The following issues were found
pandas/tests/frame/methods/test_rename_axis.py
24 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
)
import pandas._testing as tm
Reported by Pylint.
Line: 12
Column: 1
import pandas._testing as tm
class TestDataFrameRenameAxis:
def test_rename_axis_inplace(self, float_frame):
# GH#15704
expected = float_frame.rename_axis("foo")
result = float_frame.copy()
return_value = no_return = result.rename_axis("foo", inplace=True)
Reported by Pylint.
Line: 13
Column: 5
class TestDataFrameRenameAxis:
def test_rename_axis_inplace(self, float_frame):
# GH#15704
expected = float_frame.rename_axis("foo")
result = float_frame.copy()
return_value = no_return = result.rename_axis("foo", inplace=True)
assert return_value is None
Reported by Pylint.
Line: 13
Column: 5
class TestDataFrameRenameAxis:
def test_rename_axis_inplace(self, float_frame):
# GH#15704
expected = float_frame.rename_axis("foo")
result = float_frame.copy()
return_value = no_return = result.rename_axis("foo", inplace=True)
assert return_value is None
Reported by Pylint.
Line: 18
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
expected = float_frame.rename_axis("foo")
result = float_frame.copy()
return_value = no_return = result.rename_axis("foo", inplace=True)
assert return_value is None
assert no_return is None
tm.assert_frame_equal(result, expected)
expected = float_frame.rename_axis("bar", axis=1)
Reported by Bandit.
Line: 20
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
return_value = no_return = result.rename_axis("foo", inplace=True)
assert return_value is None
assert no_return is None
tm.assert_frame_equal(result, expected)
expected = float_frame.rename_axis("bar", axis=1)
result = float_frame.copy()
return_value = no_return = result.rename_axis("bar", axis=1, inplace=True)
Reported by Bandit.
Line: 26
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
expected = float_frame.rename_axis("bar", axis=1)
result = float_frame.copy()
return_value = no_return = result.rename_axis("bar", axis=1, inplace=True)
assert return_value is None
assert no_return is None
tm.assert_frame_equal(result, expected)
def test_rename_axis_raises(self):
Reported by Bandit.
Line: 28
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
return_value = no_return = result.rename_axis("bar", axis=1, inplace=True)
assert return_value is None
assert no_return is None
tm.assert_frame_equal(result, expected)
def test_rename_axis_raises(self):
# GH#17833
df = DataFrame({"A": [1, 2], "B": [1, 2]})
Reported by Bandit.
Line: 31
Column: 5
assert no_return is None
tm.assert_frame_equal(result, expected)
def test_rename_axis_raises(self):
# GH#17833
df = DataFrame({"A": [1, 2], "B": [1, 2]})
with pytest.raises(ValueError, match="Use `.rename`"):
df.rename_axis(id, axis=0)
Reported by Pylint.
pandas/tests/extension/base/missing.py
24 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.api.types import is_sparse
from pandas.tests.extension.base.base import BaseExtensionTests
Reported by Pylint.
Line: 103
Column: 13
result = ser.fillna(fill_value)
expected = pd.Series(
data_missing._from_sequence(
[fill_value, fill_value], dtype=data_missing.dtype
)
)
self.assert_series_equal(result, expected)
Reported by Pylint.
Line: 125
Column: 13
result = pd.Series(data_missing).fillna(method=fillna_method)
expected = pd.Series(
data_missing._from_sequence(
[fill_value, fill_value], dtype=data_missing.dtype
)
)
self.assert_series_equal(result, expected)
Reported by Pylint.
Line: 139
Column: 22
expected = pd.DataFrame(
{
"A": data_missing._from_sequence(
[fill_value, fill_value], dtype=data_missing.dtype
),
"B": [1, 2],
}
)
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.api.types import is_sparse
from pandas.tests.extension.base.base import BaseExtensionTests
Reported by Pylint.
Line: 10
Column: 1
from pandas.tests.extension.base.base import BaseExtensionTests
class BaseMissingTests(BaseExtensionTests):
def test_isna(self, data_missing):
expected = np.array([True, False])
result = pd.isna(data_missing)
tm.assert_numpy_array_equal(result, expected)
Reported by Pylint.
