Line: 44
Column: 5
cfg.VCS = "git"
cfg.style = "pep440"
cfg.tag_prefix = "v"
cfg.parentdir_prefix = "pandas-"
cfg.versionfile_source = "pandas/_version.py"
cfg.verbose = False
return cfg
Reported by Pylint.
Line: 45
Column: 5
cfg.style = "pep440"
cfg.tag_prefix = "v"
cfg.parentdir_prefix = "pandas-"
cfg.versionfile_source = "pandas/_version.py"
cfg.verbose = False
return cfg
class NotThisMethod(Exception):
Reported by Pylint.
Line: 46
Column: 5
cfg.tag_prefix = "v"
cfg.parentdir_prefix = "pandas-"
cfg.versionfile_source = "pandas/_version.py"
cfg.verbose = False
return cfg
class NotThisMethod(Exception):
"""Exception raised if a method is not valid for the current scenario."""
Reported by Pylint.
Line: 116
Column: 9
"""
rootdirs = []
for i in range(3):
dirname = os.path.basename(root)
if dirname.startswith(parentdir_prefix):
return {
"version": dirname[len(parentdir_prefix) :],
"full-revisionid": None,
Reported by Pylint.
Line: 234
Column: 52
@register_vcs_handler("git", "pieces_from_vcs")
def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command):
"""Get version from 'git describe' in the root of the source tree.
This only gets called if the git-archive 'subst' keywords were *not*
expanded, and _version.py hasn't already been rewritten with a short
version string, meaning we're inside a checked out source tree.
Reported by Pylint.
Line: 245
Column: 5
if sys.platform == "win32":
GITS = ["git.cmd", "git.exe"]
out, rc = run_command(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True)
if rc != 0:
if verbose:
print("Directory %s not under git control" % root)
raise NotThisMethod("'git rev-parse --git-dir' returned error")
Reported by Pylint.
Line: 531
Column: 13
# versionfile_source is the relative path from the top of the source
# tree (where the .git directory might live) to this file. Invert
# this to find the root from __file__.
for i in cfg.versionfile_source.split("/"):
root = os.path.dirname(root)
except NameError:
return {
"version": "0+unknown",
"full-revisionid": None,
Reported by Pylint.
pandas/tests/indexes/datetimes/methods/test_factorize.py
36 issues
Line: 24
Column: 28
arr, idx = idx1.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq
arr, idx = idx1.factorize(sort=True)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq
Reported by Pylint.
Line: 29
Column: 28
arr, idx = idx1.factorize(sort=True)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq
# tz must be preserved
idx1 = idx1.tz_localize("Asia/Tokyo")
exp_idx = exp_idx.tz_localize("Asia/Tokyo")
Reported by Pylint.
Line: 49
Column: 28
arr, idx = idx2.factorize(sort=True)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq
exp_arr = np.array([0, 0, 1, 2, 0, 2], dtype=np.intp)
exp_idx = DatetimeIndex(["2014-03", "2014-02", "2014-01"])
arr, idx = idx2.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
Reported by Pylint.
Line: 56
Column: 28
arr, idx = idx2.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq
def test_factorize_preserves_freq(self):
# GH#38120 freq should be preserved
idx3 = date_range("2000-01", periods=4, freq="M", tz="Asia/Tokyo")
exp_arr = np.array([0, 1, 2, 3], dtype=np.intp)
Reported by Pylint.
Line: 66
Column: 28
arr, idx = idx3.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
arr, idx = factorize(idx3)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
Reported by Pylint.
Line: 66
Column: 28
arr, idx = idx3.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
arr, idx = factorize(idx3)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
Reported by Pylint.
Line: 71
Column: 28
arr, idx = factorize(idx3)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
def test_factorize_tz(self, tz_naive_fixture, index_or_series):
tz = tz_naive_fixture
# GH#13750
base = date_range("2016-11-05", freq="H", periods=100, tz=tz)
Reported by Pylint.
Line: 71
Column: 28
arr, idx = factorize(idx3)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
def test_factorize_tz(self, tz_naive_fixture, index_or_series):
tz = tz_naive_fixture
# GH#13750
base = date_range("2016-11-05", freq="H", periods=100, tz=tz)
Reported by Pylint.
Line: 85
Column: 20
arr, res = obj.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
expected = base._with_freq(None)
tm.assert_index_equal(res, expected)
assert res.freq == expected.freq
def test_factorize_dst(self, index_or_series):
# GH#13750
Reported by Pylint.
