The following issues were found
numpy/polynomial/hermite_e.py
129 issues
Line: 82
Column: 1
import numpy.linalg as la
from numpy.core.multiarray import normalize_axis_index
from . import polyutils as pu
from ._polybase import ABCPolyBase
__all__ = [
'hermezero', 'hermeone', 'hermex', 'hermedomain', 'hermeline',
'hermeadd', 'hermesub', 'hermemulx', 'hermemul', 'hermediv',
Reported by Pylint.
Line: 83
Column: 1
from numpy.core.multiarray import normalize_axis_index
from . import polyutils as pu
from ._polybase import ABCPolyBase
__all__ = [
'hermezero', 'hermeone', 'hermex', 'hermedomain', 'hermeline',
'hermeadd', 'hermesub', 'hermemulx', 'hermemul', 'hermediv',
'hermepow', 'hermeval', 'hermeder', 'hermeint', 'herme2poly',
Reported by Pylint.
Line: 181
Column: 5
array([0., 1., 2., 3.])
"""
from .polynomial import polyadd, polysub, polymulx
[c] = pu.as_series([c])
n = len(c)
if n == 1:
return c
Reported by Pylint.
Line: 309
Column: 12
array([0.+0.j, 0.+0.j])
"""
return pu._fromroots(hermeline, hermemul, roots)
def hermeadd(c1, c2):
"""
Add one Hermite series to another.
Reported by Pylint.
Line: 349
Column: 12
array([2., 4., 6., 4.])
"""
return pu._add(c1, c2)
def hermesub(c1, c2):
"""
Subtract one Hermite series from another.
Reported by Pylint.
Line: 389
Column: 12
array([0., 0., 0., 4.])
"""
return pu._sub(c1, c2)
def hermemulx(c):
"""Multiply a Hermite series by x.
Reported by Pylint.
Line: 550
Column: 12
(array([1., 2., 3.]), array([1., 2.]))
"""
return pu._div(hermemul, c1, c2)
def hermepow(c, pow, maxpower=16):
"""Raise a Hermite series to a power.
Reported by Pylint.
Line: 553
Column: 17
return pu._div(hermemul, c1, c2)
def hermepow(c, pow, maxpower=16):
"""Raise a Hermite series to a power.
Returns the Hermite series `c` raised to the power `pow`. The
argument `c` is a sequence of coefficients ordered from low to high.
i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.``
Reported by Pylint.
Line: 587
Column: 12
array([23., 28., 46., 12., 9.])
"""
return pu._pow(hermemul, c, pow, maxpower)
def hermeder(c, m=1, scl=1, axis=0):
"""
Differentiate a Hermite_e series.
Reported by Pylint.
Line: 648
Column: 11
c = np.array(c, ndmin=1, copy=True)
if c.dtype.char in '?bBhHiIlLqQpP':
c = c.astype(np.double)
cnt = pu._deprecate_as_int(m, "the order of derivation")
iaxis = pu._deprecate_as_int(axis, "the axis")
if cnt < 0:
raise ValueError("The order of derivation must be non-negative")
iaxis = normalize_axis_index(iaxis, c.ndim)
Reported by Pylint.
numpy/lib/tests/test_polynomial.py
126 issues
Line: 7
Column: 1
assert_array_almost_equal, assert_raises, assert_allclose
)
import pytest
# `poly1d` has some support for `bool_` and `timedelta64`,
# but it is limited and they are therefore excluded here
TYPE_CODES = np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "O"
Reported by Pylint.
Line: 117
Column: 9
assert_(np.iscomplexobj(np.poly([1j, -1.0000001j])))
np.random.seed(42)
a = np.random.randn(100) + 1j*np.random.randn(100)
assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a))))))
def test_roots(self):
assert_array_equal(np.roots([1, 0, 0]), [0, 0])
Reported by Pylint.
Line: 118
Column: 39
assert_(np.iscomplexobj(np.poly([1j, -1.0000001j])))
np.random.seed(42)
a = np.random.randn(100) + 1j*np.random.randn(100)
assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a))))))
def test_roots(self):
assert_array_equal(np.roots([1, 0, 0]), [0, 0])
Reported by Pylint.
Line: 118
Column: 13
assert_(np.iscomplexobj(np.poly([1j, -1.0000001j])))
np.random.seed(42)
a = np.random.randn(100) + 1j*np.random.randn(100)
assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a))))))
def test_roots(self):
assert_array_equal(np.roots([1, 0, 0]), [0, 0])
Reported by Pylint.