Line: 11
Column: 5
class BaseMissingTests(BaseExtensionTests):
def test_isna(self, data_missing):
expected = np.array([True, False])
result = pd.isna(data_missing)
tm.assert_numpy_array_equal(result, expected)
Reported by Pylint.
Line: 27
Column: 5
self.assert_series_equal(result, expected)
@pytest.mark.parametrize("na_func", ["isna", "notna"])
def test_isna_returns_copy(self, data_missing, na_func):
result = pd.Series(data_missing)
expected = result.copy()
mask = getattr(result, na_func)()
if is_sparse(mask):
mask = np.array(mask)
Reported by Pylint.
Line: 37
Column: 5
mask[:] = True
self.assert_series_equal(result, expected)
def test_dropna_array(self, data_missing):
result = data_missing.dropna()
expected = data_missing[[1]]
self.assert_extension_array_equal(result, expected)
def test_dropna_series(self, data_missing):
Reported by Pylint.
Line: 42
Column: 5
expected = data_missing[[1]]
self.assert_extension_array_equal(result, expected)
def test_dropna_series(self, data_missing):
ser = pd.Series(data_missing)
result = ser.dropna()
expected = ser.iloc[[1]]
self.assert_series_equal(result, expected)
Reported by Pylint.
pandas/core/ops/docstrings.py
24 issues
Line: 26
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
op_desc = _op_descriptions[op_name]
op_desc_op = op_desc["op"]
assert op_desc_op is not None # for mypy
if op_name.startswith("r"):
equiv = "other " + op_desc_op + " " + typ
elif op_name == "divmod":
equiv = f"{op_name}({typ}, other)"
else:
Reported by Bandit.
Line: 64
Column: 1
return doc
_common_examples_algebra_SERIES = """
Examples
--------
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a 1.0
Reported by Pylint.
Line: 82
Column: 1
e NaN
dtype: float64"""
_common_examples_comparison_SERIES = """
Examples
--------
>>> a = pd.Series([1, 1, 1, np.nan, 1], index=['a', 'b', 'c', 'd', 'e'])
>>> a
a 1.0
Reported by Pylint.
Line: 102
Column: 1
f 1.0
dtype: float64"""
_add_example_SERIES = (
_common_examples_algebra_SERIES
+ """
>>> a.add(b, fill_value=0)
a 2.0
b 1.0
Reported by Pylint.
Line: 115
Column: 1
"""
)
_sub_example_SERIES = (
_common_examples_algebra_SERIES
+ """
>>> a.subtract(b, fill_value=0)
a 0.0
b 1.0
Reported by Pylint.
Line: 128
Column: 1
"""
)
_mul_example_SERIES = (
_common_examples_algebra_SERIES
+ """
>>> a.multiply(b, fill_value=0)
a 1.0
b 0.0
Reported by Pylint.
Line: 141
Column: 1
"""
)
_div_example_SERIES = (
_common_examples_algebra_SERIES
+ """
>>> a.divide(b, fill_value=0)
a 1.0
b inf
Reported by Pylint.
Line: 154
Column: 1
"""
)
_floordiv_example_SERIES = (
_common_examples_algebra_SERIES
+ """
>>> a.floordiv(b, fill_value=0)
a 1.0
b NaN
Reported by Pylint.
Line: 167
Column: 1
"""
)
_divmod_example_SERIES = (
_common_examples_algebra_SERIES
+ """
>>> a.divmod(b, fill_value=0)
(a 1.0
b NaN
Reported by Pylint.
Line: 186
Column: 1
"""
)
_mod_example_SERIES = (
_common_examples_algebra_SERIES
+ """
>>> a.mod(b, fill_value=0)
a 0.0
b NaN
Reported by Pylint.
pandas/io/api.py
24 issues
Line: 7
Column: 1
# flake8: noqa
from pandas.io.clipboards import read_clipboard
from pandas.io.excel import (
ExcelFile,
ExcelWriter,
read_excel,
)
Reported by Pylint.
Line: 8
Column: 1
# flake8: noqa
from pandas.io.clipboards import read_clipboard
from pandas.io.excel import (
ExcelFile,
ExcelWriter,
read_excel,
)
from pandas.io.feather_format import read_feather
Reported by Pylint.
