The following issues were found
keras/optimizer_v2/learning_rate_schedule.py
269 issues
Line: 17
Column: 1
# ==============================================================================
"""Various learning rate decay functions."""
import tensorflow.compat.v2 as tf
import abc
import math
from keras.utils import generic_utils
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 21
Column: 1
import abc
import math
from keras.utils import generic_utils
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.optimizers.schedules.LearningRateSchedule")
class LearningRateSchedule:
Reported by Pylint.
Line: 22
Column: 1
import abc
import math
from keras.utils import generic_utils
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.optimizers.schedules.LearningRateSchedule")
class LearningRateSchedule:
"""The learning rate schedule base class.
Reported by Pylint.
Line: 1
Column: 1
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import abc
import math
from keras.utils import generic_utils
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import abc
import math
from keras.utils import generic_utils
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.optimizers.schedules.LearningRateSchedule")
Reported by Pylint.
Line: 27
Column: 1
@keras_export("keras.optimizers.schedules.LearningRateSchedule")
class LearningRateSchedule:
"""The learning rate schedule base class.
You can use a learning rate schedule to modulate how the learning rate
of your optimizer changes over time.
Several built-in learning rate schedules are available, such as
Reported by Pylint.
Line: 69
Column: 1
```
"""
@abc.abstractmethod
def __call__(self, step):
raise NotImplementedError("Learning rate schedule must override __call__")
@abc.abstractmethod
def get_config(self):
Reported by Pylint.
Line: 70
Column: 1
"""
@abc.abstractmethod
def __call__(self, step):
raise NotImplementedError("Learning rate schedule must override __call__")
@abc.abstractmethod
def get_config(self):
raise NotImplementedError("Learning rate schedule must override get_config")
Reported by Pylint.
Line: 71
Column: 1
@abc.abstractmethod
def __call__(self, step):
raise NotImplementedError("Learning rate schedule must override __call__")
@abc.abstractmethod
def get_config(self):
raise NotImplementedError("Learning rate schedule must override get_config")
Reported by Pylint.
keras/callbacks_v1.py
266 issues
Line: 15
Column: 1
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-import-not-at-top
# pylint: disable=g-classes-have-attributes
"""Callbacks: utilities called at certain points during model training."""
import tensorflow.compat.v2 as tf
Reported by Pylint.
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
# pylint: disable=g-import-not-at-top
# pylint: disable=g-classes-have-attributes
"""Callbacks: utilities called at certain points during model training."""
import tensorflow.compat.v2 as tf
import os
Reported by Pylint.
Line: 19
Column: 1
# pylint: disable=g-classes-have-attributes
"""Callbacks: utilities called at certain points during model training."""
import tensorflow.compat.v2 as tf
import os
import numpy as np
from keras import backend as K
from keras import callbacks
Reported by Pylint.
Line: 25
Column: 1
import numpy as np
from keras import backend as K
from keras import callbacks
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
@keras_export(v1=['keras.callbacks.TensorBoard'])
class TensorBoard(callbacks.TensorBoard):
Reported by Pylint.
Line: 26
Column: 1
from keras import backend as K
from keras import callbacks
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
@keras_export(v1=['keras.callbacks.TensorBoard'])
class TensorBoard(callbacks.TensorBoard):
# pylint: disable=line-too-long
Reported by Pylint.
Line: 238
Column: 1
# visualize embeddings.
if self.embeddings_freq and self.embeddings_data is not None:
# Avoid circular dependency.
from keras.engine import training_utils_v1 # pylint: disable=g-import-not-at-top
self.embeddings_data = training_utils_v1.standardize_input_data(
self.embeddings_data, model.input_names)
# If embedding_layer_names are not provided, get all of the embedding
# layers from the model.
Reported by Pylint.
Line: 106
Column: 3
# pylint: enable=line-too-long
def __init__(self,
log_dir='./logs',
histogram_freq=0,
batch_size=32,
write_graph=True,
write_grads=False,
Reported by Pylint.
