The following issues were found
pandas/tests/plotting/test_hist_method.py
193 issues
Line: 5
Column: 1
import re
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Reported by Pylint.
Line: 45
Column: 19
with tm.assert_produces_warning(UserWarning):
_check_plot_works(self.ts.hist, by=self.ts.index.month, bins=5)
fig, ax = self.plt.subplots(1, 1)
_check_plot_works(self.ts.hist, ax=ax, default_axes=True)
_check_plot_works(self.ts.hist, ax=ax, figure=fig, default_axes=True)
_check_plot_works(self.ts.hist, figure=fig, default_axes=True)
tm.close()
Reported by Pylint.
Line: 51
Column: 27
_check_plot_works(self.ts.hist, figure=fig, default_axes=True)
tm.close()
fig, (ax1, ax2) = self.plt.subplots(1, 2)
_check_plot_works(self.ts.hist, figure=fig, ax=ax1, default_axes=True)
_check_plot_works(self.ts.hist, figure=fig, ax=ax2, default_axes=True)
msg = (
"Cannot pass 'figure' when using the 'by' argument, since a new 'Figure' "
Reported by Pylint.
Line: 132
Column: 20
def test_hist_by_no_extra_plots(self):
df = self.hist_df
axes = df.height.hist(by=df.gender) # noqa
assert len(self.plt.get_fignums()) == 1
def test_plot_fails_when_ax_differs_from_figure(self):
from pylab import figure
fig1 = figure()
Reported by Pylint.
Line: 184
Column: 17
s.hist(legend=True, by=by, label="c")
def test_hist_kwargs(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(bins=5, ax=ax)
assert len(ax.patches) == 5
self._check_text_labels(ax.yaxis.get_label(), "Frequency")
tm.close()
Reported by Pylint.
Line: 190
Column: 17
self._check_text_labels(ax.yaxis.get_label(), "Frequency")
tm.close()
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(orientation="horizontal", ax=ax)
self._check_text_labels(ax.xaxis.get_label(), "Frequency")
tm.close()
_, ax = self.plt.subplots()
Reported by Pylint.
Line: 195
Column: 17
self._check_text_labels(ax.xaxis.get_label(), "Frequency")
tm.close()
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(align="left", stacked=True, ax=ax)
tm.close()
@td.skip_if_no_scipy
def test_hist_kde(self):
Reported by Pylint.
Line: 202
Column: 17
@td.skip_if_no_scipy
def test_hist_kde(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis="log")
xlabels = ax.get_xticklabels()
# ticks are values, thus ticklabels are blank
self._check_text_labels(xlabels, [""] * len(xlabels))
Reported by Pylint.
Line: 213
Column: 17
_check_plot_works(self.ts.plot.kde)
_check_plot_works(self.ts.plot.density)
_, ax = self.plt.subplots()
ax = self.ts.plot.kde(logy=True, ax=ax)
self._check_ax_scales(ax, yaxis="log")
xlabels = ax.get_xticklabels()
self._check_text_labels(xlabels, [""] * len(xlabels))
ylabels = ax.get_yticklabels()
Reported by Pylint.
Line: 223
Column: 17
@td.skip_if_no_scipy
def test_hist_kde_color(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.hist(logy=True, bins=10, color="b", ax=ax)
self._check_ax_scales(ax, yaxis="log")
assert len(ax.patches) == 10
self._check_colors(ax.patches, facecolors=["b"] * 10)
Reported by Pylint.
pandas/tests/indexing/multiindex/test_loc.py
189 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas.errors import PerformanceWarning
import pandas as pd
from pandas import (
DataFrame,
Index,
Reported by Pylint.
Line: 748
Column: 11
assert mi.get_loc("2001-01") == slice(0, 31, None)
assert index.get_loc("2001-01") == slice(0, 31, None)
loc = mi[::2].get_loc("2001-01")
expected = index[::2].get_loc("2001-01")
assert loc == expected
loc = mi.repeat(2).get_loc("2001-01")
expected = index.repeat(2).get_loc("2001-01")
Reported by Pylint.