Line: 188
Column: 9
assert_almost_equal(val0, cov[:, :, 1], decimal=4)
# check order 1 (deg=0) case, were the analytic results are simple
np.random.seed(123)
y = np.random.normal(size=(4, 10000))
mean, cov = np.polyfit(np.zeros(y.shape[0]), y, deg=0, cov=True)
# Should get sigma_mean = sigma/sqrt(N) = 1./sqrt(4) = 0.5.
assert_allclose(mean.std(), 0.5, atol=0.01)
assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01)
Reported by Pylint.
Line: 189
Column: 13
# check order 1 (deg=0) case, were the analytic results are simple
np.random.seed(123)
y = np.random.normal(size=(4, 10000))
mean, cov = np.polyfit(np.zeros(y.shape[0]), y, deg=0, cov=True)
# Should get sigma_mean = sigma/sqrt(N) = 1./sqrt(4) = 0.5.
assert_allclose(mean.std(), 0.5, atol=0.01)
assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01)
# Without scaling, since reduced chi2 is 1, the result should be the same.
Reported by Pylint.
Line: 106
Column: 9
assert_array_almost_equal(np.poly(A), [1, -6, -72, -27])
# Should produce real output for perfect conjugates
assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j])))
assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j,
1-2j, 1.+3.5j, 1-3.5j])))
assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j])))
assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j])))
assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j])))
Reported by Pylint.
Line: 107
Column: 9
# Should produce real output for perfect conjugates
assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j])))
assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j,
1-2j, 1.+3.5j, 1-3.5j])))
assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j])))
assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j])))
assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j])))
assert_(np.isrealobj(np.poly([1j, -1j])))
Reported by Pylint.
Line: 109
Column: 9
assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j])))
assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j,
1-2j, 1.+3.5j, 1-3.5j])))
assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j])))
assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j])))
assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j])))
assert_(np.isrealobj(np.poly([1j, -1j])))
assert_(np.isrealobj(np.poly([1, -1])))
Reported by Pylint.
Line: 110
Column: 9
assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j,
1-2j, 1.+3.5j, 1-3.5j])))
assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j])))
assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j])))
assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j])))
assert_(np.isrealobj(np.poly([1j, -1j])))
assert_(np.isrealobj(np.poly([1, -1])))
assert_(np.iscomplexobj(np.poly([1j, -1.0000001j])))
Reported by Pylint.
numpy/random/tests/test_direct.py
124 issues
Line: 8
Column: 1
import numpy as np
from numpy.testing import (assert_equal, assert_allclose, assert_array_equal,
assert_raises)
import pytest
from numpy.random import (
Generator, MT19937, PCG64, PCG64DXSM, Philox, RandomState, SeedSequence,
SFC64, default_rng
)
Reported by Pylint.
Line: 14
Column: 1
Generator, MT19937, PCG64, PCG64DXSM, Philox, RandomState, SeedSequence,
SFC64, default_rng
)
from numpy.random._common import interface
try:
import cffi # noqa: F401
MISSING_CFFI = False
Reported by Pylint.
Line: 130
Column: 5
return gauss[:n]
def test_seedsequence():
from numpy.random.bit_generator import (ISeedSequence,
ISpawnableSeedSequence,
SeedlessSeedSequence)
s1 = SeedSequence(range(10), spawn_key=(1, 2), pool_size=6)
s1.spawn(10)
Reported by Pylint.
Line: 17
Column: 5
from numpy.random._common import interface
try:
import cffi # noqa: F401
MISSING_CFFI = False
except ImportError:
MISSING_CFFI = True
Reported by Pylint.
Line: 24
Column: 5
MISSING_CFFI = True
try:
import ctypes # noqa: F401
MISSING_CTYPES = False
except ImportError:
MISSING_CTYPES = False
Reported by Pylint.
Line: 247
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html#b301-pickle
bit_generator = self.bit_generator(*self.data1['seed'])
state = bit_generator.state
bitgen_pkl = pickle.dumps(bit_generator)
reloaded = pickle.loads(bitgen_pkl)
reloaded_state = reloaded.state
assert_array_equal(Generator(bit_generator).standard_normal(1000),
Generator(reloaded).standard_normal(1000))
assert bit_generator is not reloaded
assert_state_equal(reloaded_state, state)
Reported by Bandit.