Line: 120
Column: 5
update_freq='epoch',
profile_batch=2):
# Don't call super's init since it is an eager-only version.
callbacks.Callback.__init__(self)
self.log_dir = log_dir
self.histogram_freq = histogram_freq
if self.histogram_freq and tf.executing_eagerly():
logging.warning(
UserWarning('Weight and gradient histograms not supported for eager'
Reported by Pylint.
Line: 146
Column: 3
self.update_freq = update_freq
self._samples_seen = 0
self._samples_seen_at_last_write = 0
# TODO(fishx): Add a link to the full profiler tutorial.
self._profile_batch = profile_batch
# True when the profiler was successfully started by this callback.
# We track the status here to make sure callbacks do not interfere with
# each other. The callback will only stop the profiler it started.
self._profiler_started = False
Reported by Pylint.
Line: 160
Column: 7
def _init_writer(self, model):
"""Sets file writer."""
if tf.executing_eagerly():
self.writer = tf.summary.create_file_writer(self.log_dir)
if not model.run_eagerly and self.write_graph:
with self.writer.as_default():
tf.summary.graph(K.get_graph())
elif self.write_graph:
self.writer = tf.compat.v1.summary.FileWriter(self.log_dir, K.get_graph())
Reported by Pylint.
keras/engine/training_arrays_v1.py
266 issues
Line: 17
Column: 1
# ==============================================================================
"""Part of the Keras training engine related to plain array data."""
import tensorflow.compat.v2 as tf
# pylint: disable=protected-access
import functools
import numpy as np
Reported by Pylint.
Line: 30
Column: 1
from keras.utils.generic_utils import make_batches
from keras.utils.generic_utils import slice_arrays
from keras.utils.mode_keys import ModeKeys
from tensorflow.python.platform import tf_logging as logging
try:
from scipy.sparse import issparse # pylint: disable=g-import-not-at-top
except ImportError:
issparse = None
Reported by Pylint.
Line: 33
Column: 1
from tensorflow.python.platform import tf_logging as logging
try:
from scipy.sparse import issparse # pylint: disable=g-import-not-at-top
except ImportError:
issparse = None
def model_iteration(model,
Reported by Pylint.
Line: 143
Column: 5
scope = distributed_training_utils_v1.distributed_scope(
strategy=model._distribution_strategy,
learning_phase=(1 if mode == ModeKeys.TRAIN else 0))
scope.__enter__()
use_steps = is_dataset or steps_per_epoch is not None
do_validation = val_inputs is not None
# Prepare input data.
Reported by Pylint.
Line: 444
Column: 5
if model._compile_distribution:
# TODO(priyag, psv): Copy back metrics to the original model as well?
distributed_training_utils_v1._copy_weights_to_original_model(model, mode)
scope.__exit__(None, None, None)
if mode == ModeKeys.TRAIN:
return model.history
return results
Reported by Pylint.
Line: 128
Column: 3
input_iterator = None
is_dataset = isinstance(inputs,
(tf.compat.v1.data.Dataset, tf.data.Dataset))
# TODO(fchollet): consider moving `steps_per_epoch` inference to
# _standardize_user_data and set reset_dataset_after_each_epoch as an
# attribute on the dataset instance.
if is_dataset:
if steps_per_epoch is None:
reset_dataset_after_each_epoch = True
Reported by Pylint.
Line: 352
Column: 3
# If we only have one batch, do not slice. This takes care of
# composite tensors in non-Dataset modes; we currently don't support
# slicing them.
# TODO(b/133517906): Add slicing support.
ins_batch = ins
else:
try:
if ins and isinstance(ins[-1], int):
# Do not slice the training phase flag.
Reported by Pylint.
Line: 362
Column: 13
else:
ins_batch = slice_arrays(ins, batch_ids)
except TypeError:
raise TypeError('TypeError while preparing batch. '
'If using HDF5 input data, '
'pass shuffle="batch".')
# Sparse to dense conversion.
if issparse is not None:
Reported by Pylint.
Line: 442
Column: 3
if model._distribution_strategy:
if model._compile_distribution:
# TODO(priyag, psv): Copy back metrics to the original model as well?
distributed_training_utils_v1._copy_weights_to_original_model(model, mode)
scope.__exit__(None, None, None)
if mode == ModeKeys.TRAIN:
return model.history
Reported by Pylint.