Line: 8
Column: 1
# flake8: noqa
from pandas.io.clipboards import read_clipboard
from pandas.io.excel import (
ExcelFile,
ExcelWriter,
read_excel,
)
from pandas.io.feather_format import read_feather
Reported by Pylint.
Line: 8
Column: 1
# flake8: noqa
from pandas.io.clipboards import read_clipboard
from pandas.io.excel import (
ExcelFile,
ExcelWriter,
read_excel,
)
from pandas.io.feather_format import read_feather
Reported by Pylint.
Line: 13
Column: 1
ExcelWriter,
read_excel,
)
from pandas.io.feather_format import read_feather
from pandas.io.gbq import read_gbq
from pandas.io.html import read_html
from pandas.io.json import read_json
from pandas.io.orc import read_orc
from pandas.io.parquet import read_parquet
Reported by Pylint.
Line: 14
Column: 1
read_excel,
)
from pandas.io.feather_format import read_feather
from pandas.io.gbq import read_gbq
from pandas.io.html import read_html
from pandas.io.json import read_json
from pandas.io.orc import read_orc
from pandas.io.parquet import read_parquet
from pandas.io.parsers import (
Reported by Pylint.
Line: 15
Column: 1
)
from pandas.io.feather_format import read_feather
from pandas.io.gbq import read_gbq
from pandas.io.html import read_html
from pandas.io.json import read_json
from pandas.io.orc import read_orc
from pandas.io.parquet import read_parquet
from pandas.io.parsers import (
read_csv,
Reported by Pylint.
Line: 16
Column: 1
from pandas.io.feather_format import read_feather
from pandas.io.gbq import read_gbq
from pandas.io.html import read_html
from pandas.io.json import read_json
from pandas.io.orc import read_orc
from pandas.io.parquet import read_parquet
from pandas.io.parsers import (
read_csv,
read_fwf,
Reported by Pylint.
Line: 17
Column: 1
from pandas.io.gbq import read_gbq
from pandas.io.html import read_html
from pandas.io.json import read_json
from pandas.io.orc import read_orc
from pandas.io.parquet import read_parquet
from pandas.io.parsers import (
read_csv,
read_fwf,
read_table,
Reported by Pylint.
Line: 18
Column: 1
from pandas.io.html import read_html
from pandas.io.json import read_json
from pandas.io.orc import read_orc
from pandas.io.parquet import read_parquet
from pandas.io.parsers import (
read_csv,
read_fwf,
read_table,
)
Reported by Pylint.
pandas/tests/groupby/test_sample.py
24 issues
Line: 1
Column: 1
import pytest
from pandas import (
DataFrame,
Index,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import pytest
from pandas import (
DataFrame,
Index,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 12
Column: 1
@pytest.mark.parametrize("n, frac", [(2, None), (None, 0.2)])
def test_groupby_sample_balanced_groups_shape(n, frac):
values = [1] * 10 + [2] * 10
df = DataFrame({"a": values, "b": values})
result = df.groupby("a").sample(n=n, frac=frac)
values = [1] * 2 + [2] * 2
Reported by Pylint.
Line: 12
Column: 1
@pytest.mark.parametrize("n, frac", [(2, None), (None, 0.2)])
def test_groupby_sample_balanced_groups_shape(n, frac):
values = [1] * 10 + [2] * 10
df = DataFrame({"a": values, "b": values})
result = df.groupby("a").sample(n=n, frac=frac)
values = [1] * 2 + [2] * 2
Reported by Pylint.
Line: 14
Column: 5
@pytest.mark.parametrize("n, frac", [(2, None), (None, 0.2)])
def test_groupby_sample_balanced_groups_shape(n, frac):
values = [1] * 10 + [2] * 10
df = DataFrame({"a": values, "b": values})
result = df.groupby("a").sample(n=n, frac=frac)
values = [1] * 2 + [2] * 2
expected = DataFrame({"a": values, "b": values}, index=result.index)
tm.assert_frame_equal(result, expected)
Reported by Pylint.
Line: 26
Column: 1
tm.assert_series_equal(result, expected)
def test_groupby_sample_unbalanced_groups_shape():
values = [1] * 10 + [2] * 20
df = DataFrame({"a": values, "b": values})
result = df.groupby("a").sample(n=5)
values = [1] * 5 + [2] * 5
Reported by Pylint.