Line: 255
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html#b301-pickle
assert_state_equal(reloaded_state, state)
ss = SeedSequence(100)
aa = pickle.loads(pickle.dumps(ss))
assert_equal(ss.state, aa.state)
def test_invalid_state_type(self):
bit_generator = self.bit_generator(*self.data1['seed'])
with pytest.raises(TypeError):
Reported by Bandit.
Line: 284
Column: 9
def test_benchmark(self):
bit_generator = self.bit_generator(*self.data1['seed'])
bit_generator._benchmark(1)
bit_generator._benchmark(1, 'double')
with pytest.raises(ValueError):
bit_generator._benchmark(1, 'int32')
@pytest.mark.skipif(MISSING_CFFI, reason='cffi not available')
Reported by Pylint.
Line: 285
Column: 9
def test_benchmark(self):
bit_generator = self.bit_generator(*self.data1['seed'])
bit_generator._benchmark(1)
bit_generator._benchmark(1, 'double')
with pytest.raises(ValueError):
bit_generator._benchmark(1, 'int32')
@pytest.mark.skipif(MISSING_CFFI, reason='cffi not available')
def test_cffi(self):
Reported by Pylint.
Line: 287
Column: 13
bit_generator._benchmark(1)
bit_generator._benchmark(1, 'double')
with pytest.raises(ValueError):
bit_generator._benchmark(1, 'int32')
@pytest.mark.skipif(MISSING_CFFI, reason='cffi not available')
def test_cffi(self):
bit_generator = self.bit_generator(*self.data1['seed'])
cffi_interface = bit_generator.cffi
Reported by Pylint.
numpy/core/umath.py
123 issues
Line: 9
Column: 1
"""
from . import _multiarray_umath
from ._multiarray_umath import * # noqa: F403
# These imports are needed for backward compatibility,
# do not change them. issue gh-11862
# _ones_like is semi-public, on purpose not added to __all__
from ._multiarray_umath import _UFUNC_API, _add_newdoc_ufunc, _ones_like
Reported by Pylint.
Line: 10
Column: 1
"""
from . import _multiarray_umath
from ._multiarray_umath import * # noqa: F403
# These imports are needed for backward compatibility,
# do not change them. issue gh-11862
# _ones_like is semi-public, on purpose not added to __all__
from ._multiarray_umath import _UFUNC_API, _add_newdoc_ufunc, _ones_like
Reported by Pylint.
Line: 14
Column: 1
# These imports are needed for backward compatibility,
# do not change them. issue gh-11862
# _ones_like is semi-public, on purpose not added to __all__
from ._multiarray_umath import _UFUNC_API, _add_newdoc_ufunc, _ones_like
__all__ = [
'_UFUNC_API', 'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG',
'ERR_PRINT', 'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT',
'FPE_DIVIDEBYZERO', 'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'NAN',
Reported by Pylint.
Line: 17
Column: 46
from ._multiarray_umath import _UFUNC_API, _add_newdoc_ufunc, _ones_like
__all__ = [
'_UFUNC_API', 'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG',
'ERR_PRINT', 'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT',
'FPE_DIVIDEBYZERO', 'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'NAN',
'NINF', 'NZERO', 'PINF', 'PZERO', 'SHIFT_DIVIDEBYZERO', 'SHIFT_INVALID',
'SHIFT_OVERFLOW', 'SHIFT_UNDERFLOW', 'UFUNC_BUFSIZE_DEFAULT',
'UFUNC_PYVALS_NAME', '_add_newdoc_ufunc', 'absolute', 'add',
Reported by Pylint.
Line: 17
Column: 19
from ._multiarray_umath import _UFUNC_API, _add_newdoc_ufunc, _ones_like
__all__ = [
'_UFUNC_API', 'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG',
'ERR_PRINT', 'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT',
'FPE_DIVIDEBYZERO', 'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'NAN',
'NINF', 'NZERO', 'PINF', 'PZERO', 'SHIFT_DIVIDEBYZERO', 'SHIFT_INVALID',
'SHIFT_OVERFLOW', 'SHIFT_UNDERFLOW', 'UFUNC_BUFSIZE_DEFAULT',
'UFUNC_PYVALS_NAME', '_add_newdoc_ufunc', 'absolute', 'add',
Reported by Pylint.