Line: 504
Column: 3
# a lambda from here that can be called. Note that this is applicable only
# in Distribution Strategy case as it follows the same code path for both
# eager and graph modes.
# TODO(priyag,omalleyt): Either we should move the training DS with
# IteratorBase to use training_generator code path, or figure out how to
# set a symbolic Iterator out of a Dataset when in eager mode.
if tf.executing_eagerly():
return get_distributed_inputs
else:
Reported by Pylint.
keras/distribute/minimize_loss_test.py
265 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for running legacy optimizer code with DistributionStrategy."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy
from keras.distribute import optimizer_combinations
from keras.distribute.test_example import batchnorm_example
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy
from keras.distribute import optimizer_combinations
from keras.distribute.test_example import batchnorm_example
from keras.distribute.test_example import minimize_loss_example
from keras.layers import core
Reported by Pylint.
Line: 193
Column: 16
run_step()
def get_expected_variables(num_parameter_devices):
name = optimizer._name
if isinstance(optimizer, optimizer_v2.OptimizerV2):
variables = VAR_MAP_V2[name]
else:
variables = VAR_MAP_V1[name]
Reported by Pylint.
Line: 219
Column: 3
optimizer_combinations.distributions_and_v1_and_v2_optimizers(),
tf.__internal__.test.combinations.combine(
mode=["graph", "eager"],
# TODO(isaprykin): Allow False here. Currently subsequent
# replicas will re-execute UPDATE_OPS of previous replicas.
update_ops_in_cross_replica_mode=[True])) +
tf.__internal__.test.combinations.combine(
distribution=[tf.__internal__.distribute.combinations.tpu_strategy],
optimizer_fn=optimizer_combinations.optimizers_v1_and_v2,
Reported by Pylint.
Line: 406
Column: 71
optimizer_fn=optimizer_combinations.optimizers_v1_and_v2,
mode=["graph"],
is_tpu=[True]))
def testRunStepsWithOutputContext(self, distribution, optimizer_fn, is_tpu):
with distribution.scope():
def dataset_fn():
dataset = tf.data.Dataset.from_tensors([[1.]]).repeat()
# TODO(priyag): batch with drop_remainder=True causes shapes to be
# fully defined for TPU. Remove this when XLA supports dynamic shapes.
Reported by Pylint.
Line: 410
Column: 3
with distribution.scope():
def dataset_fn():
dataset = tf.data.Dataset.from_tensors([[1.]]).repeat()
# TODO(priyag): batch with drop_remainder=True causes shapes to be
# fully defined for TPU. Remove this when XLA supports dynamic shapes.
return dataset.batch(batch_size=1, drop_remainder=True)
optimizer = optimizer_fn()
layer = core.Dense(1, use_bias=True)
Reported by Pylint.
Line: 48
Column: 1
}
class MinimizeLossStepTest(tf.test.TestCase, parameterized.TestCase):
def _get_iterator(self, strategy, input_fn):
iterator = strategy.make_input_fn_iterator(lambda _: input_fn())
self.evaluate(iterator.initializer)
return iterator
Reported by Pylint.
Line: 50
Column: 1
class MinimizeLossStepTest(tf.test.TestCase, parameterized.TestCase):
def _get_iterator(self, strategy, input_fn):
iterator = strategy.make_input_fn_iterator(lambda _: input_fn())
self.evaluate(iterator.initializer)
return iterator
@tf.__internal__.distribute.combinations.generate(
Reported by Pylint.
Line: 51
Column: 1
class MinimizeLossStepTest(tf.test.TestCase, parameterized.TestCase):
def _get_iterator(self, strategy, input_fn):
iterator = strategy.make_input_fn_iterator(lambda _: input_fn())
self.evaluate(iterator.initializer)
return iterator
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.times(
Reported by Pylint.
Line: 52
Column: 1
def _get_iterator(self, strategy, input_fn):
iterator = strategy.make_input_fn_iterator(lambda _: input_fn())
self.evaluate(iterator.initializer)
return iterator
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.times(
optimizer_combinations.distributions_and_v1_optimizers(),
Reported by Pylint.
keras/engine/training_generator_v1.py
259 issues
Line: 18
Column: 1
"""Part of the Keras training engine related to Python generators of array data.
