The following issues were found
numpy/typing/tests/data/reveal/npyio.py
58 issues
Line: 13
Column: 10
str_file: IO[str]
bytes_file: IO[bytes]
bag_obj: np.lib.npyio.BagObj[int]
npz_file: np.lib.npyio.NpzFile
AR_i8: npt.NDArray[np.int64]
AR_LIKE_f8: List[float]
Reported by Pylint.
Line: 16
Column: 8
bag_obj: np.lib.npyio.BagObj[int]
npz_file: np.lib.npyio.NpzFile
AR_i8: npt.NDArray[np.int64]
AR_LIKE_f8: List[float]
reveal_type(bag_obj.a) # E: int
reveal_type(bag_obj.b) # E: int
Reported by Pylint.
Line: 19
Column: 1
AR_i8: npt.NDArray[np.int64]
AR_LIKE_f8: List[float]
reveal_type(bag_obj.a) # E: int
reveal_type(bag_obj.b) # E: int
reveal_type(npz_file.zip) # E: zipfile.ZipFile
reveal_type(npz_file.fid) # E: Union[None, typing.IO[builtins.str]]
reveal_type(npz_file.files) # E: list[builtins.str]
Reported by Pylint.
Line: 20
Column: 1
AR_LIKE_f8: List[float]
reveal_type(bag_obj.a) # E: int
reveal_type(bag_obj.b) # E: int
reveal_type(npz_file.zip) # E: zipfile.ZipFile
reveal_type(npz_file.fid) # E: Union[None, typing.IO[builtins.str]]
reveal_type(npz_file.files) # E: list[builtins.str]
reveal_type(npz_file.allow_pickle) # E: bool
Reported by Pylint.
Line: 22
Column: 1
reveal_type(bag_obj.a) # E: int
reveal_type(bag_obj.b) # E: int
reveal_type(npz_file.zip) # E: zipfile.ZipFile
reveal_type(npz_file.fid) # E: Union[None, typing.IO[builtins.str]]
reveal_type(npz_file.files) # E: list[builtins.str]
reveal_type(npz_file.allow_pickle) # E: bool
reveal_type(npz_file.pickle_kwargs) # E: Union[None, typing.Mapping[builtins.str, Any]]
reveal_type(npz_file.f) # E: numpy.lib.npyio.BagObj[numpy.lib.npyio.NpzFile]
Reported by Pylint.
Line: 23
Column: 1
reveal_type(bag_obj.b) # E: int
reveal_type(npz_file.zip) # E: zipfile.ZipFile
reveal_type(npz_file.fid) # E: Union[None, typing.IO[builtins.str]]
reveal_type(npz_file.files) # E: list[builtins.str]
reveal_type(npz_file.allow_pickle) # E: bool
reveal_type(npz_file.pickle_kwargs) # E: Union[None, typing.Mapping[builtins.str, Any]]
reveal_type(npz_file.f) # E: numpy.lib.npyio.BagObj[numpy.lib.npyio.NpzFile]
reveal_type(npz_file["test"]) # E: numpy.ndarray[Any, numpy.dtype[Any]]
Reported by Pylint.
Line: 24
Column: 1
reveal_type(npz_file.zip) # E: zipfile.ZipFile
reveal_type(npz_file.fid) # E: Union[None, typing.IO[builtins.str]]
reveal_type(npz_file.files) # E: list[builtins.str]
reveal_type(npz_file.allow_pickle) # E: bool
reveal_type(npz_file.pickle_kwargs) # E: Union[None, typing.Mapping[builtins.str, Any]]
reveal_type(npz_file.f) # E: numpy.lib.npyio.BagObj[numpy.lib.npyio.NpzFile]
reveal_type(npz_file["test"]) # E: numpy.ndarray[Any, numpy.dtype[Any]]
reveal_type(len(npz_file)) # E: int
Reported by Pylint.
Line: 25
Column: 1
reveal_type(npz_file.zip) # E: zipfile.ZipFile
reveal_type(npz_file.fid) # E: Union[None, typing.IO[builtins.str]]
reveal_type(npz_file.files) # E: list[builtins.str]
reveal_type(npz_file.allow_pickle) # E: bool
reveal_type(npz_file.pickle_kwargs) # E: Union[None, typing.Mapping[builtins.str, Any]]
reveal_type(npz_file.f) # E: numpy.lib.npyio.BagObj[numpy.lib.npyio.NpzFile]
reveal_type(npz_file["test"]) # E: numpy.ndarray[Any, numpy.dtype[Any]]
reveal_type(len(npz_file)) # E: int
with npz_file as f:
Reported by Pylint.
