The following issues were found
pandas/tests/groupby/test_libgroupby.py
28 issues
Line: 3
Column: 1
import numpy as np
from pandas._libs import groupby as libgroupby
from pandas._libs.groupby import (
group_cumprod_float64,
group_cumsum,
group_var,
)
Reported by Pylint.
Line: 4
Column: 1
import numpy as np
from pandas._libs import groupby as libgroupby
from pandas._libs.groupby import (
group_cumprod_float64,
group_cumsum,
group_var,
)
Reported by Pylint.
Line: 4
Column: 1
import numpy as np
from pandas._libs import groupby as libgroupby
from pandas._libs.groupby import (
group_cumprod_float64,
group_cumsum,
group_var,
)
Reported by Pylint.
Line: 18
Column: 16
class GroupVarTestMixin:
def test_group_var_generic_1d(self):
prng = np.random.RandomState(1234)
out = (np.nan * np.ones((5, 1))).astype(self.dtype)
counts = np.zeros(5, dtype="int64")
values = 10 * prng.rand(15, 1).astype(self.dtype)
labels = np.tile(np.arange(5), (3,)).astype("intp")
Reported by Pylint.
Line: 35
Column: 16
tm.assert_numpy_array_equal(counts, expected_counts)
def test_group_var_generic_1d_flat_labels(self):
prng = np.random.RandomState(1234)
out = (np.nan * np.ones((1, 1))).astype(self.dtype)
counts = np.zeros(1, dtype="int64")
values = 10 * prng.rand(5, 1).astype(self.dtype)
labels = np.zeros(5, dtype="intp")
Reported by Pylint.
Line: 51
Column: 16
tm.assert_numpy_array_equal(counts, expected_counts)
def test_group_var_generic_2d_all_finite(self):
prng = np.random.RandomState(1234)
out = (np.nan * np.ones((5, 2))).astype(self.dtype)
counts = np.zeros(5, dtype="int64")
values = 10 * prng.rand(10, 2).astype(self.dtype)
labels = np.tile(np.arange(5), (2,)).astype("intp")
Reported by Pylint.
Line: 66
Column: 16
tm.assert_numpy_array_equal(counts, expected_counts)
def test_group_var_generic_2d_some_nan(self):
prng = np.random.RandomState(1234)
out = (np.nan * np.ones((5, 2))).astype(self.dtype)
counts = np.zeros(5, dtype="int64")
values = 10 * prng.rand(10, 2).astype(self.dtype)
values[:, 1] = np.nan
Reported by Pylint.
Line: 109
Column: 16
rtol = 1e-5
def test_group_var_large_inputs(self):
prng = np.random.RandomState(1234)
out = np.array([[np.nan]], dtype=self.dtype)
counts = np.array([0], dtype="int64")
values = (prng.rand(10 ** 6) + 10 ** 12).astype(self.dtype)
values.shape = (10 ** 6, 1)
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
from pandas._libs import groupby as libgroupby
from pandas._libs.groupby import (
group_cumprod_float64,
group_cumsum,
group_var,
)
Reported by Pylint.
Line: 16
Column: 1
import pandas._testing as tm
class GroupVarTestMixin:
def test_group_var_generic_1d(self):
prng = np.random.RandomState(1234)
out = (np.nan * np.ones((5, 1))).astype(self.dtype)
counts = np.zeros(5, dtype="int64")
Reported by Pylint.
pandas/tests/io/formats/test_eng_formatting.py
28 issues
Line: 36
Column: 34
tm.reset_display_options()
def compare(self, formatter, input, output):
formatted_input = formatter(input)
assert formatted_input == output
def compare_all(self, formatter, in_out):
"""
Reported by Pylint.