Line: 85
Column: 20
arr, res = obj.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
expected = base._with_freq(None)
tm.assert_index_equal(res, expected)
assert res.freq == expected.freq
def test_factorize_dst(self, index_or_series):
# GH#13750
Reported by Pylint.
asv_bench/benchmarks/replace.py
36 issues
Line: 3
Column: 1
import numpy as np
import pandas as pd
class FillNa:
params = [True, False]
param_names = ["inplace"]
Reported by Pylint.
Line: 77
Column: 1
self.data.replace(self.to_replace)
from .pandas_vb_common import setup # noqa: F401 isort:skip
Reported by Pylint.
Line: 11
Column: 21
params = [True, False]
param_names = ["inplace"]
def setup(self, inplace):
N = 10 ** 6
rng = pd.date_range("1/1/2000", periods=N, freq="min")
data = np.random.randn(N)
data[::2] = np.nan
self.ts = pd.Series(data, index=rng)
Reported by Pylint.
Line: 16
Column: 9
rng = pd.date_range("1/1/2000", periods=N, freq="min")
data = np.random.randn(N)
data[::2] = np.nan
self.ts = pd.Series(data, index=rng)
def time_fillna(self, inplace):
self.ts.fillna(0.0, inplace=inplace)
def time_replace(self, inplace):
Reported by Pylint.
Line: 30
Column: 21
params = [True, False]
param_names = ["inplace"]
def setup(self, inplace):
N = 10 ** 5
start_value = 10 ** 5
self.to_rep = dict(enumerate(np.arange(N) + start_value))
self.s = pd.Series(np.random.randint(N, size=10 ** 3))
Reported by Pylint.
Line: 33
Column: 9
def setup(self, inplace):
N = 10 ** 5
start_value = 10 ** 5
self.to_rep = dict(enumerate(np.arange(N) + start_value))
self.s = pd.Series(np.random.randint(N, size=10 ** 3))
def time_replace_series(self, inplace):
self.s.replace(self.to_rep, inplace=inplace)
Reported by Pylint.
Line: 34
Column: 9
N = 10 ** 5
start_value = 10 ** 5
self.to_rep = dict(enumerate(np.arange(N) + start_value))
self.s = pd.Series(np.random.randint(N, size=10 ** 3))
def time_replace_series(self, inplace):
self.s.replace(self.to_rep, inplace=inplace)
Reported by Pylint.
Line: 46
Column: 21
params = [(True, False)]
param_names = ["inplace"]
def setup(self, inplace):
self.df = pd.DataFrame({"A": 0, "B": 0}, index=range(4 * 10 ** 7))
def time_replace_list(self, inplace):
self.df.replace([np.inf, -np.inf], np.nan, inplace=inplace)
Reported by Pylint.
Line: 47
Column: 9
param_names = ["inplace"]
def setup(self, inplace):
self.df = pd.DataFrame({"A": 0, "B": 0}, index=range(4 * 10 ** 7))
def time_replace_list(self, inplace):
self.df.replace([np.inf, -np.inf], np.nan, inplace=inplace)
def time_replace_list_one_match(self, inplace):
Reported by Pylint.
Line: 70
Column: 9
{"A": np.random.randint(N, size=N), "B": np.random.randint(N, size=N)}
),
}
self.to_replace = {i: getattr(pd, replace_data) for i in range(N)}
self.data = data[constructor]
def time_replace(self, constructor, replace_data):
self.data.replace(self.to_replace)
Reported by Pylint.
pandas/tests/plotting/test_groupby.py
36 issues
Line: 5
Column: 1
import numpy as np
import pytest
from pandas.compat import is_platform_windows
import pandas.util._test_decorators as td
from pandas import (
Reported by Pylint.
Line: 22
Column: 1
@td.skip_if_no_mpl
class TestDataFrameGroupByPlots(TestPlotBase):
@pytest.mark.xfail(
is_platform_windows(),
reason="Looks like LinePlot._is_ts_plot is wrong",
strict=False,
)
Reported by Pylint.
Line: 27
Column: 5
is_platform_windows(),
reason="Looks like LinePlot._is_ts_plot is wrong",
strict=False,
)
def test_series_groupby_plotting_nominally_works(self):
n = 10
weight = Series(np.random.normal(166, 20, size=n))
height = Series(np.random.normal(60, 10, size=n))
with tm.RNGContext(42):
Reported by Pylint.