Line: 79
Column: 13
)
with pytest.raises(KeyError, match=r"^2$"):
df.loc[2]
def test_loc_getitem_list_of_tuples_with_multiindex(
self, multiindex_year_month_day_dataframe_random_data
):
ser = multiindex_year_month_day_dataframe_random_data["A"]
Reported by Pylint.
Line: 195
Column: 13
)
with pytest.raises(KeyError, match=r"^2$"):
df.loc[2]
@pytest.mark.parametrize("key, pos", [([2, 4], [0, 1]), ([2], []), ([2, 3], [])])
def test_loc_multiindex_list_missing_label(self, key, pos):
# GH 27148 - lists with missing labels _do_ raise
df = DataFrame(
Reported by Pylint.
Line: 198
Column: 59
df.loc[2]
@pytest.mark.parametrize("key, pos", [([2, 4], [0, 1]), ([2], []), ([2, 3], [])])
def test_loc_multiindex_list_missing_label(self, key, pos):
# GH 27148 - lists with missing labels _do_ raise
df = DataFrame(
np.random.randn(3, 3),
columns=[[2, 2, 4], [6, 8, 10]],
index=[[4, 4, 8], [8, 10, 12]],
Reported by Pylint.
Line: 207
Column: 13
)
with pytest.raises(KeyError, match="not in index"):
df.loc[key]
def test_loc_multiindex_too_many_dims_raises(self):
# GH 14885
s = Series(
range(8),
Reported by Pylint.
Line: 217
Column: 13
)
with pytest.raises(KeyError, match=r"^\('a', 'b'\)$"):
s.loc["a", "b"]
with pytest.raises(KeyError, match=r"^\('a', 'd', 'g'\)$"):
s.loc["a", "d", "g"]
with pytest.raises(IndexingError, match="Too many indexers"):
s.loc["a", "d", "g", "j"]
Reported by Pylint.
Line: 219
Column: 13
with pytest.raises(KeyError, match=r"^\('a', 'b'\)$"):
s.loc["a", "b"]
with pytest.raises(KeyError, match=r"^\('a', 'd', 'g'\)$"):
s.loc["a", "d", "g"]
with pytest.raises(IndexingError, match="Too many indexers"):
s.loc["a", "d", "g", "j"]
def test_loc_multiindex_indexer_none(self):
Reported by Pylint.
Line: 221
Column: 13
with pytest.raises(KeyError, match=r"^\('a', 'd', 'g'\)$"):
s.loc["a", "d", "g"]
with pytest.raises(IndexingError, match="Too many indexers"):
s.loc["a", "d", "g", "j"]
def test_loc_multiindex_indexer_none(self):
# GH6788
# multi-index indexer is None (meaning take all)
Reported by Pylint.
Line: 276
Column: 41
result = s.loc[2:4:2, "a":"c"]
tm.assert_series_equal(result, expected)
def test_get_loc_single_level(self, single_level_multiindex):
single_level = single_level_multiindex
s = Series(np.random.randn(len(single_level)), index=single_level)
for k in single_level.values:
s[k]
Reported by Pylint.
pandas/tests/arrays/categorical/test_repr.py
189 issues
Line: 1
Column: 1
import numpy as np
from pandas import (
Categorical,
CategoricalIndex,
Series,
date_range,
option_context,
period_range,
Reported by Pylint.
Line: 15
Column: 1
from pandas.tests.arrays.categorical.common import TestCategorical
class TestCategoricalReprWithFactor(TestCategorical):
def test_print(self):
expected = [
"['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']",
"Categories (3, object): ['a' < 'b' < 'c']",
]
Reported by Pylint.
Line: 16
Column: 5
class TestCategoricalReprWithFactor(TestCategorical):
def test_print(self):
expected = [
"['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']",
"Categories (3, object): ['a' < 'b' < 'c']",
]
expected = "\n".join(expected)
Reported by Pylint.
Line: 23
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
]
expected = "\n".join(expected)
actual = repr(self.factor)
assert actual == expected
class TestCategoricalRepr:
def test_big_print(self):
factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ["a", "b", "c"], fastpath=True)
Reported by Bandit.