Line: 51
Column: 13
*number* should be >= 0 because formatter(-number) == fmt is also
tested. *fmt* is derived from *expected_formatting*
"""
for input, output in in_out:
self.compare(formatter, input, output)
self.compare(formatter, -input, "-" + output[1:])
def test_exponents_with_eng_prefix(self):
formatter = fmt.EngFormatter(accuracy=3, use_eng_prefix=True)
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
from pandas import DataFrame
import pandas._testing as tm
import pandas.io.formats.format as fmt
class TestEngFormatter:
Reported by Pylint.
Line: 9
Column: 1
import pandas.io.formats.format as fmt
class TestEngFormatter:
def test_eng_float_formatter(self):
df = DataFrame({"A": [1.41, 141.0, 14100, 1410000.0]})
fmt.set_eng_float_format()
result = df.to_string()
Reported by Pylint.
Line: 10
Column: 5
class TestEngFormatter:
def test_eng_float_formatter(self):
df = DataFrame({"A": [1.41, 141.0, 14100, 1410000.0]})
fmt.set_eng_float_format()
result = df.to_string()
expected = (
Reported by Pylint.
Line: 10
Column: 5
class TestEngFormatter:
def test_eng_float_formatter(self):
df = DataFrame({"A": [1.41, 141.0, 14100, 1410000.0]})
fmt.set_eng_float_format()
result = df.to_string()
expected = (
Reported by Pylint.
Line: 11
Column: 9
class TestEngFormatter:
def test_eng_float_formatter(self):
df = DataFrame({"A": [1.41, 141.0, 14100, 1410000.0]})
fmt.set_eng_float_format()
result = df.to_string()
expected = (
" A\n"
Reported by Pylint.
Line: 22
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
"2 14.100E+03\n"
"3 1.410E+06"
)
assert result == expected
fmt.set_eng_float_format(use_eng_prefix=True)
result = df.to_string()
expected = " A\n0 1.410\n1 141.000\n2 14.100k\n3 1.410M"
assert result == expected
Reported by Bandit.
Line: 27
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
fmt.set_eng_float_format(use_eng_prefix=True)
result = df.to_string()
expected = " A\n0 1.410\n1 141.000\n2 14.100k\n3 1.410M"
assert result == expected
fmt.set_eng_float_format(accuracy=0)
result = df.to_string()
expected = " A\n0 1E+00\n1 141E+00\n2 14E+03\n3 1E+06"
assert result == expected
Reported by Bandit.
Line: 32
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
fmt.set_eng_float_format(accuracy=0)
result = df.to_string()
expected = " A\n0 1E+00\n1 141E+00\n2 14E+03\n3 1E+06"
assert result == expected
tm.reset_display_options()
def compare(self, formatter, input, output):
formatted_input = formatter(input)
Reported by Bandit.
pandas/tests/frame/methods/test_equals.py
28 issues
Line: 24
Column: 20
if not using_array_manager:
# this assert verifies that the above operations have
# induced a block rearrangement
assert df0._mgr.blocks[0].dtype != df1._mgr.blocks[0].dtype
# do the real tests
tm.assert_frame_equal(df0, df1)
assert df0.equals(df1)
assert df1.equals(df0)
Reported by Pylint.
Line: 24
Column: 48
if not using_array_manager:
# this assert verifies that the above operations have
# induced a block rearrangement
assert df0._mgr.blocks[0].dtype != df1._mgr.blocks[0].dtype
# do the real tests
tm.assert_frame_equal(df0, df1)
assert df0.equals(df1)
assert df1.equals(df0)
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
from pandas import (
DataFrame,
date_range,
)
import pandas._testing as tm
Reported by Pylint.
Line: 10
Column: 1
import pandas._testing as tm
class TestEquals:
def test_dataframe_not_equal(self):
# see GH#28839
df1 = DataFrame({"a": [1, 2], "b": ["s", "d"]})
df2 = DataFrame({"a": ["s", "d"], "b": [1, 2]})
assert df1.equals(df2) is False
Reported by Pylint.