Line: 28
Column: 5
def test_groupby_sample_unbalanced_groups_shape():
values = [1] * 10 + [2] * 20
df = DataFrame({"a": values, "b": values})
result = df.groupby("a").sample(n=5)
values = [1] * 5 + [2] * 5
expected = DataFrame({"a": values, "b": values}, index=result.index)
tm.assert_frame_equal(result, expected)
Reported by Pylint.
Line: 40
Column: 1
tm.assert_series_equal(result, expected)
def test_groupby_sample_index_value_spans_groups():
values = [1] * 3 + [2] * 3
df = DataFrame({"a": values, "b": values}, index=[1, 2, 2, 2, 2, 2])
result = df.groupby("a").sample(n=2)
values = [1] * 2 + [2] * 2
Reported by Pylint.
Line: 42
Column: 5
def test_groupby_sample_index_value_spans_groups():
values = [1] * 3 + [2] * 3
df = DataFrame({"a": values, "b": values}, index=[1, 2, 2, 2, 2, 2])
result = df.groupby("a").sample(n=2)
values = [1] * 2 + [2] * 2
expected = DataFrame({"a": values, "b": values}, index=result.index)
tm.assert_frame_equal(result, expected)
Reported by Pylint.
Line: 54
Column: 1
tm.assert_series_equal(result, expected)
def test_groupby_sample_n_and_frac_raises():
df = DataFrame({"a": [1, 2], "b": [1, 2]})
msg = "Please enter a value for `frac` OR `n`, not both"
with pytest.raises(ValueError, match=msg):
df.groupby("a").sample(n=1, frac=1.0)
Reported by Pylint.
pandas/tests/frame/methods/test_pop.py
24 issues
Line: 1
Column: 1
import numpy as np
from pandas import (
DataFrame,
MultiIndex,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 11
Column: 1
import pandas._testing as tm
class TestDataFramePop:
def test_pop(self, float_frame):
float_frame.columns.name = "baz"
float_frame.pop("A")
assert "A" not in float_frame
Reported by Pylint.
Line: 12
Column: 5
class TestDataFramePop:
def test_pop(self, float_frame):
float_frame.columns.name = "baz"
float_frame.pop("A")
assert "A" not in float_frame
Reported by Pylint.
Line: 12
Column: 5
class TestDataFramePop:
def test_pop(self, float_frame):
float_frame.columns.name = "baz"
float_frame.pop("A")
assert "A" not in float_frame
Reported by Pylint.
Line: 16
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
float_frame.columns.name = "baz"
float_frame.pop("A")
assert "A" not in float_frame
float_frame["foo"] = "bar"
float_frame.pop("foo")
assert "foo" not in float_frame
assert float_frame.columns.name == "baz"
Reported by Bandit.
Line: 20
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
float_frame["foo"] = "bar"
float_frame.pop("foo")
assert "foo" not in float_frame
assert float_frame.columns.name == "baz"
# gh-10912: inplace ops cause caching issue
a = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"], index=["X", "Y"])
b = a.pop("B")
Reported by Bandit.
Line: 21
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
float_frame["foo"] = "bar"
float_frame.pop("foo")
assert "foo" not in float_frame
assert float_frame.columns.name == "baz"
# gh-10912: inplace ops cause caching issue
a = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"], index=["X", "Y"])
b = a.pop("B")
b += 1
Reported by Bandit.
Line: 24
Column: 9
assert float_frame.columns.name == "baz"
# gh-10912: inplace ops cause caching issue
a = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"], index=["X", "Y"])
b = a.pop("B")
b += 1
# original frame
expected = DataFrame([[1, 3], [4, 6]], columns=["A", "C"], index=["X", "Y"])
Reported by Pylint.
Line: 25
Column: 9
# gh-10912: inplace ops cause caching issue
a = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"], index=["X", "Y"])
b = a.pop("B")
b += 1
# original frame
expected = DataFrame([[1, 3], [4, 6]], columns=["A", "C"], index=["X", "Y"])
tm.assert_frame_equal(a, expected)
Reported by Pylint.