Line: 17
Column: 60
from ._multiarray_umath import _UFUNC_API, _add_newdoc_ufunc, _ones_like
__all__ = [
'_UFUNC_API', 'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG',
'ERR_PRINT', 'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT',
'FPE_DIVIDEBYZERO', 'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'NAN',
'NINF', 'NZERO', 'PINF', 'PZERO', 'SHIFT_DIVIDEBYZERO', 'SHIFT_INVALID',
'SHIFT_OVERFLOW', 'SHIFT_UNDERFLOW', 'UFUNC_BUFSIZE_DEFAULT',
'UFUNC_PYVALS_NAME', '_add_newdoc_ufunc', 'absolute', 'add',
Reported by Pylint.
Line: 17
Column: 31
from ._multiarray_umath import _UFUNC_API, _add_newdoc_ufunc, _ones_like
__all__ = [
'_UFUNC_API', 'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG',
'ERR_PRINT', 'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT',
'FPE_DIVIDEBYZERO', 'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'NAN',
'NINF', 'NZERO', 'PINF', 'PZERO', 'SHIFT_DIVIDEBYZERO', 'SHIFT_INVALID',
'SHIFT_OVERFLOW', 'SHIFT_UNDERFLOW', 'UFUNC_BUFSIZE_DEFAULT',
'UFUNC_PYVALS_NAME', '_add_newdoc_ufunc', 'absolute', 'add',
Reported by Pylint.
Line: 18
Column: 31
__all__ = [
'_UFUNC_API', 'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG',
'ERR_PRINT', 'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT',
'FPE_DIVIDEBYZERO', 'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'NAN',
'NINF', 'NZERO', 'PINF', 'PZERO', 'SHIFT_DIVIDEBYZERO', 'SHIFT_INVALID',
'SHIFT_OVERFLOW', 'SHIFT_UNDERFLOW', 'UFUNC_BUFSIZE_DEFAULT',
'UFUNC_PYVALS_NAME', '_add_newdoc_ufunc', 'absolute', 'add',
'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh',
Reported by Pylint.
Line: 18
Column: 5
__all__ = [
'_UFUNC_API', 'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG',
'ERR_PRINT', 'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT',
'FPE_DIVIDEBYZERO', 'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'NAN',
'NINF', 'NZERO', 'PINF', 'PZERO', 'SHIFT_DIVIDEBYZERO', 'SHIFT_INVALID',
'SHIFT_OVERFLOW', 'SHIFT_UNDERFLOW', 'UFUNC_BUFSIZE_DEFAULT',
'UFUNC_PYVALS_NAME', '_add_newdoc_ufunc', 'absolute', 'add',
'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh',
Reported by Pylint.
Line: 18
Column: 18
__all__ = [
'_UFUNC_API', 'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG',
'ERR_PRINT', 'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT',
'FPE_DIVIDEBYZERO', 'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'NAN',
'NINF', 'NZERO', 'PINF', 'PZERO', 'SHIFT_DIVIDEBYZERO', 'SHIFT_INVALID',
'SHIFT_OVERFLOW', 'SHIFT_UNDERFLOW', 'UFUNC_BUFSIZE_DEFAULT',
'UFUNC_PYVALS_NAME', '_add_newdoc_ufunc', 'absolute', 'add',
'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh',
Reported by Pylint.
numpy/lib/tests/test_stride_tricks.py
123 issues
Line: 2
Column: 1
import numpy as np
from numpy.core._rational_tests import rational
from numpy.testing import (
assert_equal, assert_array_equal, assert_raises, assert_,
assert_raises_regex, assert_warns,
)
from numpy.lib.stride_tricks import (
as_strided, broadcast_arrays, _broadcast_shape, broadcast_to,
broadcast_shapes, sliding_window_view,
Reported by Pylint.
Line: 11
Column: 1
as_strided, broadcast_arrays, _broadcast_shape, broadcast_to,
broadcast_shapes, sliding_window_view,
)
import pytest
def assert_shapes_correct(input_shapes, expected_shape):
# Broadcast a list of arrays with the given input shapes and check the
# common output shape.
Reported by Pylint.
Line: 70
Column: 9
y = np.arange(10)
with assert_raises_regex(TypeError, 'got an unexpected keyword'):
broadcast_arrays(x, y, dtype='float64')
def test_one_off():
x = np.array([[1, 2, 3]])
y = np.array([[1], [2], [3]])
Reported by Pylint.
Line: 51
Column: 5
# Use the add ufunc to do the broadcasting. Since we're adding 0s to x1, the
# result should be exactly the same as the broadcasted view of x1.
y = x0 + x1
b0, b1 = broadcast_arrays(x0, x1)
assert_array_equal(y, b1)
def test_same():
x = np.arange(10)
Reported by Pylint.