Line: 11
Column: 5
class TestEquals:
def test_dataframe_not_equal(self):
# see GH#28839
df1 = DataFrame({"a": [1, 2], "b": ["s", "d"]})
df2 = DataFrame({"a": ["s", "d"], "b": [1, 2]})
assert df1.equals(df2) is False
Reported by Pylint.
Line: 11
Column: 5
class TestEquals:
def test_dataframe_not_equal(self):
# see GH#28839
df1 = DataFrame({"a": [1, 2], "b": ["s", "d"]})
df2 = DataFrame({"a": ["s", "d"], "b": [1, 2]})
assert df1.equals(df2) is False
Reported by Pylint.
Line: 15
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# see GH#28839
df1 = DataFrame({"a": [1, 2], "b": ["s", "d"]})
df2 = DataFrame({"a": ["s", "d"], "b": [1, 2]})
assert df1.equals(df2) is False
def test_equals_different_blocks(self, using_array_manager):
# GH#9330
df0 = DataFrame({"A": ["x", "y"], "B": [1, 2], "C": ["w", "z"]})
df1 = df0.reset_index()[["A", "B", "C"]]
Reported by Bandit.
Line: 17
Column: 5
df2 = DataFrame({"a": ["s", "d"], "b": [1, 2]})
assert df1.equals(df2) is False
def test_equals_different_blocks(self, using_array_manager):
# GH#9330
df0 = DataFrame({"A": ["x", "y"], "B": [1, 2], "C": ["w", "z"]})
df1 = df0.reset_index()[["A", "B", "C"]]
if not using_array_manager:
# this assert verifies that the above operations have
Reported by Pylint.
Line: 17
Column: 5
df2 = DataFrame({"a": ["s", "d"], "b": [1, 2]})
assert df1.equals(df2) is False
def test_equals_different_blocks(self, using_array_manager):
# GH#9330
df0 = DataFrame({"A": ["x", "y"], "B": [1, 2], "C": ["w", "z"]})
df1 = df0.reset_index()[["A", "B", "C"]]
if not using_array_manager:
# this assert verifies that the above operations have
Reported by Pylint.
Line: 24
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
if not using_array_manager:
# this assert verifies that the above operations have
# induced a block rearrangement
assert df0._mgr.blocks[0].dtype != df1._mgr.blocks[0].dtype
# do the real tests
tm.assert_frame_equal(df0, df1)
assert df0.equals(df1)
assert df1.equals(df0)
Reported by Bandit.
pandas/core/arrays/numpy_.py
27 issues
Line: 8
Column: 1
import numpy as np
from numpy.lib.mixins import NDArrayOperatorsMixin
from pandas._libs import lib
from pandas._typing import (
Dtype,
NpDtype,
Scalar,
)
Reported by Pylint.
Line: 160
Column: 24
return result
# Defer to the implementation of the ufunc on unwrapped values.
inputs = tuple(x._ndarray if isinstance(x, PandasArray) else x for x in inputs)
if out:
kwargs["out"] = tuple(
x._ndarray if isinstance(x, PandasArray) else x for x in out
)
result = getattr(ufunc, method)(*inputs, **kwargs)
Reported by Pylint.
Line: 163
Column: 17
inputs = tuple(x._ndarray if isinstance(x, PandasArray) else x for x in inputs)
if out:
kwargs["out"] = tuple(
x._ndarray if isinstance(x, PandasArray) else x for x in out
)
result = getattr(ufunc, method)(*inputs, **kwargs)
if type(result) is tuple and len(result):
# multiple return values
Reported by Pylint.
Line: 191
Column: 5
def isna(self) -> np.ndarray:
return isna(self._ndarray)
def _validate_scalar(self, fill_value):
if fill_value is None:
# Primarily for subclasses
fill_value = self.dtype.na_value
return fill_value
Reported by Pylint.