Line: 26
Column: 1
reveal_type(npz_file.fid) # E: Union[None, typing.IO[builtins.str]]
reveal_type(npz_file.files) # E: list[builtins.str]
reveal_type(npz_file.allow_pickle) # E: bool
reveal_type(npz_file.pickle_kwargs) # E: Union[None, typing.Mapping[builtins.str, Any]]
reveal_type(npz_file.f) # E: numpy.lib.npyio.BagObj[numpy.lib.npyio.NpzFile]
reveal_type(npz_file["test"]) # E: numpy.ndarray[Any, numpy.dtype[Any]]
reveal_type(len(npz_file)) # E: int
with npz_file as f:
reveal_type(f) # E: numpy.lib.npyio.NpzFile
Reported by Pylint.
Line: 27
Column: 1
reveal_type(npz_file.files) # E: list[builtins.str]
reveal_type(npz_file.allow_pickle) # E: bool
reveal_type(npz_file.pickle_kwargs) # E: Union[None, typing.Mapping[builtins.str, Any]]
reveal_type(npz_file.f) # E: numpy.lib.npyio.BagObj[numpy.lib.npyio.NpzFile]
reveal_type(npz_file["test"]) # E: numpy.ndarray[Any, numpy.dtype[Any]]
reveal_type(len(npz_file)) # E: int
with npz_file as f:
reveal_type(f) # E: numpy.lib.npyio.NpzFile
Reported by Pylint.
numpy/polynomial/_polybase.py
58 issues
Line: 14
Column: 1
import numbers
import numpy as np
from . import polyutils as pu
__all__ = ['ABCPolyBase']
class ABCPolyBase(abc.ABC):
"""An abstract base class for immutable series classes.
Reported by Pylint.
Line: 980
Column: 15
window = cls.window
xnew = pu.mapdomain(x, domain, window)
res = cls._fit(xnew, y, deg, w=w, rcond=rcond, full=full)
if full:
[coef, status] = res
return cls(coef, domain=domain, window=window), status
else:
coef = res
Reported by Pylint.
Line: 139
Column: 17
@staticmethod
@abc.abstractmethod
def _pow(c, pow, maxpower=None):
pass
@staticmethod
@abc.abstractmethod
def _val(x, c):
Reported by Pylint.
Line: 397
Column: 43
return f" {cls.basis_name}_{i}({arg_str})"
@classmethod
def _repr_latex_term(cls, i, arg_str, needs_parens):
if cls.basis_name is None:
raise NotImplementedError(
"Subclasses must define either a basis name, or override "
"_repr_latex_term(i, arg_str, needs_parens)")
# since we always add parens, we don't care if the expression needs them
Reported by Pylint.
Line: 407
Column: 3
@staticmethod
def _repr_latex_scalar(x):
# TODO: we're stuck with disabling math formatting until we handle
# exponents in this function
return r'\text{{{}}}'.format(x)
def _repr_latex_(self):
# get the scaled argument string to the basis functions
Reported by Pylint.
Line: 475
Column: 28
ret['window'] = self.window.copy()
return ret
def __setstate__(self, dict):
self.__dict__ = dict
# Call
def __call__(self, arg):
Reported by Pylint.
Line: 503
Column: 16
othercoef = self._get_coefficients(other)
try:
coef = self._add(self.coef, othercoef)
except Exception:
return NotImplemented
return self.__class__(coef, self.domain, self.window)
def __sub__(self, other):
othercoef = self._get_coefficients(other)
Reported by Pylint.
Line: 511
Column: 16
othercoef = self._get_coefficients(other)
try:
coef = self._sub(self.coef, othercoef)
except Exception:
return NotImplemented
return self.__class__(coef, self.domain, self.window)
def __mul__(self, other):
othercoef = self._get_coefficients(other)
Reported by Pylint.
Line: 519
Column: 16
othercoef = self._get_coefficients(other)
try:
coef = self._mul(self.coef, othercoef)
except Exception:
return NotImplemented
return self.__class__(coef, self.domain, self.window)
def __truediv__(self, other):
# there is no true divide if the rhs is not a Number, although it
Reported by Pylint.
Line: 552
Column: 16
quo, rem = self._div(self.coef, othercoef)
except ZeroDivisionError:
raise
except Exception:
return NotImplemented
quo = self.__class__(quo, self.domain, self.window)
rem = self.__class__(rem, self.domain, self.window)
return quo, rem
Reported by Pylint.
benchmarks/benchmarks/bench_indexing.py
58 issues
Line: 1
Column: 1
from .common import Benchmark, get_squares_, get_indexes_, get_indexes_rand_
from os.path import join as pjoin
import shutil
from numpy import memmap, float32, array
import numpy as np
from tempfile import mkdtemp
Reported by Pylint.
Line: 27
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b102_exec_used.html
code = "def run():\n for a in squares_.values(): a[%s]%s"
code = code % (sel, op)
exec(code, ns)
self.func = ns['run']
def time_op(self, indexes, sel, op):
self.func()
Reported by Bandit.
Line: 27
Column: 9
code = "def run():\n for a in squares_.values(): a[%s]%s"
code = code % (sel, op)
exec(code, ns)
self.func = ns['run']
def time_op(self, indexes, sel, op):
self.func()
Reported by Pylint.