Line: 27
Column: 5
is_platform_windows(),
reason="Looks like LinePlot._is_ts_plot is wrong",
strict=False,
)
def test_series_groupby_plotting_nominally_works(self):
n = 10
weight = Series(np.random.normal(166, 20, size=n))
height = Series(np.random.normal(60, 10, size=n))
with tm.RNGContext(42):
Reported by Pylint.
Line: 29
Column: 9
strict=False,
)
def test_series_groupby_plotting_nominally_works(self):
n = 10
weight = Series(np.random.normal(166, 20, size=n))
height = Series(np.random.normal(60, 10, size=n))
with tm.RNGContext(42):
gender = np.random.choice(["male", "female"], size=n)
Reported by Pylint.
Line: 43
Column: 5
height.groupby(gender).plot(alpha=0.5)
tm.close()
def test_plotting_with_float_index_works(self):
# GH 7025
df = DataFrame(
{"def": [1, 1, 1, 2, 2, 2, 3, 3, 3], "val": np.random.randn(9)},
index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0],
)
Reported by Pylint.
Line: 43
Column: 5
height.groupby(gender).plot(alpha=0.5)
tm.close()
def test_plotting_with_float_index_works(self):
# GH 7025
df = DataFrame(
{"def": [1, 1, 1, 2, 2, 2, 3, 3, 3], "val": np.random.randn(9)},
index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0],
)
Reported by Pylint.
Line: 45
Column: 9
def test_plotting_with_float_index_works(self):
# GH 7025
df = DataFrame(
{"def": [1, 1, 1, 2, 2, 2, 3, 3, 3], "val": np.random.randn(9)},
index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0],
)
df.groupby("def")["val"].plot()
Reported by Pylint.
Line: 55
Column: 5
df.groupby("def")["val"].apply(lambda x: x.plot())
tm.close()
def test_hist_single_row(self):
# GH10214
bins = np.arange(80, 100 + 2, 1)
df = DataFrame({"Name": ["AAA", "BBB"], "ByCol": [1, 2], "Mark": [85, 89]})
df["Mark"].hist(by=df["ByCol"], bins=bins)
df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]})
Reported by Pylint.
Line: 55
Column: 5
df.groupby("def")["val"].apply(lambda x: x.plot())
tm.close()
def test_hist_single_row(self):
# GH10214
bins = np.arange(80, 100 + 2, 1)
df = DataFrame({"Name": ["AAA", "BBB"], "ByCol": [1, 2], "Mark": [85, 89]})
df["Mark"].hist(by=df["ByCol"], bins=bins)
df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]})
Reported by Pylint.
pandas/io/formats/printing.py
36 issues
Line: 248
Column: 5
if "IPython" not in sys.modules:
# definitely not in IPython
return
from IPython import get_ipython
ip = get_ipython()
if ip is None:
# still not in IPython
return
Reported by Pylint.
Line: 261
Column: 13
if enable:
if mimetype not in formatters:
# define tableschema formatter
from IPython.core.formatters import BaseFormatter
class TableSchemaFormatter(BaseFormatter):
print_method = "_repr_data_resource_"
_return_type = (dict,)
Reported by Pylint.
Line: 238
Column: 5
def pprint_thing_encoded(
object, encoding: str = "utf-8", errors: str = "replace"
) -> bytes:
value = pprint_thing(object) # get unicode representation of object
return value.encode(encoding, errors)
Reported by Pylint.
Line: 423
Column: 50
pprinted_seq = _pprint_seq(value, max_seq_items=max_items)
if len(pprinted_seq) < max_space:
break
head = [_pprint_seq(x, max_seq_items=max_items) for x in head]
tail = [_pprint_seq(x, max_seq_items=max_items) for x in tail]
summary = ""
line = space2
Reported by Pylint.
Line: 424
Column: 50
if len(pprinted_seq) < max_space:
break
head = [_pprint_seq(x, max_seq_items=max_items) for x in head]
tail = [_pprint_seq(x, max_seq_items=max_items) for x in tail]
summary = ""
line = space2
for max_items in range(len(head)):
Reported by Pylint.
Line: 47
Column: 5
justfunc = kwargs.pop("justfunc", justify)
out_lines = []
newLists = []
lengths = [max(map(strlen, x)) + space for x in lists[:-1]]
# not the last one
lengths.append(max(map(len, lists[-1])))
maxLen = max(map(len, lists))
for i, lst in enumerate(lists):
Reported by Pylint.