Line: 395
Column: 21
def _cmp_method(self, other, op):
if isinstance(other, PandasArray):
other = other._ndarray
other = ops.maybe_prepare_scalar_for_op(other, (len(self),))
pd_op = ops.get_array_op(op)
other = ensure_wrapped_if_datetimelike(other)
with np.errstate(all="ignore"):
Reported by Pylint.
Line: 425
Column: 20
if result.dtype == "timedelta64[ns]":
from pandas.core.arrays import TimedeltaArray
return TimedeltaArray._simple_new(result)
return type(self)(result)
# ------------------------------------------------------------------------
# String methods interface
_str_na_value = np.nan
Reported by Pylint.
Line: 1
Column: 1
from __future__ import annotations
import numbers
import numpy as np
from numpy.lib.mixins import NDArrayOperatorsMixin
from pandas._libs import lib
from pandas._typing import (
Reported by Pylint.
Line: 30
Column: 1
from pandas.core.strings.object_array import ObjectStringArrayMixin
class PandasArray(
OpsMixin,
NDArrayBackedExtensionArray,
NDArrayOperatorsMixin,
ObjectStringArrayMixin,
):
Reported by Pylint.
Line: 141
Column: 13
# The primary modification is not boxing scalar return values
# in PandasArray, since pandas' ExtensionArrays are 1-d.
out = kwargs.get("out", ())
for x in inputs + out:
# Only support operations with instances of _HANDLED_TYPES.
# Use PandasArray instead of type(self) for isinstance to
# allow subclasses that don't override __array_ufunc__ to
# handle PandasArray objects.
if not isinstance(x, self._HANDLED_TYPES + (PandasArray,)):
Reported by Pylint.
Line: 167
Column: 12
)
result = getattr(ufunc, method)(*inputs, **kwargs)
if type(result) is tuple and len(result):
# multiple return values
if not lib.is_scalar(result[0]):
# re-box array-like results
return tuple(type(self)(x) for x in result)
else:
Reported by Pylint.
pandas/tests/dtypes/test_generic.py
27 issues
Line: 4
Column: 1
from warnings import catch_warnings
import numpy as np
import pytest
from pandas.core.dtypes import generic as gt
import pandas as pd
import pandas._testing as tm
Reported by Pylint.
Line: 104
Column: 9
with catch_warnings(record=True) as w:
# successfully modify column in place
# this should not raise a warning
df.one += 1
assert len(w) == 0
assert df.one.iloc[0] == 2
with catch_warnings(record=True) as w:
# successfully add an attribute to a series
Reported by Pylint.
Line: 106
Column: 16
# this should not raise a warning
df.one += 1
assert len(w) == 0
assert df.one.iloc[0] == 2
with catch_warnings(record=True) as w:
# successfully add an attribute to a series
# this should not raise a warning
df.two.not_an_index = [1, 2]
Reported by Pylint.
Line: 1
Column: 1
from warnings import catch_warnings
import numpy as np
import pytest
from pandas.core.dtypes import generic as gt
import pandas as pd
import pandas._testing as tm
Reported by Pylint.
Line: 12
Column: 1
import pandas._testing as tm
class TestABCClasses:
tuples = [[1, 2, 2], ["red", "blue", "red"]]
multi_index = pd.MultiIndex.from_arrays(tuples, names=("number", "color"))
datetime_index = pd.to_datetime(["2000/1/1", "2010/1/1"])
timedelta_index = pd.to_timedelta(np.arange(5), unit="s")
period_index = pd.period_range("2000/1/1", "2010/1/1/", freq="M")
Reported by Pylint.
Line: 47
Column: 5
@pytest.mark.parametrize("abctype1, inst", abc_pairs)
@pytest.mark.parametrize("abctype2, _", abc_pairs)
def test_abc_pairs(self, abctype1, abctype2, inst, _):
# GH 38588
if abctype1 == abctype2:
assert isinstance(inst, getattr(gt, abctype2))
else:
assert not isinstance(inst, getattr(gt, abctype2))
Reported by Pylint.