Line: 28
Column: 9
code = code % (sel, op)
exec(code, ns)
self.func = ns['run']
def time_op(self, indexes, sel, op):
self.func()
Reported by Pylint.
Line: 30
Column: 23
exec(code, ns)
self.func = ns['run']
def time_op(self, indexes, sel, op):
self.func()
class ScalarIndexing(Benchmark):
params = [[0, 1, 2]]
Reported by Pylint.
Line: 30
Column: 32
exec(code, ns)
self.func = ns['run']
def time_op(self, indexes, sel, op):
self.func()
class ScalarIndexing(Benchmark):
params = [[0, 1, 2]]
Reported by Pylint.
Line: 30
Column: 37
exec(code, ns)
self.func = ns['run']
def time_op(self, indexes, sel, op):
self.func()
class ScalarIndexing(Benchmark):
params = [[0, 1, 2]]
Reported by Pylint.
Line: 39
Column: 9
param_names = ["ndim"]
def setup(self, ndim):
self.array = np.ones((5,) * ndim)
def time_index(self, ndim):
# time indexing.
arr = self.array
indx = (1,) * ndim
Reported by Pylint.
Line: 45
Column: 13
# time indexing.
arr = self.array
indx = (1,) * ndim
for i in range(100):
arr[indx]
def time_assign(self, ndim):
# time assignment from a python scalar
arr = self.array
Reported by Pylint.
Line: 46
Column: 13
arr = self.array
indx = (1,) * ndim
for i in range(100):
arr[indx]
def time_assign(self, ndim):
# time assignment from a python scalar
arr = self.array
indx = (1,) * ndim
Reported by Pylint.
numpy/core/_internal.py
57 issues
Line: 13
Column: 1
import platform
import warnings
from .multiarray import dtype, array, ndarray
try:
import ctypes
except ImportError:
ctypes = None
Reported by Pylint.
Line: 38
Column: 9
num = int(obj[1])
if num < 0:
raise ValueError("invalid offset.")
format = dtype(obj[0], align=align)
if n > 2:
title = obj[2]
else:
title = None
allfields.append((fname, format, num, title))
Reported by Pylint.
Line: 140
Column: 34
# pickles of ndarrays made with NumPy before release 1.0
# so don't remove the name here, or you'll
# break backward compatibility.
def _reconstruct(subtype, shape, dtype):
return ndarray.__new__(subtype, shape, dtype)
# format_re was originally from numarray by J. Todd Miller
Reported by Pylint.
Line: 163
Column: 39
while startindex < len(astr):
mo = format_re.match(astr, pos=startindex)
try:
(order1, repeats, order2, dtype) = mo.groups()
except (TypeError, AttributeError):
raise ValueError(
f'format number {len(result)+1} of "{astr}" is not recognized'
) from None
startindex = mo.end()
Reported by Pylint.
Line: 241
Column: 25
# Used for .ctypes attribute of ndarray
class _missing_ctypes:
def cast(self, num, obj):
return num.value
class c_void_p:
def __init__(self, ptr):
self.value = ptr
Reported by Pylint.
Line: 250
Column: 24
class _ctypes:
def __init__(self, array, ptr=None):
self._arr = array
if ctypes:
self._ctypes = ctypes
self._data = self._ctypes.c_void_p(ptr)
Reported by Pylint.
Line: 283
Column: 9
# it hold the array reference. This is a workaround to circumvent the
# CPython bug https://bugs.python.org/issue12836
ptr = self._ctypes.cast(self._data, obj)
ptr._arr = self._arr
return ptr
def shape_as(self, obj):
"""
Return the shape tuple as an array of some other c-types
Reported by Pylint.
Line: 597
Column: 12
def _dtype_from_pep3118(spec):
stream = _Stream(spec)
dtype, align = __dtype_from_pep3118(stream, is_subdtype=False)
return dtype
def __dtype_from_pep3118(stream, is_subdtype):
field_spec = dict(
names=[],
Reported by Pylint.
Line: 597
Column: 5
def _dtype_from_pep3118(spec):
stream = _Stream(spec)
dtype, align = __dtype_from_pep3118(stream, is_subdtype=False)
return dtype
def __dtype_from_pep3118(stream, is_subdtype):
field_spec = dict(
names=[],
Reported by Pylint.
Line: 796
Column: 34
def _lcm(a, b):
return a // _gcd(a, b) * b
def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs):
""" Format the error message for when __array_ufunc__ gives up. """
args_string = ', '.join(['{!r}'.format(arg) for arg in inputs] +
['{}={!r}'.format(k, v)
for k, v in kwargs.items()])
args = inputs + kwargs.get('out', ())
Reported by Pylint.
benchmarks/benchmarks/bench_lib.py
57 issues
Line: 4
Column: 1
"""Benchmarks for `numpy.lib`."""
from .common import Benchmark
import numpy as np
class Pad(Benchmark):
Reported by Pylint.