Line: 220
Column: 23
[[(), (1, 0)], (1, 0)],
[[(), (0, 1)], (0, 1)],
]
for input_shapes, expected_shape in data:
assert_same_as_ufunc(input_shapes[0], input_shapes[1],
"Shapes: %s %s" % (input_shapes[0], input_shapes[1]))
# Reverse the input shapes since broadcasting should be symmetric.
assert_same_as_ufunc(input_shapes[1], input_shapes[0])
# Try them transposed, too.
Reported by Pylint.
Line: 276
Column: 61
]
for orig_shape, target_shape in data:
arr = np.zeros(orig_shape)
assert_raises(ValueError, lambda: broadcast_to(arr, target_shape))
def test_broadcast_shape():
# tests internal _broadcast_shape
# _broadcast_shape is already exercised indirectly by broadcast_arrays
Reported by Pylint.
Line: 276
Column: 56
]
for orig_shape, target_shape in data:
arr = np.zeros(orig_shape)
assert_raises(ValueError, lambda: broadcast_to(arr, target_shape))
def test_broadcast_shape():
# tests internal _broadcast_shape
# _broadcast_shape is already exercised indirectly by broadcast_arrays
Reported by Pylint.
Line: 348
Column: 61
[2, (2, 3)],
]
for input_shapes in data:
assert_raises(ValueError, lambda: broadcast_shapes(*input_shapes))
bad_args = [(2,)] * 32 + [(3,)] * 32
assert_raises(ValueError, lambda: broadcast_shapes(*bad_args))
Reported by Pylint.
Line: 479
Column: 9
def test_writeable(self):
arr = np.arange(5)
view = sliding_window_view(arr, 2, writeable=False)
assert_(not view.flags.writeable)
with pytest.raises(
ValueError,
match='assignment destination is read-only'):
view[0, 0] = 3
view = sliding_window_view(arr, 2, writeable=True)
Reported by Pylint.
Line: 485
Column: 9
match='assignment destination is read-only'):
view[0, 0] = 3
view = sliding_window_view(arr, 2, writeable=True)
assert_(view.flags.writeable)
view[0, 1] = 3
assert_array_equal(arr, np.array([0, 3, 2, 3, 4]))
def test_subok(self):
class MyArray(np.ndarray):
Reported by Pylint.
numpy/polynomial/legendre.py
122 issues
Line: 86
Column: 1
import numpy.linalg as la
from numpy.core.multiarray import normalize_axis_index
from . import polyutils as pu
from ._polybase import ABCPolyBase
__all__ = [
'legzero', 'legone', 'legx', 'legdomain', 'legline', 'legadd',
'legsub', 'legmulx', 'legmul', 'legdiv', 'legpow', 'legval', 'legder',
Reported by Pylint.
Line: 87
Column: 1
from numpy.core.multiarray import normalize_axis_index
from . import polyutils as pu
from ._polybase import ABCPolyBase
__all__ = [
'legzero', 'legone', 'legx', 'legdomain', 'legline', 'legadd',
'legsub', 'legmulx', 'legmul', 'legdiv', 'legpow', 'legval', 'legder',
'legint', 'leg2poly', 'poly2leg', 'legfromroots', 'legvander',
Reported by Pylint.
Line: 193
Column: 5
"""
from .polynomial import polyadd, polysub, polymulx
[c] = pu.as_series([c])
n = len(c)
if n < 3:
return c
Reported by Pylint.
Line: 319
Column: 12
array([ 1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j]) # may vary
"""
return pu._fromroots(legline, legmul, roots)
def legadd(c1, c2):
"""
Add one Legendre series to another.
Reported by Pylint.
Line: 361
Column: 12
array([4., 4., 4.])
"""
return pu._add(c1, c2)
def legsub(c1, c2):
"""
Subtract one Legendre series from another.
Reported by Pylint.
Line: 405
Column: 12
array([ 2., 0., -2.])
"""
return pu._sub(c1, c2)
def legmulx(c):
"""Multiply a Legendre series by x.
Reported by Pylint.
Line: 578
Column: 12
(array([-0.07407407, 1.66666667]), array([-1.03703704, -2.51851852])) # may vary
"""
return pu._div(legmul, c1, c2)
def legpow(c, pow, maxpower=16):
"""Raise a Legendre series to a power.
Reported by Pylint.
Line: 581
Column: 15
return pu._div(legmul, c1, c2)
def legpow(c, pow, maxpower=16):
"""Raise a Legendre series to a power.