Line: 26
Column: 1
assert actual == expected
class TestCategoricalRepr:
def test_big_print(self):
factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ["a", "b", "c"], fastpath=True)
expected = [
"['a', 'b', 'c', 'a', 'b', ..., 'b', 'c', 'a', 'b', 'c']",
"Length: 600",
Reported by Pylint.
Line: 26
Column: 1
assert actual == expected
class TestCategoricalRepr:
def test_big_print(self):
factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ["a", "b", "c"], fastpath=True)
expected = [
"['a', 'b', 'c', 'a', 'b', ..., 'b', 'c', 'a', 'b', 'c']",
"Length: 600",
Reported by Pylint.
Line: 27
Column: 5
class TestCategoricalRepr:
def test_big_print(self):
factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ["a", "b", "c"], fastpath=True)
expected = [
"['a', 'b', 'c', 'a', 'b', ..., 'b', 'c', 'a', 'b', 'c']",
"Length: 600",
"Categories (3, object): ['a', 'b', 'c']",
Reported by Pylint.
Line: 27
Column: 5
class TestCategoricalRepr:
def test_big_print(self):
factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ["a", "b", "c"], fastpath=True)
expected = [
"['a', 'b', 'c', 'a', 'b', ..., 'b', 'c', 'a', 'b', 'c']",
"Length: 600",
"Categories (3, object): ['a', 'b', 'c']",
Reported by Pylint.
Line: 38
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
actual = repr(factor)
assert actual == expected
def test_empty_print(self):
factor = Categorical([], ["a", "b", "c"])
expected = "[], Categories (3, object): ['a', 'b', 'c']"
actual = repr(factor)
Reported by Bandit.
Line: 40
Column: 5
assert actual == expected
def test_empty_print(self):
factor = Categorical([], ["a", "b", "c"])
expected = "[], Categories (3, object): ['a', 'b', 'c']"
actual = repr(factor)
assert actual == expected
Reported by Pylint.
pandas/plotting/_matplotlib/core.py
188 issues
Line: 323
Column: 9
return self.data.shape[1]
def draw(self):
self.plt.draw_if_interactive()
def generate(self):
self._args_adjust()
self._compute_plot_data()
self._setup_subplots()
Reported by Pylint.
Line: 386
Column: 23
)
else:
if self.ax is None:
fig = self.plt.figure(figsize=self.figsize)
axes = fig.add_subplot(111)
else:
fig = self.ax.get_figure()
if self.figsize is not None:
fig.set_size_inches(self.figsize)
Reported by Pylint.
Line: 1085
Column: 16
# pandas uses colormap, matplotlib uses cmap.
cmap = self.colormap or "Greys"
cmap = self.plt.cm.get_cmap(cmap)
color = self.kwds.pop("color", None)
if c is not None and color is not None:
raise TypeError("Specify exactly one of `c` and `color`")
elif c is None and color is None:
c_values = self.plt.rcParams["patch.facecolor"]
Reported by Pylint.
Line: 1090
Column: 24
if c is not None and color is not None:
raise TypeError("Specify exactly one of `c` and `color`")
elif c is None and color is None:
c_values = self.plt.rcParams["patch.facecolor"]
elif color is not None:
c_values = color
elif color_by_categorical:
c_values = self.data[c].cat.codes
elif c_is_column:
Reported by Pylint.
Line: 1162
Column: 16
ax = self.axes[0]
# pandas uses colormap, matplotlib uses cmap.
cmap = self.colormap or "BuGn"
cmap = self.plt.cm.get_cmap(cmap)
cb = self.kwds.pop("colorbar", True)
if C is None:
c_values = None
else:
Reported by Pylint.
Line: 127
Column: 9
fontsize=None,
secondary_y=False,
colormap=None,
table=False,
layout=None,
include_bool=False,
column: IndexLabel | None = None,
**kwds,
):
Reported by Pylint.
Line: 146
Column: 3
# Assign the rest of columns into self.columns if by is explicitly defined
# while column is not, only need `columns` in hist/box plot when it's DF
# TODO: Might deprecate `column` argument in future PR (#28373)
if isinstance(data, DataFrame):
if column:
self.columns = com.maybe_make_list(column)
else:
if self.by is None:
Reported by Pylint.