"""
import tensorflow.compat.v2 as tf
# pylint: disable=protected-access
import functools
import math
Reported by Pylint.
Line: 32
Column: 1
from keras.utils import data_utils
from keras.utils import generic_utils
from keras.utils.mode_keys import ModeKeys
from tensorflow.python.platform import tf_logging as logging
def model_iteration(model,
data,
steps_per_epoch=None,
Reported by Pylint.
Line: 186
Column: 5
if should_set_learning_phase:
learning_phase_scope = backend.eager_learning_phase_scope(
1 if mode == ModeKeys.TRAIN else 0)
learning_phase_scope.__enter__()
callbacks.model.stop_training = False
callbacks._call_begin_hook(mode)
initial_epoch = model._maybe_load_initial_epoch_from_ckpt(initial_epoch, mode)
Reported by Pylint.
Line: 328
Column: 5
enqueuer.stop()
if should_set_learning_phase:
learning_phase_scope.__exit__(None, None, None)
if mode == ModeKeys.TRAIN:
return model.history
return results
Reported by Pylint.
Line: 547
Column: 3
param.
"""
def fit(self,
model,
x=None,
y=None,
batch_size=None,
epochs=1,
Reported by Pylint.
Line: 588
Column: 3
initial_epoch=initial_epoch,
steps_name='steps_per_epoch')
def evaluate(self,
model,
x=None,
y=None,
batch_size=None,
verbose=1,
Reported by Pylint.
Line: 612
Column: 3
workers=workers,
use_multiprocessing=use_multiprocessing)
def predict(self,
model,
x,
batch_size=None,
verbose=0,
steps=None,
Reported by Pylint.
Line: 21
Column: 1
import tensorflow.compat.v2 as tf
# pylint: disable=protected-access
import functools
import math
import numpy as np
from keras import backend
from keras import callbacks as cbks
Reported by Pylint.
Line: 22
Column: 1
# pylint: disable=protected-access
import functools
import math
import numpy as np
from keras import backend
from keras import callbacks as cbks
from keras.engine import training_utils
Reported by Pylint.
Line: 35
Column: 1
from tensorflow.python.platform import tf_logging as logging
def model_iteration(model,
data,
steps_per_epoch=None,
epochs=1,
verbose=1,
callbacks=None,
Reported by Pylint.
keras/activations_test.py
259 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras activation functions."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from keras import activations
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from keras import activations
from keras import backend
from keras import combinations
Reported by Pylint.
Line: 204
Column: 1
return 0.5 * x * (1.0 + np.tanh(
np.sqrt(2.0 / np.pi) * (x + 0.044715 * np.power(x, 3))))
else:
from scipy.stats import norm # pylint: disable=g-import-not-at-top
return x * norm.cdf(x)
x = backend.placeholder(ndim=2)
f = backend.function([x], [activations.gelu(x)])
test_values = np.random.random((2, 5))
Reported by Pylint.
Line: 204
Column: 9
return 0.5 * x * (1.0 + np.tanh(
np.sqrt(2.0 / np.pi) * (x + 0.044715 * np.power(x, 3))))
else:
from scipy.stats import norm # pylint: disable=g-import-not-at-top
return x * norm.cdf(x)
x = backend.placeholder(ndim=2)
f = backend.function([x], [activations.gelu(x)])
test_values = np.random.random((2, 5))
Reported by Pylint.
Line: 47
Column: 14
for name in all_activations:
fn = activations.get(name)
ref_fn = getattr(activations, name)
assert fn == ref_fn
config = activations.serialize(fn)
fn = activations.deserialize(config)
assert fn == ref_fn
def test_serialization_v2(self):
Reported by Pylint.
Line: 50
Column: 14
assert fn == ref_fn
config = activations.serialize(fn)
fn = activations.deserialize(config)
assert fn == ref_fn
def test_serialization_v2(self):
activation_map = {tf.math.softmax: 'softmax'}
for fn_v2_key in activation_map:
fn_v2 = activations.get(fn_v2_key)
Reported by Pylint.