Returns the Legendre series `c` raised to the power `pow`. The
argument `c` is a sequence of coefficients ordered from low to high.
i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.``
Reported by Pylint.
Line: 609
Column: 12
legadd, legsub, legmulx, legmul, legdiv
"""
return pu._pow(legmul, c, pow, maxpower)
def legder(c, m=1, scl=1, axis=0):
"""
Differentiate a Legendre series.
Reported by Pylint.
Line: 675
Column: 11
c = np.array(c, ndmin=1, copy=True)
if c.dtype.char in '?bBhHiIlLqQpP':
c = c.astype(np.double)
cnt = pu._deprecate_as_int(m, "the order of derivation")
iaxis = pu._deprecate_as_int(axis, "the axis")
if cnt < 0:
raise ValueError("The order of derivation must be non-negative")
iaxis = normalize_axis_index(iaxis, c.ndim)
Reported by Pylint.
numpy/typing/tests/data/reveal/mod.py
122 issues
Line: 4
Column: 6
from typing import Any
import numpy as np
f8 = np.float64()
i8 = np.int64()
u8 = np.uint64()
f4 = np.float32()
i4 = np.int32()
Reported by Pylint.
Line: 6
Column: 6
f8 = np.float64()
i8 = np.int64()
u8 = np.uint64()
f4 = np.float32()
i4 = np.int32()
u4 = np.uint32()
Reported by Pylint.
Line: 8
Column: 6
i8 = np.int64()
u8 = np.uint64()
f4 = np.float32()
i4 = np.int32()
u4 = np.uint32()
td = np.timedelta64(0, "D")
b_ = np.bool_()
Reported by Pylint.
Line: 10
Column: 6
f4 = np.float32()
i4 = np.int32()
u4 = np.uint32()
td = np.timedelta64(0, "D")
b_ = np.bool_()
b = bool()
Reported by Pylint.
Line: 13
Column: 6
u4 = np.uint32()
td = np.timedelta64(0, "D")
b_ = np.bool_()
b = bool()
f = float()
i = int()
Reported by Pylint.
Line: 19
Column: 7
f = float()
i = int()
AR_b: np.ndarray[Any, np.dtype[np.bool_]]
AR_m: np.ndarray[Any, np.dtype[np.timedelta64]]
# Time structures
reveal_type(td % td) # E: numpy.timedelta64
Reported by Pylint.
Line: 20
Column: 7
i = int()
AR_b: np.ndarray[Any, np.dtype[np.bool_]]
AR_m: np.ndarray[Any, np.dtype[np.timedelta64]]
# Time structures
reveal_type(td % td) # E: numpy.timedelta64
reveal_type(AR_m % td) # E: Any
Reported by Pylint.
Line: 24
Column: 1
# Time structures
reveal_type(td % td) # E: numpy.timedelta64
reveal_type(AR_m % td) # E: Any
reveal_type(td % AR_m) # E: Any
reveal_type(divmod(td, td)) # E: Tuple[{int64}, numpy.timedelta64]
reveal_type(divmod(AR_m, td)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]], numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
Reported by Pylint.
Line: 25
Column: 1
# Time structures
reveal_type(td % td) # E: numpy.timedelta64
reveal_type(AR_m % td) # E: Any
reveal_type(td % AR_m) # E: Any
reveal_type(divmod(td, td)) # E: Tuple[{int64}, numpy.timedelta64]
reveal_type(divmod(AR_m, td)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]], numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
reveal_type(divmod(td, AR_m)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]], numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
Reported by Pylint.
Line: 26
Column: 1
reveal_type(td % td) # E: numpy.timedelta64
reveal_type(AR_m % td) # E: Any
reveal_type(td % AR_m) # E: Any
reveal_type(divmod(td, td)) # E: Tuple[{int64}, numpy.timedelta64]
reveal_type(divmod(AR_m, td)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]], numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
reveal_type(divmod(td, AR_m)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]], numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]]
Reported by Pylint.
numpy/polynomial/laguerre.py
119 issues
Line: 82
Column: 1
import numpy.linalg as la
from numpy.core.multiarray import normalize_axis_index
from . import polyutils as pu
from ._polybase import ABCPolyBase
__all__ = [
'lagzero', 'lagone', 'lagx', 'lagdomain', 'lagline', 'lagadd',
'lagsub', 'lagmulx', 'lagmul', 'lagdiv', 'lagpow', 'lagval', 'lagder',
Reported by Pylint.