Line: 359
Column: 3
else:
# otherwise, create twin axes
orig_ax, new_ax = ax, ax.twinx()
# TODO: use Matplotlib public API when available
new_ax._get_lines = orig_ax._get_lines
new_ax._get_patches_for_fill = orig_ax._get_patches_for_fill
orig_ax.right_ax, new_ax.left_ax = new_ax, orig_ax
if not self._has_plotted_object(orig_ax): # no data on left y
Reported by Pylint.
Line: 360
Column: 33
# otherwise, create twin axes
orig_ax, new_ax = ax, ax.twinx()
# TODO: use Matplotlib public API when available
new_ax._get_lines = orig_ax._get_lines
new_ax._get_patches_for_fill = orig_ax._get_patches_for_fill
orig_ax.right_ax, new_ax.left_ax = new_ax, orig_ax
if not self._has_plotted_object(orig_ax): # no data on left y
orig_ax.get_yaxis().set_visible(False)
Reported by Pylint.
Line: 360
Column: 13
# otherwise, create twin axes
orig_ax, new_ax = ax, ax.twinx()
# TODO: use Matplotlib public API when available
new_ax._get_lines = orig_ax._get_lines
new_ax._get_patches_for_fill = orig_ax._get_patches_for_fill
orig_ax.right_ax, new_ax.left_ax = new_ax, orig_ax
if not self._has_plotted_object(orig_ax): # no data on left y
orig_ax.get_yaxis().set_visible(False)
Reported by Pylint.
pandas/tests/io/pytables/test_store.py
186 issues
Line: 11
Column: 1
)
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Reported by Pylint.
Line: 471
Column: 16
dt = datetime.datetime(2013, 4, 30)
dts = date_range(dt, periods=5, freq=bday_egypt)
s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split()))
with ensure_clean_store(setup_path) as store:
store.put("fixed", s)
result = store.select("fixed")
Reported by Pylint.
Line: 471
Column: 16
dt = datetime.datetime(2013, 4, 30)
dts = date_range(dt, periods=5, freq=bday_egypt)
s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split()))
with ensure_clean_store(setup_path) as store:
store.put("fixed", s)
result = store.select("fixed")
Reported by Pylint.
Line: 661
Column: 19
)
store.append("df", df)
c = store.select_column("df", "index")
where = c[DatetimeIndex(c).month == 5].index
expected = df.iloc[where]
# locations
result = store.select("df", where=where)
tm.assert_frame_equal(result, expected)
Reported by Pylint.
Line: 133
Column: 14
df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0)
df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0)
df.loc[df.index[3:6], ["obj1"]] = np.nan
df = df._consolidate()._convert(datetime=True)
with catch_warnings(record=True):
simplefilter("ignore", pd.errors.PerformanceWarning)
store["df"] = df
Reported by Pylint.
Line: 133
Column: 14
df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0)
df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0)
df.loc[df.index[3:6], ["obj1"]] = np.nan
df = df._consolidate()._convert(datetime=True)
with catch_warnings(record=True):
simplefilter("ignore", pd.errors.PerformanceWarning)
store["df"] = df
Reported by Pylint.
Line: 140
Column: 36
store["df"] = df
# make a random group in hdf space
store._handle.create_group(store._handle.root, "bah")
assert store.filename in repr(store)
assert store.filename in str(store)
store.info()
Reported by Pylint.
Line: 140
Column: 9
store["df"] = df
# make a random group in hdf space
store._handle.create_group(store._handle.root, "bah")
assert store.filename in repr(store)
assert store.filename in str(store)
store.info()
Reported by Pylint.
Line: 187
Column: 16
_maybe_remove(store, "df1")
store.append("df1", df[:10])
store.append("df1", df[10:])
assert store.root.a._v_attrs.pandas_version == "0.15.2"
assert store.root.b._v_attrs.pandas_version == "0.15.2"
assert store.root.df1._v_attrs.pandas_version == "0.15.2"
# write a file and wipe its versioning
_maybe_remove(store, "df2")
Reported by Pylint.