Line: 31
Column: 1
def _ref_softmax(values):
m = np.max(values)
e = np.exp(values - m)
return e / np.sum(e)
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
Reported by Pylint.
Line: 31
Column: 3
def _ref_softmax(values):
m = np.max(values)
e = np.exp(values - m)
return e / np.sum(e)
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
Reported by Pylint.
Line: 32
Column: 3
def _ref_softmax(values):
m = np.max(values)
e = np.exp(values - m)
return e / np.sum(e)
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class KerasActivationsTest(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
Line: 32
Column: 1
def _ref_softmax(values):
m = np.max(values)
e = np.exp(values - m)
return e / np.sum(e)
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class KerasActivationsTest(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
keras/layers/local.py
258 issues
Line: 15
Column: 1
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-classes-have-attributes
"""Locally-connected layers."""
import tensorflow.compat.v2 as tf
import numpy as np
Reported by Pylint.
Line: 18
Column: 1
# pylint: disable=g-classes-have-attributes
"""Locally-connected layers."""
import tensorflow.compat.v2 as tf
import numpy as np
from keras import activations
from keras import backend
Reported by Pylint.
Line: 31
Column: 1
from keras.engine.input_spec import InputSpec
from keras.utils import conv_utils
from keras.utils import tf_utils
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.LocallyConnected1D')
class LocallyConnected1D(Layer):
"""Locally-connected layer for 1D inputs.
Reported by Pylint.
Line: 170
Column: 5
raise ValueError(
'Axis 2 of input should be fully-defined. '
'Found shape:', input_shape)
self.output_length = conv_utils.conv_output_length(input_length,
self.kernel_size[0],
self.padding,
self.strides[0])
if self.implementation == 1:
Reported by Pylint.
Line: 176
Column: 7
self.strides[0])
if self.implementation == 1:
self.kernel_shape = (self.output_length, self.kernel_size[0] * input_dim,
self.filters)
self.kernel = self.add_weight(
shape=self.kernel_shape,
initializer=self.kernel_initializer,
Reported by Pylint.
Line: 179
Column: 7
self.kernel_shape = (self.output_length, self.kernel_size[0] * input_dim,
self.filters)
self.kernel = self.add_weight(
shape=self.kernel_shape,
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
Reported by Pylint.
Line: 188
Column: 9
elif self.implementation == 2:
if self.data_format == 'channels_first':
self.kernel_shape = (input_dim, input_length, self.filters,
self.output_length)
else:
self.kernel_shape = (input_length, input_dim, self.output_length,
self.filters)
Reported by Pylint.
Line: 191
Column: 9
self.kernel_shape = (input_dim, input_length, self.filters,
self.output_length)
else:
self.kernel_shape = (input_length, input_dim, self.output_length,
self.filters)
self.kernel = self.add_weight(
shape=self.kernel_shape,
initializer=self.kernel_initializer,
Reported by Pylint.
Line: 194
Column: 7
self.kernel_shape = (input_length, input_dim, self.output_length,
self.filters)
self.kernel = self.add_weight(
shape=self.kernel_shape,
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
Reported by Pylint.
Line: 201
Column: 7
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.kernel_mask = get_locallyconnected_mask(
input_shape=(input_length,),
kernel_shape=self.kernel_size,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
Reported by Pylint.
keras/layers/preprocessing/string_lookup_test.py
256 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras text vectorization preprocessing layer."""
import tensorflow.compat.v2 as tf
import os
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import os
from absl.testing import parameterized
import numpy as np
import keras
from keras import keras_parameterized
from keras import testing_utils
Reported by Pylint.
Line: 79
Column: 3
if use_dataset:
# Keras APIs expect batched datasets.
# TODO(rachelim): `model.predict` predicts the result on each
# dataset batch separately, then tries to concatenate the results
# together. When the results have different shapes on the non-concat
# axis (which can happen in the output_mode = INT case for
# StringLookup), the concatenation fails. In real use cases, this may
# not be an issue because users are likely to pipe the preprocessing layer
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import os
from absl.testing import parameterized
import numpy as np
import keras
from keras import keras_parameterized
Reported by Pylint.