Line: 47
Column: 5
@pytest.mark.parametrize("abctype1, inst", abc_pairs)
@pytest.mark.parametrize("abctype2, _", abc_pairs)
def test_abc_pairs(self, abctype1, abctype2, inst, _):
# GH 38588
if abctype1 == abctype2:
assert isinstance(inst, getattr(gt, abctype2))
else:
assert not isinstance(inst, getattr(gt, abctype2))
Reported by Pylint.
Line: 50
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
def test_abc_pairs(self, abctype1, abctype2, inst, _):
# GH 38588
if abctype1 == abctype2:
assert isinstance(inst, getattr(gt, abctype2))
else:
assert not isinstance(inst, getattr(gt, abctype2))
abc_subclasses = {
"ABCIndex": [
Reported by Bandit.
Line: 52
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
if abctype1 == abctype2:
assert isinstance(inst, getattr(gt, abctype2))
else:
assert not isinstance(inst, getattr(gt, abctype2))
abc_subclasses = {
"ABCIndex": [
abctype
for abctype, _ in abc_pairs
Reported by Bandit.
Line: 71
Column: 5
@pytest.mark.parametrize("parent, subs", abc_subclasses.items())
@pytest.mark.parametrize("abctype, inst", abc_pairs)
def test_abc_hierarchy(self, parent, subs, abctype, inst):
# GH 38588
if abctype in subs:
assert isinstance(inst, getattr(gt, parent))
else:
assert not isinstance(inst, getattr(gt, parent))
Reported by Pylint.
asv_bench/benchmarks/tslibs/fields.py
27 issues
Line: 3
Column: 1
import numpy as np
from pandas._libs.tslibs.fields import (
get_date_field,
get_start_end_field,
get_timedelta_field,
)
from .tslib import _sizes
Reported by Pylint.
Line: 9
Column: 1
get_timedelta_field,
)
from .tslib import _sizes
class TimeGetTimedeltaField:
params = [
_sizes,
Reported by Pylint.
Line: 19
Column: 27
]
param_names = ["size", "field"]
def setup(self, size, field):
arr = np.random.randint(0, 10, size=size, dtype="i8")
self.i8data = arr
def time_get_timedelta_field(self, size, field):
get_timedelta_field(self.i8data, field)
Reported by Pylint.
Line: 21
Column: 9
def setup(self, size, field):
arr = np.random.randint(0, 10, size=size, dtype="i8")
self.i8data = arr
def time_get_timedelta_field(self, size, field):
get_timedelta_field(self.i8data, field)
Reported by Pylint.
Line: 23
Column: 40
arr = np.random.randint(0, 10, size=size, dtype="i8")
self.i8data = arr
def time_get_timedelta_field(self, size, field):
get_timedelta_field(self.i8data, field)
class TimeGetDateField:
params = [
Reported by Pylint.
Line: 49
Column: 27
]
param_names = ["size", "field"]
def setup(self, size, field):
arr = np.random.randint(0, 10, size=size, dtype="i8")
self.i8data = arr
def time_get_date_field(self, size, field):
get_date_field(self.i8data, field)
Reported by Pylint.
Line: 51
Column: 9
def setup(self, size, field):
arr = np.random.randint(0, 10, size=size, dtype="i8")
self.i8data = arr
def time_get_date_field(self, size, field):
get_date_field(self.i8data, field)
Reported by Pylint.
Line: 53
Column: 35
arr = np.random.randint(0, 10, size=size, dtype="i8")
self.i8data = arr
def time_get_date_field(self, size, field):
get_date_field(self.i8data, field)
class TimeGetStartEndField:
params = [
Reported by Pylint.
Line: 67
Column: 50
]
param_names = ["size", "side", "period", "freqstr", "month_kw"]
def setup(self, size, side, period, freqstr, month_kw):
arr = np.random.randint(0, 10, size=size, dtype="i8")
self.i8data = arr
self.attrname = f"is_{period}_{side}"
Reported by Pylint.