Line: 48
Column: 28
["constant", "edge", "linear_ramp", "mean", "reflect", "wrap"],
]
def setup(self, shape, pad_width, mode):
# Make sure to fill the array to make the OS page fault
# in the setup phase and not the timed phase
self.array = np.full(shape, fill_value=1, dtype=np.float64)
def time_pad(self, shape, pad_width, mode):
Reported by Pylint.
Line: 48
Column: 39
["constant", "edge", "linear_ramp", "mean", "reflect", "wrap"],
]
def setup(self, shape, pad_width, mode):
# Make sure to fill the array to make the OS page fault
# in the setup phase and not the timed phase
self.array = np.full(shape, fill_value=1, dtype=np.float64)
def time_pad(self, shape, pad_width, mode):
Reported by Pylint.
Line: 51
Column: 9
def setup(self, shape, pad_width, mode):
# Make sure to fill the array to make the OS page fault
# in the setup phase and not the timed phase
self.array = np.full(shape, fill_value=1, dtype=np.float64)
def time_pad(self, shape, pad_width, mode):
np.pad(self.array, pad_width, mode)
Reported by Pylint.
Line: 53
Column: 24
# in the setup phase and not the timed phase
self.array = np.full(shape, fill_value=1, dtype=np.float64)
def time_pad(self, shape, pad_width, mode):
np.pad(self.array, pad_width, mode)
class Nan(Benchmark):
"""Benchmarks for nan functions"""
Reported by Pylint.
Line: 74
Column: 9
# approximate desired percentage np.nan content
base_array = np.random.uniform(size=array_size)
base_array[base_array < percent_nans / 100.] = np.nan
self.arr = base_array
def time_nanmin(self, array_size, percent_nans):
np.nanmin(self.arr)
def time_nanmax(self, array_size, percent_nans):
Reported by Pylint.
Line: 76
Column: 27
base_array[base_array < percent_nans / 100.] = np.nan
self.arr = base_array
def time_nanmin(self, array_size, percent_nans):
np.nanmin(self.arr)
def time_nanmax(self, array_size, percent_nans):
np.nanmax(self.arr)
Reported by Pylint.
Line: 76
Column: 39
base_array[base_array < percent_nans / 100.] = np.nan
self.arr = base_array
def time_nanmin(self, array_size, percent_nans):
np.nanmin(self.arr)
def time_nanmax(self, array_size, percent_nans):
np.nanmax(self.arr)
Reported by Pylint.
Line: 79
Column: 27
def time_nanmin(self, array_size, percent_nans):
np.nanmin(self.arr)
def time_nanmax(self, array_size, percent_nans):
np.nanmax(self.arr)
def time_nanargmin(self, array_size, percent_nans):
np.nanargmin(self.arr)
Reported by Pylint.
Line: 79
Column: 39
def time_nanmin(self, array_size, percent_nans):
np.nanmin(self.arr)
def time_nanmax(self, array_size, percent_nans):
np.nanmax(self.arr)
def time_nanargmin(self, array_size, percent_nans):
np.nanargmin(self.arr)
Reported by Pylint.
numpy/typing/tests/data/reveal/type_check.py
57 issues
Line: 9
Column: 8
f: float
# NOTE: Avoid importing the platform specific `np.float128` type
AR_i8: npt.NDArray[np.int64]
AR_i4: npt.NDArray[np.int32]
AR_f2: npt.NDArray[np.float16]
AR_f8: npt.NDArray[np.float64]
AR_f16: npt.NDArray[np.floating[npt._128Bit]]
AR_c8: npt.NDArray[np.complex64]
Reported by Pylint.
Line: 10
Column: 8
# NOTE: Avoid importing the platform specific `np.float128` type
AR_i8: npt.NDArray[np.int64]
AR_i4: npt.NDArray[np.int32]
AR_f2: npt.NDArray[np.float16]
AR_f8: npt.NDArray[np.float64]
AR_f16: npt.NDArray[np.floating[npt._128Bit]]
AR_c8: npt.NDArray[np.complex64]
AR_c16: npt.NDArray[np.complex128]
Reported by Pylint.
Line: 11
Column: 8
# NOTE: Avoid importing the platform specific `np.float128` type
AR_i8: npt.NDArray[np.int64]
AR_i4: npt.NDArray[np.int32]
AR_f2: npt.NDArray[np.float16]
AR_f8: npt.NDArray[np.float64]
AR_f16: npt.NDArray[np.floating[npt._128Bit]]
AR_c8: npt.NDArray[np.complex64]
AR_c16: npt.NDArray[np.complex128]
Reported by Pylint.