Line: 188
Column: 16
store.append("df1", df[:10])
store.append("df1", df[10:])
assert store.root.a._v_attrs.pandas_version == "0.15.2"
assert store.root.b._v_attrs.pandas_version == "0.15.2"
assert store.root.df1._v_attrs.pandas_version == "0.15.2"
# write a file and wipe its versioning
_maybe_remove(store, "df2")
store.append("df2", df)
Reported by Pylint.
pandas/tests/series/indexing/test_getitem.py
184 issues
Line: 11
Column: 1
)
import numpy as np
import pytest
from pandas._libs.tslibs import (
conversion,
timezones,
)
Reported by Pylint.
Line: 13
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs import (
conversion,
timezones,
)
from pandas.core.dtypes.common import is_scalar
Reported by Pylint.
Line: 13
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs import (
conversion,
timezones,
)
from pandas.core.dtypes.common import is_scalar
Reported by Pylint.
Line: 123
Column: 39
index = date_range(
start="2012-12-24 16:00", end="2012-12-24 18:00", freq="H", tz=tzstr
)
ts = Series(index=index, data=index.hour)
time_pandas = Timestamp("2012-12-24 17:00", tz=tzstr)
dt = datetime(2012, 12, 24, 17, 0)
time_datetime = conversion.localize_pydatetime(dt, tz)
assert ts[time_pandas] == ts[time_datetime]
Reported by Pylint.
Line: 123
Column: 39
index = date_range(
start="2012-12-24 16:00", end="2012-12-24 18:00", freq="H", tz=tzstr
)
ts = Series(index=index, data=index.hour)
time_pandas = Timestamp("2012-12-24 17:00", tz=tzstr)
dt = datetime(2012, 12, 24, 17, 0)
time_datetime = conversion.localize_pydatetime(dt, tz)
assert ts[time_pandas] == ts[time_datetime]
Reported by Pylint.
Line: 142
Column: 17
rng = date_range("1/1/2000", "1/5/2000", freq="5min")
ts = Series(np.random.randn(len(rng)), index=rng)
mask = (rng.hour == 9) & (rng.minute == 30)
result = ts[time(9, 30)]
expected = ts[mask]
result.index = result.index._with_freq(None)
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 142
Column: 35
rng = date_range("1/1/2000", "1/5/2000", freq="5min")
ts = Series(np.random.randn(len(rng)), index=rng)
mask = (rng.hour == 9) & (rng.minute == 30)
result = ts[time(9, 30)]
expected = ts[mask]
result.index = result.index._with_freq(None)
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 142
Column: 35
rng = date_range("1/1/2000", "1/5/2000", freq="5min")
ts = Series(np.random.randn(len(rng)), index=rng)
mask = (rng.hour == 9) & (rng.minute == 30)
result = ts[time(9, 30)]
expected = ts[mask]
result.index = result.index._with_freq(None)
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 142
Column: 17
rng = date_range("1/1/2000", "1/5/2000", freq="5min")
ts = Series(np.random.randn(len(rng)), index=rng)
mask = (rng.hour == 9) & (rng.minute == 30)
result = ts[time(9, 30)]
expected = ts[mask]
result.index = result.index._with_freq(None)
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 341
Column: 15
@pytest.mark.parametrize("box", [list, np.array, Index])
def test_getitem_intlist_intervalindex_non_int(self, box):
# GH#33404 fall back to positional since ints are unambiguous
dti = date_range("2000-01-03", periods=3)._with_freq(None)
ii = pd.IntervalIndex.from_breaks(dti)
ser = Series(range(len(ii)), index=ii)
expected = ser.iloc[:1]
key = box([0])
Reported by Pylint.
pandas/tests/indexes/datetimes/test_setops.py
182 issues
Line: 4
Column: 1
from datetime import datetime
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 99
Column: 31
result = ordered[:0].union(ordered, sort=sort)
tm.assert_index_equal(result, ordered)
assert result.freq == ordered.freq
def test_union_bug_1730(self, sort):
rng_a = date_range("1/1/2012", periods=4, freq="3H")
rng_b = date_range("1/1/2012", periods=4, freq="4H")
Reported by Pylint.
Line: 258
Column: 16
# GH 7880
rng4 = date_range("7/1/2000", "7/31/2000", freq="D", tz=tz, name="idx")
expected4 = DatetimeIndex([], tz=tz, name="idx")
assert expected4.freq is None
for (rng, expected) in [
(rng2, expected2),
(rng3, expected3),
(rng4, expected4),
Reported by Pylint.