Line: 67
Column: 41
]
param_names = ["size", "side", "period", "freqstr", "month_kw"]
def setup(self, size, side, period, freqstr, month_kw):
arr = np.random.randint(0, 10, size=size, dtype="i8")
self.i8data = arr
self.attrname = f"is_{period}_{side}"
Reported by Pylint.
pandas/compat/pickle_compat.py
27 issues
Line: 15
Column: 1
import numpy as np
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import BaseOffset
from pandas import Index
from pandas.core.arrays import (
DatetimeArray,
Reported by Pylint.
Line: 15
Column: 1
import numpy as np
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import BaseOffset
from pandas import Index
from pandas.core.arrays import (
DatetimeArray,
Reported by Pylint.
Line: 39
Column: 9
func = stack[-1]
if len(args) and type(args[0]) is type:
n = args[0].__name__ # noqa
try:
stack[-1] = func(*args)
return
except TypeError as err:
Reported by Pylint.
Line: 201
Column: 17
# functions for compat and uses a non-public class of the pickle module.
# error: Name 'pkl._Unpickler' is not defined
class Unpickler(pkl._Unpickler): # type: ignore[name-defined]
def find_class(self, module, name):
# override superclass
key = (module, name)
module, name = _class_locations_map.get(key, key)
return super().find_class(module, name)
Reported by Pylint.
Line: 272
Column: 9
up = Unpickler(fh, encoding=encoding)
else:
up = Unpickler(fh)
up.is_verbose = is_verbose
return up.load()
except (ValueError, TypeError):
raise
Reported by Pylint.
Line: 275
Column: 5
up.is_verbose = is_verbose
return up.load()
except (ValueError, TypeError):
raise
def loads(
bytes_object: bytes,
Reported by Pylint.
Line: 9
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_imports.html#b403-import-pickle
import contextlib
import copy
import io
import pickle as pkl
from typing import TYPE_CHECKING
import warnings
import numpy as np
Reported by Bandit.
Line: 15
Column: 1
import numpy as np
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import BaseOffset
from pandas import Index
from pandas.core.arrays import (
DatetimeArray,
Reported by Pylint.
Line: 16
Column: 1
import numpy as np
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import BaseOffset
from pandas import Index
from pandas.core.arrays import (
DatetimeArray,
PeriodArray,
Reported by Pylint.
Line: 18
Column: 1
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import BaseOffset
from pandas import Index
from pandas.core.arrays import (
DatetimeArray,
PeriodArray,
TimedeltaArray,
)
Reported by Pylint.
pandas/tests/window/test_pairwise.py
27 issues
Line: 4
Column: 1
import warnings
import numpy as np
import pytest
from pandas import (
DataFrame,
MultiIndex,
Series,
Reported by Pylint.
Line: 1
Column: 1
import warnings
import numpy as np
import pytest
from pandas import (
DataFrame,
MultiIndex,
Series,
Reported by Pylint.
Line: 16
Column: 1
from pandas.core.algorithms import safe_sort
class TestPairwise:
# GH 7738
@pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()])
def test_no_flex(self, pairwise_frames, pairwise_target_frame, f):
Reported by Pylint.
Line: 20
Column: 5
# GH 7738
@pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()])
def test_no_flex(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame methods (which do not call flex_binary_moment())
result = f(pairwise_frames)
tm.assert_index_equal(result.index, pairwise_frames.columns)
Reported by Pylint.
Line: 20
Column: 5
# GH 7738
@pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()])
def test_no_flex(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame methods (which do not call flex_binary_moment())
result = f(pairwise_frames)
tm.assert_index_equal(result.index, pairwise_frames.columns)
Reported by Pylint.
Line: 20
Column: 5
# GH 7738
@pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()])
def test_no_flex(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame methods (which do not call flex_binary_moment())
result = f(pairwise_frames)
tm.assert_index_equal(result.index, pairwise_frames.columns)
Reported by Pylint.