Line: 12
Column: 8
AR_i8: npt.NDArray[np.int64]
AR_i4: npt.NDArray[np.int32]
AR_f2: npt.NDArray[np.float16]
AR_f8: npt.NDArray[np.float64]
AR_f16: npt.NDArray[np.floating[npt._128Bit]]
AR_c8: npt.NDArray[np.complex64]
AR_c16: npt.NDArray[np.complex128]
AR_LIKE_f: List[float]
Reported by Pylint.
Line: 13
Column: 9
AR_i4: npt.NDArray[np.int32]
AR_f2: npt.NDArray[np.float16]
AR_f8: npt.NDArray[np.float64]
AR_f16: npt.NDArray[np.floating[npt._128Bit]]
AR_c8: npt.NDArray[np.complex64]
AR_c16: npt.NDArray[np.complex128]
AR_LIKE_f: List[float]
Reported by Pylint.
Line: 13
Column: 21
AR_i4: npt.NDArray[np.int32]
AR_f2: npt.NDArray[np.float16]
AR_f8: npt.NDArray[np.float64]
AR_f16: npt.NDArray[np.floating[npt._128Bit]]
AR_c8: npt.NDArray[np.complex64]
AR_c16: npt.NDArray[np.complex128]
AR_LIKE_f: List[float]
Reported by Pylint.
Line: 14
Column: 8
AR_f2: npt.NDArray[np.float16]
AR_f8: npt.NDArray[np.float64]
AR_f16: npt.NDArray[np.floating[npt._128Bit]]
AR_c8: npt.NDArray[np.complex64]
AR_c16: npt.NDArray[np.complex128]
AR_LIKE_f: List[float]
class RealObj:
Reported by Pylint.
Line: 15
Column: 9
AR_f8: npt.NDArray[np.float64]
AR_f16: npt.NDArray[np.floating[npt._128Bit]]
AR_c8: npt.NDArray[np.complex64]
AR_c16: npt.NDArray[np.complex128]
AR_LIKE_f: List[float]
class RealObj:
real: slice
Reported by Pylint.
Line: 25
Column: 1
class ImagObj:
imag: slice
reveal_type(np.mintypecode(["f8"], typeset="qfQF"))
reveal_type(np.asfarray(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]]
reveal_type(np.asfarray(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]]
reveal_type(np.asfarray(AR_f8, dtype="c16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
reveal_type(np.asfarray(AR_f8, dtype="i8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
Reported by Pylint.
Line: 27
Column: 1
reveal_type(np.mintypecode(["f8"], typeset="qfQF"))
reveal_type(np.asfarray(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]]
reveal_type(np.asfarray(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]]
reveal_type(np.asfarray(AR_f8, dtype="c16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
reveal_type(np.asfarray(AR_f8, dtype="i8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
reveal_type(np.real(RealObj())) # E: slice
Reported by Pylint.
numpy/lib/tests/test_packbits.py
56 issues
Line: 3
Column: 1
import numpy as np
from numpy.testing import assert_array_equal, assert_equal, assert_raises
import pytest
from itertools import chain
def test_packbits():
# Copied from the docstring.
a = [[[1, 0, 1], [0, 1, 0]],
[[1, 1, 0], [0, 0, 1]]]
Reported by Pylint.
Line: 203
Column: 15
# result is the same if input is multiplied with a nonzero value
for dtype in 'bBhHiIlLqQ':
arr = np.array(a, dtype=dtype)
rnd = np.random.randint(low=np.iinfo(dtype).min,
high=np.iinfo(dtype).max, size=arr.size,
dtype=dtype)
rnd[rnd == 0] = 1
arr *= rnd.astype(dtype)
b = np.packbits(arr, axis=-1)
Reported by Pylint.
Line: 218
Column: 13
# test some with a larger arrays gh-8637
# code is covered earlier but larger array makes crash on bug more likely
for s in range(950, 1050):
for dt in '?bBhHiIlLqQ':
x = np.ones((200, s), dtype=bool)
np.packbits(x, axis=1)
def test_unpackbits():
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
from numpy.testing import assert_array_equal, assert_equal, assert_raises
import pytest
from itertools import chain
def test_packbits():
# Copied from the docstring.
a = [[[1, 0, 1], [0, 1, 0]],
[[1, 1, 0], [0, 0, 1]]]
Reported by Pylint.
Line: 4
Column: 1
import numpy as np
from numpy.testing import assert_array_equal, assert_equal, assert_raises
import pytest
from itertools import chain
def test_packbits():
# Copied from the docstring.
a = [[[1, 0, 1], [0, 1, 0]],
[[1, 1, 0], [0, 0, 1]]]
Reported by Pylint.
Line: 6
Column: 1
import pytest
from itertools import chain
def test_packbits():
# Copied from the docstring.
a = [[[1, 0, 1], [0, 1, 0]],
[[1, 1, 0], [0, 0, 1]]]
for dt in '?bBhHiIlLqQ':
arr = np.array(a, dtype=dt)
Reported by Pylint.