Line: 26
Column: 9
# gh-10912: inplace ops cause caching issue
a = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"], index=["X", "Y"])
b = a.pop("B")
b += 1
# original frame
expected = DataFrame([[1, 3], [4, 6]], columns=["A", "C"], index=["X", "Y"])
tm.assert_frame_equal(a, expected)
Reported by Pylint.
pandas/tests/dtypes/cast/test_find_common_type.py
24 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas.core.dtypes.cast import find_common_type
from pandas.core.dtypes.dtypes import (
CategoricalDtype,
DatetimeTZDtype,
IntervalDtype,
PeriodDtype,
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas.core.dtypes.cast import find_common_type
from pandas.core.dtypes.dtypes import (
CategoricalDtype,
DatetimeTZDtype,
IntervalDtype,
PeriodDtype,
Reported by Pylint.
Line: 70
Column: 1
),
((np.dtype("datetime64[ns]"), np.dtype("timedelta64[ns]")), object),
((np.dtype("datetime64[ns]"), np.int64), object),
],
)
def test_numpy_dtypes(source_dtypes, expected_common_dtype):
assert find_common_type(source_dtypes) == expected_common_dtype
Reported by Pylint.
Line: 73
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
],
)
def test_numpy_dtypes(source_dtypes, expected_common_dtype):
assert find_common_type(source_dtypes) == expected_common_dtype
def test_raises_empty_input():
with pytest.raises(ValueError, match="no types given"):
find_common_type([])
Reported by Bandit.
Line: 76
Column: 1
assert find_common_type(source_dtypes) == expected_common_dtype
def test_raises_empty_input():
with pytest.raises(ValueError, match="no types given"):
find_common_type([])
@pytest.mark.parametrize(
Reported by Pylint.
Line: 87
Column: 1
([CategoricalDtype()], "category"),
([object, CategoricalDtype()], object),
([CategoricalDtype(), CategoricalDtype()], "category"),
],
)
def test_categorical_dtype(dtypes, exp_type):
assert find_common_type(dtypes) == exp_type
Reported by Pylint.
Line: 90
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
],
)
def test_categorical_dtype(dtypes, exp_type):
assert find_common_type(dtypes) == exp_type
def test_datetimetz_dtype_match():
dtype = DatetimeTZDtype(unit="ns", tz="US/Eastern")
assert find_common_type([dtype, dtype]) == "datetime64[ns, US/Eastern]"
Reported by Bandit.
Line: 93
Column: 1
assert find_common_type(dtypes) == exp_type
def test_datetimetz_dtype_match():
dtype = DatetimeTZDtype(unit="ns", tz="US/Eastern")
assert find_common_type([dtype, dtype]) == "datetime64[ns, US/Eastern]"
@pytest.mark.parametrize(
Reported by Pylint.
Line: 95
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
def test_datetimetz_dtype_match():
dtype = DatetimeTZDtype(unit="ns", tz="US/Eastern")
assert find_common_type([dtype, dtype]) == "datetime64[ns, US/Eastern]"
@pytest.mark.parametrize(
"dtype2",
[
Reported by Bandit.
Line: 105
Column: 1
np.dtype("datetime64[ns]"),
object,
np.int64,
],
)
def test_datetimetz_dtype_mismatch(dtype2):
dtype = DatetimeTZDtype(unit="ns", tz="US/Eastern")
assert find_common_type([dtype, dtype2]) == object
assert find_common_type([dtype2, dtype]) == object
Reported by Pylint.
pandas/tests/extension/base/groupby.py
24 issues
Line: 1
Column: 1
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.tests.extension.base.base import BaseExtensionTests
class BaseGroupbyTests(BaseExtensionTests):
"""Groupby-specific tests."""
Reported by Pylint.
Line: 28
Column: 21
_, uniques = pd.factorize(data_for_grouping, sort=True)
if as_index:
index = pd.Index._with_infer(uniques, name="B")
expected = pd.Series([3.0, 1.0, 4.0], index=index, name="A")
self.assert_series_equal(result, expected)
else:
expected = pd.DataFrame({"B": uniques, "A": [3.0, 1.0, 4.0]})
self.assert_frame_equal(result, expected)
Reported by Pylint.
Line: 56
Column: 17
result = df.groupby("B", sort=False).A.mean()
_, index = pd.factorize(data_for_grouping, sort=False)
index = pd.Index._with_infer(index, name="B")
expected = pd.Series([1.0, 3.0, 4.0], index=index, name="A")
self.assert_series_equal(result, expected)
def test_groupby_extension_transform(self, data_for_grouping):
valid = data_for_grouping[~data_for_grouping.isna()]
Reported by Pylint.