Line: 44
Column: 5
lambda x: x.rolling(window=3).corr(pairwise=True),
lambda x: x.ewm(com=3).cov(pairwise=True),
lambda x: x.ewm(com=3).corr(pairwise=True),
],
)
def test_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame with itself, pairwise=True
# note that we may construct the 1st level of the MI
Reported by Pylint.
Line: 44
Column: 5
lambda x: x.rolling(window=3).corr(pairwise=True),
lambda x: x.ewm(com=3).cov(pairwise=True),
lambda x: x.ewm(com=3).corr(pairwise=True),
],
)
def test_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame with itself, pairwise=True
# note that we may construct the 1st level of the MI
Reported by Pylint.
Line: 44
Column: 5
lambda x: x.rolling(window=3).corr(pairwise=True),
lambda x: x.ewm(com=3).cov(pairwise=True),
lambda x: x.ewm(com=3).corr(pairwise=True),
],
)
def test_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame with itself, pairwise=True
# note that we may construct the 1st level of the MI
Reported by Pylint.
Line: 77
Column: 5
lambda x: x.rolling(window=3).corr(pairwise=False),
lambda x: x.ewm(com=3).cov(pairwise=False),
lambda x: x.ewm(com=3).corr(pairwise=False),
],
)
def test_no_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame with itself, pairwise=False
result = f(pairwise_frames)
Reported by Pylint.
pandas/tests/indexes/categorical/test_formats.py
27 issues
Line: 9
Column: 1
from pandas import CategoricalIndex
class TestCategoricalIndexRepr:
def test_format_different_scalar_lengths(self):
# GH#35439
idx = CategoricalIndex(["aaaaaaaaa", "b"])
expected = ["aaaaaaaaa", "b"]
assert idx.format() == expected
Reported by Pylint.
Line: 10
Column: 5
class TestCategoricalIndexRepr:
def test_format_different_scalar_lengths(self):
# GH#35439
idx = CategoricalIndex(["aaaaaaaaa", "b"])
expected = ["aaaaaaaaa", "b"]
assert idx.format() == expected
Reported by Pylint.
Line: 10
Column: 5
class TestCategoricalIndexRepr:
def test_format_different_scalar_lengths(self):
# GH#35439
idx = CategoricalIndex(["aaaaaaaaa", "b"])
expected = ["aaaaaaaaa", "b"]
assert idx.format() == expected
Reported by Pylint.
Line: 14
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# GH#35439
idx = CategoricalIndex(["aaaaaaaaa", "b"])
expected = ["aaaaaaaaa", "b"]
assert idx.format() == expected
def test_string_categorical_index_repr(self):
# short
idx = CategoricalIndex(["a", "bb", "ccc"])
expected = """CategoricalIndex(['a', 'bb', 'ccc'], categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')""" # noqa
Reported by Bandit.
Line: 16
Column: 5
expected = ["aaaaaaaaa", "b"]
assert idx.format() == expected
def test_string_categorical_index_repr(self):
# short
idx = CategoricalIndex(["a", "bb", "ccc"])
expected = """CategoricalIndex(['a', 'bb', 'ccc'], categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')""" # noqa
assert repr(idx) == expected
Reported by Pylint.
Line: 16
Column: 5
expected = ["aaaaaaaaa", "b"]
assert idx.format() == expected
def test_string_categorical_index_repr(self):
# short
idx = CategoricalIndex(["a", "bb", "ccc"])
expected = """CategoricalIndex(['a', 'bb', 'ccc'], categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')""" # noqa
assert repr(idx) == expected
Reported by Pylint.
Line: 19
Column: 1
def test_string_categorical_index_repr(self):
# short
idx = CategoricalIndex(["a", "bb", "ccc"])
expected = """CategoricalIndex(['a', 'bb', 'ccc'], categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')""" # noqa
assert repr(idx) == expected
# multiple lines
idx = CategoricalIndex(["a", "bb", "ccc"] * 10)
expected = """CategoricalIndex(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a',
Reported by Pylint.