Line: 8
Column: 5
def test_packbits():
# Copied from the docstring.
a = [[[1, 0, 1], [0, 1, 0]],
[[1, 1, 0], [0, 0, 1]]]
for dt in '?bBhHiIlLqQ':
arr = np.array(a, dtype=dt)
b = np.packbits(arr, axis=-1)
assert_equal(b.dtype, np.uint8)
Reported by Pylint.
Line: 10
Column: 9
# Copied from the docstring.
a = [[[1, 0, 1], [0, 1, 0]],
[[1, 1, 0], [0, 0, 1]]]
for dt in '?bBhHiIlLqQ':
arr = np.array(a, dtype=dt)
b = np.packbits(arr, axis=-1)
assert_equal(b.dtype, np.uint8)
assert_array_equal(b, np.array([[[160], [64]], [[192], [32]]]))
Reported by Pylint.
Line: 12
Column: 9
[[1, 1, 0], [0, 0, 1]]]
for dt in '?bBhHiIlLqQ':
arr = np.array(a, dtype=dt)
b = np.packbits(arr, axis=-1)
assert_equal(b.dtype, np.uint8)
assert_array_equal(b, np.array([[[160], [64]], [[192], [32]]]))
assert_raises(TypeError, np.packbits, np.array(a, dtype=float))
Reported by Pylint.
Line: 19
Column: 1
assert_raises(TypeError, np.packbits, np.array(a, dtype=float))
def test_packbits_empty():
shapes = [
(0,), (10, 20, 0), (10, 0, 20), (0, 10, 20), (20, 0, 0), (0, 20, 0),
(0, 0, 20), (0, 0, 0),
]
for dt in '?bBhHiIlLqQ':
Reported by Pylint.
numpy/core/records.py
56 issues
Line: 40
Column: 1
from collections import Counter
from contextlib import nullcontext
from . import numeric as sb
from . import numerictypes as nt
from numpy.compat import os_fspath
from numpy.core.overrides import set_module
from .arrayprint import get_printoptions
Reported by Pylint.
Line: 41
Column: 1
from contextlib import nullcontext
from . import numeric as sb
from . import numerictypes as nt
from numpy.compat import os_fspath
from numpy.core.overrides import set_module
from .arrayprint import get_printoptions
# All of the functions allow formats to be a dtype
Reported by Pylint.
Line: 44
Column: 1
from . import numerictypes as nt
from numpy.compat import os_fspath
from numpy.core.overrides import set_module
from .arrayprint import get_printoptions
# All of the functions allow formats to be a dtype
__all__ = [
'record', 'recarray', 'format_parser',
'fromarrays', 'fromrecords', 'fromstring', 'fromfile', 'array',
Reported by Pylint.
Line: 78
Column: 20
numfmt = nt.sctypeDict
def find_duplicate(list):
"""Find duplication in a list, return a list of duplicated elements"""
return [
item
for item, counts in Counter(list).items()
if counts > 1
Reported by Pylint.
Line: 435
Column: 34
strides=strides, order=order)
return self
def __array_finalize__(self, obj):
if self.dtype.type is not record and self.dtype.names is not None:
# if self.dtype is not np.record, invoke __setattr__ which will
# convert it to a record if it is a void dtype.
self.dtype = self.dtype
Reported by Pylint.
Line: 485
Column: 16
newattr = attr not in self.__dict__
try:
ret = object.__setattr__(self, attr, val)
except Exception:
fielddict = ndarray.__getattribute__(self, 'dtype').fields or {}
if attr not in fielddict:
raise
else:
fielddict = ndarray.__getattribute__(self, 'dtype').fields or {}
Reported by Pylint.
Line: 498
Column: 24
# internal attribute.
try:
object.__delattr__(self, attr)
except Exception:
return ret
try:
res = fielddict[attr][:2]
except (TypeError, KeyError) as e:
raise AttributeError(
Reported by Pylint.
Line: 745
Column: 13
if isinstance(shape, int):
shape = (shape,)
if len(shape) > 1:
raise ValueError("Can only deal with 1-d array.")
_array = recarray(shape, descr)
for k in range(_array.size):
_array[k] = tuple(recList[k])
# list of lists instead of list of tuples ?
# 2018-02-07, 1.14.1
Reported by Pylint.
Line: 1
Column: 1
"""
Record Arrays
=============
Record arrays expose the fields of structured arrays as properties.
Most commonly, ndarrays contain elements of a single type, e.g. floats,
integers, bools etc. However, it is possible for elements to be combinations
of these using structured types, such as::
Reported by Pylint.
Line: 42
Column: 1
from . import numeric as sb
from . import numerictypes as nt
from numpy.compat import os_fspath
from numpy.core.overrides import set_module
from .arrayprint import get_printoptions
# All of the functions allow formats to be a dtype
__all__ = [
Reported by Pylint.
numpy/distutils/mingw32ccompiler.py
56 issues
Line: 70
Column: 30
if self.gcc_version is None:
try:
out_string = subprocess.check_output(['gcc', '-dumpversion'])
except (OSError, CalledProcessError):
out_string = "" # ignore failures to match old behavior
result = re.search(r'(\d+\.\d+)', out_string)
if result:
self.gcc_version = StrictVersion(result.group(1))
Reported by Pylint.