Line: 280
Column: 31
rng = date_range("6/1/2000", "6/15/2000", freq=freq, tz=tz)
result = rng[0:0].intersection(rng)
assert len(result) == 0
assert result.freq == rng.freq
result = rng.intersection(rng[0:0])
assert len(result) == 0
assert result.freq == rng.freq
Reported by Pylint.
Line: 280
Column: 31
rng = date_range("6/1/2000", "6/15/2000", freq=freq, tz=tz)
result = rng[0:0].intersection(rng)
assert len(result) == 0
assert result.freq == rng.freq
result = rng.intersection(rng[0:0])
assert len(result) == 0
assert result.freq == rng.freq
Reported by Pylint.
Line: 284
Column: 31
result = rng.intersection(rng[0:0])
assert len(result) == 0
assert result.freq == rng.freq
# no overlap GH#33604
check_freq = freq != "T" # We don't preserve freq on non-anchored offsets
result = rng[:3].intersection(rng[-3:])
tm.assert_index_equal(result, rng[:0])
Reported by Pylint.
Line: 284
Column: 31
result = rng.intersection(rng[0:0])
assert len(result) == 0
assert result.freq == rng.freq
# no overlap GH#33604
check_freq = freq != "T" # We don't preserve freq on non-anchored offsets
result = rng[:3].intersection(rng[-3:])
tm.assert_index_equal(result, rng[:0])
Reported by Pylint.
Line: 292
Column: 35
tm.assert_index_equal(result, rng[:0])
if check_freq:
# We don't preserve freq on non-anchored offsets
assert result.freq == rng.freq
# swapped left and right
result = rng[-3:].intersection(rng[:3])
tm.assert_index_equal(result, rng[:0])
if check_freq:
Reported by Pylint.
Line: 292
Column: 35
tm.assert_index_equal(result, rng[:0])
if check_freq:
# We don't preserve freq on non-anchored offsets
assert result.freq == rng.freq
# swapped left and right
result = rng[-3:].intersection(rng[:3])
tm.assert_index_equal(result, rng[:0])
if check_freq:
Reported by Pylint.
Line: 299
Column: 35
tm.assert_index_equal(result, rng[:0])
if check_freq:
# We don't preserve freq on non-anchored offsets
assert result.freq == rng.freq
def test_intersection_bug_1708(self):
from pandas import DateOffset
index_1 = date_range("1/1/2012", periods=4, freq="12H")
Reported by Pylint.
pandas/tests/arrays/sparse/test_arithmetics.py
181 issues
Line: 4
Column: 1
import operator
import numpy as np
import pytest
from pandas.compat import np_version_under1p20
import pandas as pd
import pandas._testing as tm
Reported by Pylint.
Line: 284
Column: 18
# have to specify dtype explicitly until fixing GH 667
dtype = np.int64
values = self._base([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
a = self._klass(values, dtype=dtype, kind=kind)
assert a.dtype == SparseDtype(dtype)
b = self._klass(rvalues, dtype=dtype, kind=kind)
Reported by Pylint.
Line: 285
Column: 19
dtype = np.int64
values = self._base([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
a = self._klass(values, dtype=dtype, kind=kind)
assert a.dtype == SparseDtype(dtype)
b = self._klass(rvalues, dtype=dtype, kind=kind)
assert b.dtype == SparseDtype(dtype)
Reported by Pylint.
Line: 318
Column: 18
dtype = "int64"
# int32 NI ATM
values = self._base([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
a = self._klass(values, dtype=dtype, kind=kind)
b = self._klass(rvalues, dtype=dtype, kind=kind)
self._check_comparison_ops(a, b, values, rvalues)
Reported by Pylint.
Line: 319
Column: 19
# int32 NI ATM
values = self._base([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
a = self._klass(values, dtype=dtype, kind=kind)
b = self._klass(rvalues, dtype=dtype, kind=kind)
self._check_comparison_ops(a, b, values, rvalues)
self._check_comparison_ops(a, b * 0, values, rvalues * 0)
Reported by Pylint.