Line: 20
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# short
idx = CategoricalIndex(["a", "bb", "ccc"])
expected = """CategoricalIndex(['a', 'bb', 'ccc'], categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')""" # noqa
assert repr(idx) == expected
# multiple lines
idx = CategoricalIndex(["a", "bb", "ccc"] * 10)
expected = """CategoricalIndex(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a',
'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb',
Reported by Bandit.
Line: 29
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],
categories=['a', 'bb', 'ccc'], ordered=False, dtype='category')"""
assert repr(idx) == expected
# truncated
idx = CategoricalIndex(["a", "bb", "ccc"] * 100)
expected = """CategoricalIndex(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a',
...
Reported by Bandit.
Line: 36
Column: 1
expected = """CategoricalIndex(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a',
...
'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],
categories=['a', 'bb', 'ccc'], ordered=False, dtype='category', length=300)""" # noqa
assert repr(idx) == expected
# larger categories
idx = CategoricalIndex(list("abcdefghijklmmo"))
Reported by Pylint.
pandas/tests/tslibs/test_conversion.py
27 issues
Line: 4
Column: 1
from datetime import datetime
import numpy as np
import pytest
from pytz import UTC
from pandas._libs.tslibs import (
OutOfBoundsTimedelta,
conversion,
Reported by Pylint.
Line: 5
Column: 1
import numpy as np
import pytest
from pytz import UTC
from pandas._libs.tslibs import (
OutOfBoundsTimedelta,
conversion,
iNaT,
Reported by Pylint.
Line: 7
Column: 1
import pytest
from pytz import UTC
from pandas._libs.tslibs import (
OutOfBoundsTimedelta,
conversion,
iNaT,
timezones,
tzconversion,
Reported by Pylint.
Line: 7
Column: 1
import pytest
from pytz import UTC
from pandas._libs.tslibs import (
OutOfBoundsTimedelta,
conversion,
iNaT,
timezones,
tzconversion,
Reported by Pylint.
Line: 7
Column: 1
import pytest
from pytz import UTC
from pandas._libs.tslibs import (
OutOfBoundsTimedelta,
conversion,
iNaT,
timezones,
tzconversion,
Reported by Pylint.
Line: 38
Column: 12
try:
result = tzconversion.tz_localize_to_utc(naive_didx.asi8, tz_didx.tz)
err1 = None
except Exception as err:
err1 = err
try:
expected = naive_didx.map(lambda x: x.tz_localize(tz_didx.tz)).asi8
except Exception as err:
Reported by Pylint.
Line: 43
Column: 12
try:
expected = naive_didx.map(lambda x: x.tz_localize(tz_didx.tz)).asi8
except Exception as err:
err2 = err
if err1 is not None:
assert type(err1) == type(err2)
else:
Reported by Pylint.
Line: 1
Column: 1
from datetime import datetime
import numpy as np
import pytest
from pytz import UTC
from pandas._libs.tslibs import (
OutOfBoundsTimedelta,
conversion,
Reported by Pylint.
Line: 23
Column: 5
def _compare_utc_to_local(tz_didx):
def f(x):
return tzconversion.tz_convert_from_utc_single(x, tz_didx.tz)
result = tzconversion.tz_convert_from_utc(tz_didx.asi8, tz_didx.tz)
expected = np.vectorize(f)(tz_didx.asi8)
Reported by Pylint.
Line: 23
Column: 5
def _compare_utc_to_local(tz_didx):
def f(x):
return tzconversion.tz_convert_from_utc_single(x, tz_didx.tz)
result = tzconversion.tz_convert_from_utc(tz_didx.asi8, tz_didx.tz)
expected = np.vectorize(f)(tz_didx.asi8)
Reported by Pylint.