Line: 253
Column: 42
stems = [sys.prefix]
if hasattr(sys, 'base_prefix') and sys.base_prefix != sys.prefix:
stems.append(sys.base_prefix)
elif hasattr(sys, 'real_prefix') and sys.real_prefix != sys.prefix:
stems.append(sys.real_prefix)
sub_dirs = ['', 'lib', 'bin']
# generate possible combinations of directory trees and sub-directories
lib_dirs = []
Reported by Pylint.
Line: 254
Column: 22
if hasattr(sys, 'base_prefix') and sys.base_prefix != sys.prefix:
stems.append(sys.base_prefix)
elif hasattr(sys, 'real_prefix') and sys.real_prefix != sys.prefix:
stems.append(sys.real_prefix)
sub_dirs = ['', 'lib', 'bin']
# generate possible combinations of directory trees and sub-directories
lib_dirs = []
for stem in stems:
Reported by Pylint.
Line: 430
Column: 42
stems = [sys.prefix]
if hasattr(sys, 'base_prefix') and sys.base_prefix != sys.prefix:
stems.append(sys.base_prefix)
elif hasattr(sys, 'real_prefix') and sys.real_prefix != sys.prefix:
stems.append(sys.real_prefix)
# possible subdirectories within those trees where it is placed
sub_dirs = ['libs', 'lib']
Reported by Pylint.
Line: 431
Column: 22
if hasattr(sys, 'base_prefix') and sys.base_prefix != sys.prefix:
stems.append(sys.base_prefix)
elif hasattr(sys, 'real_prefix') and sys.real_prefix != sys.prefix:
stems.append(sys.real_prefix)
# possible subdirectories within those trees where it is placed
sub_dirs = ['libs', 'lib']
# generate a list of candidate locations
Reported by Pylint.
Line: 490
Column: 37
if hasattr(sys, 'base_prefix'):
base_lib = os.path.join(sys.base_prefix, 'libs', lib_name)
elif hasattr(sys, 'real_prefix'):
base_lib = os.path.join(sys.real_prefix, 'libs', lib_name)
else:
base_lib = '' # os.path.isfile('') == False
if os.path.isfile(base_lib):
lib_file = base_lib
Reported by Pylint.
Line: 18
Column: 1
import textwrap
# Overwrite certain distutils.ccompiler functions:
import numpy.distutils.ccompiler # noqa: F401
from numpy.distutils import log
# NT stuff
# 1. Make sure libpython<version>.a exists for gcc. If not, build it.
# 2. Force windows to use gcc (we're struggling with MSVC and g77 support)
# --> this is done in numpy/distutils/ccompiler.py
Reported by Pylint.
Line: 166
Column: 5
# __init__ ()
def link(self,
target_desc,
objects,
output_filename,
output_dir,
libraries,
Reported by Pylint.
Line: 331
Column: 19
'winsxs')
if not os.path.exists(winsxs_path):
return None
for root, dirs, files in os.walk(winsxs_path):
if dll_name in files and arch in root:
return os.path.join(root, dll_name)
return None
def _find_dll_in_path(dll_name):
Reported by Pylint.
Line: 536
Column: 3
# directory, but this requires the manifest for this to work. This is a big
# mess, thanks MS for a wonderful system.
# XXX: ideally, we should use exactly the same version as used by python. I
# submitted a patch to get this version, but it was only included for python
# 2.6.1 and above. So for versions below, we use a "best guess".
_MSVCRVER_TO_FULLVER = {}
if sys.platform == 'win32':
try:
Reported by Pylint.
numpy/typing/tests/data/reveal/getlimits.py
56 issues
Line: 14
Column: 12
finfo_f8: np.finfo[np.float64]
iinfo_i8: np.iinfo[np.int64]
machar_f4: np.core.getlimits.MachArLike[_32Bit]
reveal_type(np.finfo(f)) # E: numpy.finfo[{double}]
reveal_type(np.finfo(f8)) # E: numpy.finfo[{float64}]
reveal_type(np.finfo(c8)) # E: numpy.finfo[{float32}]
reveal_type(np.finfo('f2')) # E: numpy.finfo[numpy.floating[Any]]
Reported by Pylint.
Line: 16
Column: 1
iinfo_i8: np.iinfo[np.int64]
machar_f4: np.core.getlimits.MachArLike[_32Bit]
reveal_type(np.finfo(f)) # E: numpy.finfo[{double}]
reveal_type(np.finfo(f8)) # E: numpy.finfo[{float64}]
reveal_type(np.finfo(c8)) # E: numpy.finfo[{float32}]
reveal_type(np.finfo('f2')) # E: numpy.finfo[numpy.floating[Any]]
reveal_type(finfo_f8.dtype) # E: numpy.dtype[{float64}]
Reported by Pylint.