Line: 101
Column: 12
)
result = df.groupby("A").sum().columns
if data_for_grouping.dtype._is_numeric:
expected = pd.Index(["B", "C"])
else:
expected = pd.Index(["C"])
tm.assert_index_equal(result, expected)
Reported by Pylint.
Line: 1
Column: 1
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.tests.extension.base.base import BaseExtensionTests
class BaseGroupbyTests(BaseExtensionTests):
"""Groupby-specific tests."""
Reported by Pylint.
Line: 11
Column: 5
class BaseGroupbyTests(BaseExtensionTests):
"""Groupby-specific tests."""
def test_grouping_grouper(self, data_for_grouping):
df = pd.DataFrame(
{"A": ["B", "B", None, None, "A", "A", "B", "C"], "B": data_for_grouping}
)
gr1 = df.groupby("A").grouper.groupings[0]
gr2 = df.groupby("B").grouper.groupings[0]
Reported by Pylint.
Line: 11
Column: 5
class BaseGroupbyTests(BaseExtensionTests):
"""Groupby-specific tests."""
def test_grouping_grouper(self, data_for_grouping):
df = pd.DataFrame(
{"A": ["B", "B", None, None, "A", "A", "B", "C"], "B": data_for_grouping}
)
gr1 = df.groupby("A").grouper.groupings[0]
gr2 = df.groupby("B").grouper.groupings[0]
Reported by Pylint.
Line: 12
Column: 9
"""Groupby-specific tests."""
def test_grouping_grouper(self, data_for_grouping):
df = pd.DataFrame(
{"A": ["B", "B", None, None, "A", "A", "B", "C"], "B": data_for_grouping}
)
gr1 = df.groupby("A").grouper.groupings[0]
gr2 = df.groupby("B").grouper.groupings[0]
Reported by Pylint.
Line: 22
Column: 5
tm.assert_extension_array_equal(gr2.grouping_vector, data_for_grouping)
@pytest.mark.parametrize("as_index", [True, False])
def test_groupby_extension_agg(self, as_index, data_for_grouping):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
result = df.groupby("B", as_index=as_index).A.mean()
_, uniques = pd.factorize(data_for_grouping, sort=True)
if as_index:
Reported by Pylint.
Line: 23
Column: 9
@pytest.mark.parametrize("as_index", [True, False])
def test_groupby_extension_agg(self, as_index, data_for_grouping):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
result = df.groupby("B", as_index=as_index).A.mean()
_, uniques = pd.factorize(data_for_grouping, sort=True)
if as_index:
index = pd.Index._with_infer(uniques, name="B")
Reported by Pylint.
pandas/tests/arrays/test_period.py
23 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs import iNaT
from pandas._libs.tslibs.period import IncompatibleFrequency
from pandas.core.dtypes.base import _registry as registry
from pandas.core.dtypes.dtypes import PeriodDtype
Reported by Pylint.
Line: 5
Column: 1
import pytest
from pandas._libs.tslibs import iNaT
from pandas._libs.tslibs.period import IncompatibleFrequency
from pandas.core.dtypes.base import _registry as registry
from pandas.core.dtypes.dtypes import PeriodDtype
import pandas as pd
Reported by Pylint.
Line: 5
Column: 1
import pytest
from pandas._libs.tslibs import iNaT
from pandas._libs.tslibs.period import IncompatibleFrequency
from pandas.core.dtypes.base import _registry as registry
from pandas.core.dtypes.dtypes import PeriodDtype
import pandas as pd
Reported by Pylint.
Line: 115
Column: 9
arr = period_array(["2000", "2001"], freq="D")
other = pd.Period("2000", freq="M")
with pytest.raises(IncompatibleFrequency, match="freq"):
arr - other
# ----------------------------------------------------------------------------
# Methods
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs import iNaT
from pandas._libs.tslibs.period import IncompatibleFrequency
from pandas.core.dtypes.base import _registry as registry
from pandas.core.dtypes.dtypes import PeriodDtype
Reported by Pylint.