Line: 83
Column: 1
from numpy.core.multiarray import normalize_axis_index
from . import polyutils as pu
from ._polybase import ABCPolyBase
__all__ = [
'lagzero', 'lagone', 'lagx', 'lagdomain', 'lagline', 'lagadd',
'lagsub', 'lagmulx', 'lagmul', 'lagdiv', 'lagpow', 'lagval', 'lagder',
'lagint', 'lag2poly', 'poly2lag', 'lagfromroots', 'lagvander',
Reported by Pylint.
Line: 179
Column: 5
array([0., 1., 2., 3.])
"""
from .polynomial import polyadd, polysub, polymulx
[c] = pu.as_series([c])
n = len(c)
if n == 1:
return c
Reported by Pylint.
Line: 304
Column: 12
array([0.+0.j, 0.+0.j])
"""
return pu._fromroots(lagline, lagmul, roots)
def lagadd(c1, c2):
"""
Add one Laguerre series to another.
Reported by Pylint.
Line: 345
Column: 12
"""
return pu._add(c1, c2)
def lagsub(c1, c2):
"""
Subtract one Laguerre series from another.
Reported by Pylint.
Line: 385
Column: 12
array([0., 0., 0., 4.])
"""
return pu._sub(c1, c2)
def lagmulx(c):
"""Multiply a Laguerre series by x.
Reported by Pylint.
Line: 551
Column: 12
(array([1., 2., 3.]), array([1., 1.]))
"""
return pu._div(lagmul, c1, c2)
def lagpow(c, pow, maxpower=16):
"""Raise a Laguerre series to a power.
Reported by Pylint.
Line: 554
Column: 15
return pu._div(lagmul, c1, c2)
def lagpow(c, pow, maxpower=16):
"""Raise a Laguerre series to a power.
Returns the Laguerre series `c` raised to the power `pow`. The
argument `c` is a sequence of coefficients ordered from low to high.
i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.``
Reported by Pylint.
Line: 588
Column: 12
array([ 14., -16., 56., -72., 54.])
"""
return pu._pow(lagmul, c, pow, maxpower)
def lagder(c, m=1, scl=1, axis=0):
"""
Differentiate a Laguerre series.
Reported by Pylint.
Line: 650
Column: 11
if c.dtype.char in '?bBhHiIlLqQpP':
c = c.astype(np.double)
cnt = pu._deprecate_as_int(m, "the order of derivation")
iaxis = pu._deprecate_as_int(axis, "the axis")
if cnt < 0:
raise ValueError("The order of derivation must be non-negative")
iaxis = normalize_axis_index(iaxis, c.ndim)
Reported by Pylint.
numpy/lib/recfunctions.py
111 issues
Line: 18
Column: 21
from numpy.lib._iotools import _is_string_like
from numpy.testing import suppress_warnings
_check_fill_value = np.ma.core._check_fill_value
__all__ = [
'append_fields', 'apply_along_fields', 'assign_fields_by_name',
'drop_fields', 'find_duplicates', 'flatten_descr',
Reported by Pylint.
Line: 32
Column: 39
]
def _recursive_fill_fields_dispatcher(input, output):
return (input, output)
@array_function_dispatch(_recursive_fill_fields_dispatcher)
def recursive_fill_fields(input, output):
Reported by Pylint.
Line: 37
Column: 27
@array_function_dispatch(_recursive_fill_fields_dispatcher)
def recursive_fill_fields(input, output):
"""
Fills fields from output with fields from input,
with support for nested structures.
Parameters
Reported by Pylint.
Line: 364
Column: 41
return output
def _merge_arrays_dispatcher(seqarrays, fill_value=None, flatten=None,
usemask=None, asrecarray=None):
return seqarrays
@array_function_dispatch(_merge_arrays_dispatcher)
Reported by Pylint.
Line: 364
Column: 58
return output
def _merge_arrays_dispatcher(seqarrays, fill_value=None, flatten=None,
usemask=None, asrecarray=None):
return seqarrays
@array_function_dispatch(_merge_arrays_dispatcher)
Reported by Pylint.
Line: 365
Column: 30
def _merge_arrays_dispatcher(seqarrays, fill_value=None, flatten=None,
usemask=None, asrecarray=None):
return seqarrays
@array_function_dispatch(_merge_arrays_dispatcher)
def merge_arrays(seqarrays, fill_value=-1, flatten=False,
Reported by Pylint.
Line: 365
Column: 44
def _merge_arrays_dispatcher(seqarrays, fill_value=None, flatten=None,
usemask=None, asrecarray=None):
return seqarrays
@array_function_dispatch(_merge_arrays_dispatcher)
def merge_arrays(seqarrays, fill_value=-1, flatten=False,
Reported by Pylint.