Line: 342
Column: 18
def test_bool_same_index(self, kind, fill_value):
# GH 14000
# when sp_index are the same
values = self._base([True, False, True, True], dtype=np.bool_)
rvalues = self._base([True, False, True, True], dtype=np.bool_)
a = self._klass(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
b = self._klass(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
self._check_logical_ops(a, b, values, rvalues)
Reported by Pylint.
Line: 343
Column: 19
# GH 14000
# when sp_index are the same
values = self._base([True, False, True, True], dtype=np.bool_)
rvalues = self._base([True, False, True, True], dtype=np.bool_)
a = self._klass(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
b = self._klass(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
self._check_logical_ops(a, b, values, rvalues)
Reported by Pylint.
Line: 353
Column: 18
def test_bool_array_logical(self, kind, fill_value):
# GH 14000
# when sp_index are the same
values = self._base([True, False, True, False, True, True], dtype=np.bool_)
rvalues = self._base([True, False, False, True, False, True], dtype=np.bool_)
a = self._klass(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
b = self._klass(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
self._check_logical_ops(a, b, values, rvalues)
Reported by Pylint.
Line: 354
Column: 19
# GH 14000
# when sp_index are the same
values = self._base([True, False, True, False, True, True], dtype=np.bool_)
rvalues = self._base([True, False, False, True, False, True], dtype=np.bool_)
a = self._klass(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
b = self._klass(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
self._check_logical_ops(a, b, values, rvalues)
Reported by Pylint.
Line: 374
Column: 19
rdtype = "int64"
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype)
a = self._klass(values, kind=kind)
b = self._klass(rvalues, kind=kind)
assert b.dtype == SparseDtype(rdtype)
Reported by Pylint.
pandas/tests/io/test_html.py
179 issues
Line: 14
Column: 1
from urllib.error import URLError
import numpy as np
import pytest
from pandas.compat import is_platform_windows
from pandas.errors import ParserError
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 74
Column: 5
@td.skip_if_no("bs4")
@td.skip_if_no("html5lib")
def test_bs4_version_fails(monkeypatch, datapath):
import bs4
monkeypatch.setattr(bs4, "__version__", "4.2")
with pytest.raises(ImportError, match="Pandas requires version"):
read_html(datapath("io", "data", "html", "spam.html"), flavor="bs4")
Reported by Pylint.
Line: 1111
Column: 9
@pytest.mark.slow
def test_fallback_success(self, datapath):
banklist_data = datapath("io", "data", "html", "banklist.html")
self.read_html(banklist_data, match=".*Water.*", flavor=["lxml", "html5lib"])
def test_to_html_timestamp(self):
rng = date_range("2000-01-01", periods=10)
df = DataFrame(np.random.randn(10, 4), index=rng)
Reported by Pylint.
Line: 111
Column: 9
class TestReadHtml:
@pytest.fixture(autouse=True)
def set_files(self, datapath):
self.spam_data = datapath("io", "data", "html", "spam.html")
self.spam_data_kwargs = {}
self.spam_data_kwargs["encoding"] = "UTF-8"
self.banklist_data = datapath("io", "data", "html", "banklist.html")
@pytest.fixture(autouse=True, scope="function")
Reported by Pylint.
Line: 112
Column: 9
@pytest.fixture(autouse=True)
def set_files(self, datapath):
self.spam_data = datapath("io", "data", "html", "spam.html")
self.spam_data_kwargs = {}
self.spam_data_kwargs["encoding"] = "UTF-8"
self.banklist_data = datapath("io", "data", "html", "banklist.html")
@pytest.fixture(autouse=True, scope="function")
def set_defaults(self, flavor, request):
Reported by Pylint.
Line: 114
Column: 9
self.spam_data = datapath("io", "data", "html", "spam.html")
self.spam_data_kwargs = {}
self.spam_data_kwargs["encoding"] = "UTF-8"
self.banklist_data = datapath("io", "data", "html", "banklist.html")
@pytest.fixture(autouse=True, scope="function")
def set_defaults(self, flavor, request):
self.read_html = partial(read_html, flavor=flavor)
yield
Reported by Pylint.