Line: 21
Column: 1
# Dtype
def test_registered():
assert PeriodDtype in registry.dtypes
result = registry.find("Period[D]")
expected = PeriodDtype("D")
assert result == expected
Reported by Pylint.
Line: 22
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
def test_registered():
assert PeriodDtype in registry.dtypes
result = registry.find("Period[D]")
expected = PeriodDtype("D")
assert result == expected
Reported by Bandit.
Line: 25
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
assert PeriodDtype in registry.dtypes
result = registry.find("Period[D]")
expected = PeriodDtype("D")
assert result == expected
# ----------------------------------------------------------------------------
# period_array
Reported by Bandit.
Line: 32
Column: 1
# period_array
def test_asi8():
result = period_array(["2000", "2001", None], freq="D").asi8
expected = np.array([10957, 11323, iNaT])
tm.assert_numpy_array_equal(result, expected)
Reported by Pylint.
Line: 38
Column: 1
tm.assert_numpy_array_equal(result, expected)
def test_take_raises():
arr = period_array(["2000", "2001"], freq="D")
with pytest.raises(IncompatibleFrequency, match="freq"):
arr.take([0, -1], allow_fill=True, fill_value=pd.Period("2000", freq="W"))
msg = "value should be a 'Period' or 'NaT'. Got 'str' instead"
Reported by Pylint.
asv_bench/benchmarks/io/stata.py
23 issues
Line: 3
Column: 1
import numpy as np
from pandas import (
DataFrame,
date_range,
read_stata,
)
from ..pandas_vb_common import (
Reported by Pylint.
Line: 9
Column: 1
read_stata,
)
from ..pandas_vb_common import (
BaseIO,
tm,
)
Reported by Pylint.
Line: 60
Column: 1
self.df.to_stata(self.fname, self.convert_dates)
from ..pandas_vb_common import setup # noqa: F401 isort:skip
Reported by Pylint.
Line: 21
Column: 9
param_names = ["convert_dates"]
def setup(self, convert_dates):
self.fname = "__test__.dta"
N = self.N = 100000
C = self.C = 5
self.df = DataFrame(
np.random.randn(N, C),
columns=[f"float{i}" for i in range(C)],
Reported by Pylint.
Line: 22
Column: 13
def setup(self, convert_dates):
self.fname = "__test__.dta"
N = self.N = 100000
C = self.C = 5
self.df = DataFrame(
np.random.randn(N, C),
columns=[f"float{i}" for i in range(C)],
index=date_range("20000101", periods=N, freq="H"),
Reported by Pylint.
Line: 23
Column: 13
def setup(self, convert_dates):
self.fname = "__test__.dta"
N = self.N = 100000
C = self.C = 5
self.df = DataFrame(
np.random.randn(N, C),
columns=[f"float{i}" for i in range(C)],
index=date_range("20000101", periods=N, freq="H"),
)
Reported by Pylint.
Line: 24
Column: 9
self.fname = "__test__.dta"
N = self.N = 100000
C = self.C = 5
self.df = DataFrame(
np.random.randn(N, C),
columns=[f"float{i}" for i in range(C)],
index=date_range("20000101", periods=N, freq="H"),
)
self.df["object"] = tm.makeStringIndex(self.N)
Reported by Pylint.
Line: 40
Column: 9
np.iinfo(np.int32).min, np.iinfo(np.int32).max - 27, N
)
self.df["float32_"] = np.array(np.random.randn(N), dtype=np.float32)
self.convert_dates = {"index": convert_dates}
self.df.to_stata(self.fname, self.convert_dates)
def time_read_stata(self, convert_dates):
read_stata(self.fname)
Reported by Pylint.
Line: 43
Column: 31
self.convert_dates = {"index": convert_dates}
self.df.to_stata(self.fname, self.convert_dates)
def time_read_stata(self, convert_dates):
read_stata(self.fname)
def time_write_stata(self, convert_dates):
self.df.to_stata(self.fname, self.convert_dates)
Reported by Pylint.
Line: 46
Column: 32
def time_read_stata(self, convert_dates):
read_stata(self.fname)
def time_write_stata(self, convert_dates):
self.df.to_stata(self.fname, self.convert_dates)
class StataMissing(Stata):
def setup(self, convert_dates):
Reported by Pylint.