Line: 51
Column: 5
lengths = [max(map(strlen, x)) + space for x in lists[:-1]]
# not the last one
lengths.append(max(map(len, lists[-1])))
maxLen = max(map(len, lists))
for i, lst in enumerate(lists):
nl = justfunc(lst, lengths[i], mode="left")
nl.extend([" " * lengths[i]] * (maxLen - len(lst)))
newLists.append(nl)
toJoin = zip(*newLists)
Reported by Pylint.
Line: 53
Column: 9
lengths.append(max(map(len, lists[-1])))
maxLen = max(map(len, lists))
for i, lst in enumerate(lists):
nl = justfunc(lst, lengths[i], mode="left")
nl.extend([" " * lengths[i]] * (maxLen - len(lst)))
newLists.append(nl)
toJoin = zip(*newLists)
for lines in toJoin:
out_lines.append("".join(lines))
Reported by Pylint.
Line: 56
Column: 5
nl = justfunc(lst, lengths[i], mode="left")
nl.extend([" " * lengths[i]] * (maxLen - len(lst)))
newLists.append(nl)
toJoin = zip(*newLists)
for lines in toJoin:
out_lines.append("".join(lines))
return "\n".join(out_lines)
Reported by Pylint.
Line: 66
Column: 5
"""
Perform ljust, center, rjust against string or list-like
"""
if mode == "left":
return [x.ljust(max_len) for x in texts]
elif mode == "center":
return [x.center(max_len) for x in texts]
else:
return [x.rjust(max_len) for x in texts]
Reported by Pylint.
pandas/tests/series/methods/test_clip.py
36 issues
Line: 4
Column: 1
from datetime import datetime
import numpy as np
import pytest
import pandas as pd
from pandas import (
Series,
Timestamp,
Reported by Pylint.
Line: 1
Column: 1
from datetime import datetime
import numpy as np
import pytest
import pandas as pd
from pandas import (
Series,
Timestamp,
Reported by Pylint.
Line: 16
Column: 1
import pandas._testing as tm
class TestSeriesClip:
def test_clip(self, datetime_series):
val = datetime_series.median()
assert datetime_series.clip(lower=val).min() == val
assert datetime_series.clip(upper=val).max() == val
Reported by Pylint.
Line: 17
Column: 5
class TestSeriesClip:
def test_clip(self, datetime_series):
val = datetime_series.median()
assert datetime_series.clip(lower=val).min() == val
assert datetime_series.clip(upper=val).max() == val
Reported by Pylint.
Line: 17
Column: 5
class TestSeriesClip:
def test_clip(self, datetime_series):
val = datetime_series.median()
assert datetime_series.clip(lower=val).min() == val
assert datetime_series.clip(upper=val).max() == val
Reported by Pylint.
Line: 20
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
def test_clip(self, datetime_series):
val = datetime_series.median()
assert datetime_series.clip(lower=val).min() == val
assert datetime_series.clip(upper=val).max() == val
result = datetime_series.clip(-0.5, 0.5)
expected = np.clip(datetime_series, -0.5, 0.5)
tm.assert_series_equal(result, expected)
Reported by Bandit.
Line: 21
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
val = datetime_series.median()
assert datetime_series.clip(lower=val).min() == val
assert datetime_series.clip(upper=val).max() == val
result = datetime_series.clip(-0.5, 0.5)
expected = np.clip(datetime_series, -0.5, 0.5)
tm.assert_series_equal(result, expected)
assert isinstance(expected, Series)
Reported by Bandit.
Line: 26
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = datetime_series.clip(-0.5, 0.5)
expected = np.clip(datetime_series, -0.5, 0.5)
tm.assert_series_equal(result, expected)
assert isinstance(expected, Series)
def test_clip_types_and_nulls(self):
sers = [
Series([np.nan, 1.0, 2.0, 3.0]),
Reported by Bandit.
Line: 28
Column: 5
tm.assert_series_equal(result, expected)
assert isinstance(expected, Series)
def test_clip_types_and_nulls(self):
sers = [
Series([np.nan, 1.0, 2.0, 3.0]),
Series([None, "a", "b", "c"]),
Series(pd.to_datetime([np.nan, 1, 2, 3], unit="D")),
Reported by Pylint.
Line: 28
Column: 5
tm.assert_series_equal(result, expected)
assert isinstance(expected, Series)
def test_clip_types_and_nulls(self):
sers = [
Series([np.nan, 1.0, 2.0, 3.0]),
Series([None, "a", "b", "c"]),
Series(pd.to_datetime([np.nan, 1, 2, 3], unit="D")),
Reported by Pylint.