Line: 117
Column: 36
self.banklist_data = datapath("io", "data", "html", "banklist.html")
@pytest.fixture(autouse=True, scope="function")
def set_defaults(self, flavor, request):
self.read_html = partial(read_html, flavor=flavor)
yield
def test_to_html_compat(self):
df = (
Reported by Pylint.
Line: 118
Column: 9
@pytest.fixture(autouse=True, scope="function")
def set_defaults(self, flavor, request):
self.read_html = partial(read_html, flavor=flavor)
yield
def test_to_html_compat(self):
df = (
tm.makeCustomDataframe(
Reported by Pylint.
Line: 627
Column: 21
]
dfnew = df.applymap(try_remove_ws).replace(old, new)
gtnew = ground_truth.applymap(try_remove_ws)
converted = dfnew._convert(datetime=True, numeric=True)
date_cols = ["Closing Date", "Updated Date"]
converted[date_cols] = converted[date_cols].apply(to_datetime)
tm.assert_frame_equal(converted, gtnew)
@pytest.mark.slow
Reported by Pylint.
Line: 1159
Column: 27
else:
assert len(dfs) == 1 # Should not parse hidden table
def test_encode(self, html_encoding_file):
base_path = os.path.basename(html_encoding_file)
root = os.path.splitext(base_path)[0]
_, encoding = root.split("_")
try:
Reported by Pylint.
pandas/tests/io/formats/test_to_csv.py
179 issues
Line: 6
Column: 1
import sys
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
compat,
Reported by Pylint.
Line: 1
Column: 1
import io
import os
import sys
import numpy as np
import pytest
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 16
Column: 1
import pandas._testing as tm
class TestToCSV:
def test_to_csv_with_single_column(self):
# see gh-18676, https://bugs.python.org/issue32255
#
# Python's CSV library adds an extraneous '""'
# before the newline when the NaN-value is in
Reported by Pylint.
Line: 16
Column: 1
import pandas._testing as tm
class TestToCSV:
def test_to_csv_with_single_column(self):
# see gh-18676, https://bugs.python.org/issue32255
#
# Python's CSV library adds an extraneous '""'
# before the newline when the NaN-value is in
Reported by Pylint.
Line: 17
Column: 5
class TestToCSV:
def test_to_csv_with_single_column(self):
# see gh-18676, https://bugs.python.org/issue32255
#
# Python's CSV library adds an extraneous '""'
# before the newline when the NaN-value is in
# the first row. Otherwise, only the newline
Reported by Pylint.
Line: 17
Column: 5
class TestToCSV:
def test_to_csv_with_single_column(self):
# see gh-18676, https://bugs.python.org/issue32255
#
# Python's CSV library adds an extraneous '""'
# before the newline when the NaN-value is in
# the first row. Otherwise, only the newline
Reported by Pylint.
Line: 32
Column: 32
"""
with tm.ensure_clean("test.csv") as path:
df1.to_csv(path, header=None, index=None)
with open(path) as f:
assert f.read() == expected1
df2 = DataFrame([1, None])
expected2 = """\
1.0
Reported by Pylint.
Line: 33
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
with tm.ensure_clean("test.csv") as path:
df1.to_csv(path, header=None, index=None)
with open(path) as f:
assert f.read() == expected1
df2 = DataFrame([1, None])
expected2 = """\
1.0
""
Reported by Bandit.
Line: 42
Column: 32
"""
with tm.ensure_clean("test.csv") as path:
df2.to_csv(path, header=None, index=None)
with open(path) as f:
assert f.read() == expected2
def test_to_csv_defualt_encoding(self):
# GH17097
df = DataFrame({"col": ["AAAAA", "ÄÄÄÄÄ", "ßßßßß", "聞聞聞聞聞"]})
Reported by Pylint.
Line: 43
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
with tm.ensure_clean("test.csv") as path:
df2.to_csv(path, header=None, index=None)
with open(path) as f:
assert f.read() == expected2
def test_to_csv_defualt_encoding(self):
# GH17097
df = DataFrame({"col": ["AAAAA", "ÄÄÄÄÄ", "ßßßßß", "聞聞聞聞聞"]})
Reported by Bandit.