Line: 17
Column: 1
machar_f4: np.core.getlimits.MachArLike[_32Bit]
reveal_type(np.finfo(f)) # E: numpy.finfo[{double}]
reveal_type(np.finfo(f8)) # E: numpy.finfo[{float64}]
reveal_type(np.finfo(c8)) # E: numpy.finfo[{float32}]
reveal_type(np.finfo('f2')) # E: numpy.finfo[numpy.floating[Any]]
reveal_type(finfo_f8.dtype) # E: numpy.dtype[{float64}]
reveal_type(finfo_f8.bits) # E: int
Reported by Pylint.
Line: 18
Column: 1
reveal_type(np.finfo(f)) # E: numpy.finfo[{double}]
reveal_type(np.finfo(f8)) # E: numpy.finfo[{float64}]
reveal_type(np.finfo(c8)) # E: numpy.finfo[{float32}]
reveal_type(np.finfo('f2')) # E: numpy.finfo[numpy.floating[Any]]
reveal_type(finfo_f8.dtype) # E: numpy.dtype[{float64}]
reveal_type(finfo_f8.bits) # E: int
reveal_type(finfo_f8.eps) # E: {float64}
Reported by Pylint.
Line: 19
Column: 1
reveal_type(np.finfo(f)) # E: numpy.finfo[{double}]
reveal_type(np.finfo(f8)) # E: numpy.finfo[{float64}]
reveal_type(np.finfo(c8)) # E: numpy.finfo[{float32}]
reveal_type(np.finfo('f2')) # E: numpy.finfo[numpy.floating[Any]]
reveal_type(finfo_f8.dtype) # E: numpy.dtype[{float64}]
reveal_type(finfo_f8.bits) # E: int
reveal_type(finfo_f8.eps) # E: {float64}
reveal_type(finfo_f8.epsneg) # E: {float64}
Reported by Pylint.
Line: 21
Column: 1
reveal_type(np.finfo(c8)) # E: numpy.finfo[{float32}]
reveal_type(np.finfo('f2')) # E: numpy.finfo[numpy.floating[Any]]
reveal_type(finfo_f8.dtype) # E: numpy.dtype[{float64}]
reveal_type(finfo_f8.bits) # E: int
reveal_type(finfo_f8.eps) # E: {float64}
reveal_type(finfo_f8.epsneg) # E: {float64}
reveal_type(finfo_f8.iexp) # E: int
reveal_type(finfo_f8.machep) # E: int
Reported by Pylint.
Line: 22
Column: 1
reveal_type(np.finfo('f2')) # E: numpy.finfo[numpy.floating[Any]]
reveal_type(finfo_f8.dtype) # E: numpy.dtype[{float64}]
reveal_type(finfo_f8.bits) # E: int
reveal_type(finfo_f8.eps) # E: {float64}
reveal_type(finfo_f8.epsneg) # E: {float64}
reveal_type(finfo_f8.iexp) # E: int
reveal_type(finfo_f8.machep) # E: int
reveal_type(finfo_f8.max) # E: {float64}
Reported by Pylint.
Line: 23
Column: 1
reveal_type(finfo_f8.dtype) # E: numpy.dtype[{float64}]
reveal_type(finfo_f8.bits) # E: int
reveal_type(finfo_f8.eps) # E: {float64}
reveal_type(finfo_f8.epsneg) # E: {float64}
reveal_type(finfo_f8.iexp) # E: int
reveal_type(finfo_f8.machep) # E: int
reveal_type(finfo_f8.max) # E: {float64}
reveal_type(finfo_f8.maxexp) # E: int
Reported by Pylint.
Line: 24
Column: 1
reveal_type(finfo_f8.dtype) # E: numpy.dtype[{float64}]
reveal_type(finfo_f8.bits) # E: int
reveal_type(finfo_f8.eps) # E: {float64}
reveal_type(finfo_f8.epsneg) # E: {float64}
reveal_type(finfo_f8.iexp) # E: int
reveal_type(finfo_f8.machep) # E: int
reveal_type(finfo_f8.max) # E: {float64}
reveal_type(finfo_f8.maxexp) # E: int
reveal_type(finfo_f8.min) # E: {float64}
Reported by Pylint.
Line: 25
Column: 1
reveal_type(finfo_f8.bits) # E: int
reveal_type(finfo_f8.eps) # E: {float64}
reveal_type(finfo_f8.epsneg) # E: {float64}
reveal_type(finfo_f8.iexp) # E: int
reveal_type(finfo_f8.machep) # E: int
reveal_type(finfo_f8.max) # E: {float64}
reveal_type(finfo_f8.maxexp) # E: int
reveal_type(finfo_f8.min) # E: {float64}
reveal_type(finfo_f8.minexp) # E: int
Reported by Pylint.