Line: 505
Column: 35
return output
def _drop_fields_dispatcher(base, drop_names, usemask=None, asrecarray=None):
return (base,)
@array_function_dispatch(_drop_fields_dispatcher)
def drop_fields(base, drop_names, usemask=True, asrecarray=False):
Reported by Pylint.
Line: 505
Column: 47
return output
def _drop_fields_dispatcher(base, drop_names, usemask=None, asrecarray=None):
return (base,)
@array_function_dispatch(_drop_fields_dispatcher)
def drop_fields(base, drop_names, usemask=True, asrecarray=False):
Reported by Pylint.
Line: 505
Column: 61
return output
def _drop_fields_dispatcher(base, drop_names, usemask=None, asrecarray=None):
return (base,)
@array_function_dispatch(_drop_fields_dispatcher)
def drop_fields(base, drop_names, usemask=True, asrecarray=False):
Reported by Pylint.
numpy/random/tests/test_randomstate_regression.py
111 issues
Line: 3
Column: 1
import sys
import pytest
from numpy.testing import (
assert_, assert_array_equal, assert_raises,
)
import numpy as np
Reported by Pylint.
Line: 19
Column: 17
# Make sure generated random variables are in [-pi, pi].
# Regression test for ticket #986.
for mu in np.linspace(-7., 7., 5):
r = random.vonmises(mu, 1, 50)
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
def test_hypergeometric_range(self):
# Test for ticket #921
assert_(np.all(random.hypergeometric(3, 18, 11, size=10) < 4))
Reported by Pylint.
Line: 24
Column: 24
def test_hypergeometric_range(self):
# Test for ticket #921
assert_(np.all(random.hypergeometric(3, 18, 11, size=10) < 4))
assert_(np.all(random.hypergeometric(18, 3, 11, size=10) > 0))
# Test for ticket #5623
args = [
(2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems
Reported by Pylint.
Line: 25
Column: 24
def test_hypergeometric_range(self):
# Test for ticket #921
assert_(np.all(random.hypergeometric(3, 18, 11, size=10) < 4))
assert_(np.all(random.hypergeometric(18, 3, 11, size=10) > 0))
# Test for ticket #5623
args = [
(2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems
]
Reported by Pylint.
Line: 36
Column: 21
# Check for 64-bit systems
args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
for arg in args:
assert_(random.hypergeometric(*arg) > 0)
def test_logseries_convergence(self):
# Test for ticket #923
N = 1000
random.seed(0)
Reported by Pylint.
Line: 41
Column: 9
def test_logseries_convergence(self):
# Test for ticket #923
N = 1000
random.seed(0)
rvsn = random.logseries(0.8, size=N)
# these two frequency counts should be close to theoretical
# numbers with this large sample
# theoretical large N result is 0.49706795
freq = np.sum(rvsn == 1) / N
Reported by Pylint.
Line: 42
Column: 16
# Test for ticket #923
N = 1000
random.seed(0)
rvsn = random.logseries(0.8, size=N)
# these two frequency counts should be close to theoretical
# numbers with this large sample
# theoretical large N result is 0.49706795
freq = np.sum(rvsn == 1) / N
msg = f'Frequency was {freq:f}, should be > 0.45'
Reported by Pylint.
Line: 60
Column: 13
[(1, 1), (2, 2), (3, 3), None],
[1, (2, 2), (3, 3), None],
[(1, 1), 2, 3, None]]:
random.seed(12345)
shuffled = list(t)
random.shuffle(shuffled)
expected = np.array([t[0], t[3], t[1], t[2]], dtype=object)
assert_array_equal(np.array(shuffled, dtype=object), expected)
Reported by Pylint.
Line: 62
Column: 13
[(1, 1), 2, 3, None]]:
random.seed(12345)
shuffled = list(t)
random.shuffle(shuffled)
expected = np.array([t[0], t[3], t[1], t[2]], dtype=object)
assert_array_equal(np.array(shuffled, dtype=object), expected)
def test_call_within_randomstate(self):
# Check that custom RandomState does not call into global state
Reported by Pylint.
Line: 68
Column: 13
def test_call_within_randomstate(self):
# Check that custom RandomState does not call into global state
m = random.RandomState()
res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
for i in range(3):
random.seed(i)
m.seed(4321)
# If m.state is not honored, the result will change
Reported by Pylint.