Line: 31
Column: 1
def _get_end_to_end_test_cases():
test_cases = (
{
"testcase_name": "test_strings_soft_vocab_cap",
# Create an array where 'earth' is the most frequent term, followed by
# 'wind', then 'and', then 'fire'. This ensures that the vocab
# accumulator is sorting by frequency.
Reported by Pylint.
Line: 52
Column: 1
},
)
crossed_test_cases = []
# Cross above test cases with use_dataset in (True, False)
for use_dataset in (True, False):
for case in test_cases:
case = case.copy()
if use_dataset:
Reported by Pylint.
Line: 54
Column: 1
crossed_test_cases = []
# Cross above test cases with use_dataset in (True, False)
for use_dataset in (True, False):
for case in test_cases:
case = case.copy()
if use_dataset:
case["testcase_name"] = case["testcase_name"] + "_with_dataset"
case["use_dataset"] = use_dataset
Reported by Pylint.
Line: 55
Column: 1
crossed_test_cases = []
# Cross above test cases with use_dataset in (True, False)
for use_dataset in (True, False):
for case in test_cases:
case = case.copy()
if use_dataset:
case["testcase_name"] = case["testcase_name"] + "_with_dataset"
case["use_dataset"] = use_dataset
crossed_test_cases.append(case)
Reported by Pylint.
Line: 56
Column: 1
# Cross above test cases with use_dataset in (True, False)
for use_dataset in (True, False):
for case in test_cases:
case = case.copy()
if use_dataset:
case["testcase_name"] = case["testcase_name"] + "_with_dataset"
case["use_dataset"] = use_dataset
crossed_test_cases.append(case)
Reported by Pylint.
Line: 57
Column: 1
for use_dataset in (True, False):
for case in test_cases:
case = case.copy()
if use_dataset:
case["testcase_name"] = case["testcase_name"] + "_with_dataset"
case["use_dataset"] = use_dataset
crossed_test_cases.append(case)
return crossed_test_cases
Reported by Pylint.
keras/legacy_tf_layers/base.py
249 issues
Line: 15
Column: 1
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
# pylint: disable=g-classes-have-attributes
"""Contains the base Layer class, from which all layers inherit."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
Reported by Pylint.
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
import copy
import warnings
from keras import backend
from keras.engine import base_layer
Reported by Pylint.
Line: 31
Column: 1
from keras.legacy_tf_layers import variable_scope_shim
from keras.mixed_precision import policy
from keras.utils import tf_contextlib
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
# Avoid breaking users who directly import this symbol from this file.
# TODO(fchollet): remove this.
Reported by Pylint.
Line: 32
Column: 1
from keras.mixed_precision import policy
from keras.utils import tf_contextlib
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
# Avoid breaking users who directly import this symbol from this file.
# TODO(fchollet): remove this.
InputSpec = base_layer.InputSpec # pylint: disable=invalid-name
Reported by Pylint.
Line: 33
Column: 1
from keras.utils import tf_contextlib
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
# Avoid breaking users who directly import this symbol from this file.
# TODO(fchollet): remove this.
InputSpec = base_layer.InputSpec # pylint: disable=invalid-name
Reported by Pylint.
Line: 492
Column: 13
extra_trainable_vars = self._trainable_weights[prev_len_trainable:]
self._trainable_weights = self._trainable_weights[
:prev_len_trainable]
self._non_trainable_weights += extra_trainable_vars
return variable
def __call__(self, inputs, *args, **kwargs):
"""Wraps `call`, applying pre- and post-processing steps.
Reported by Pylint.
Line: 36
Column: 3
from tensorflow.python.util.tf_export import tf_export
# Avoid breaking users who directly import this symbol from this file.
# TODO(fchollet): remove this.
InputSpec = base_layer.InputSpec # pylint: disable=invalid-name
_KERAS_STYLE_SCOPE = False
Reported by Pylint.
Line: 104
Column: 3
Yields:
A keras layer style scope.
"""
global _KERAS_STYLE_SCOPE
stack = _KERAS_STYLE_SCOPE
_KERAS_STYLE_SCOPE = True
try:
yield
finally:
Reported by Pylint.
Line: 149
Column: 3
assert(model_1.weights != model_2.weights)
```
"""
global _KERAS_STYLE_SCOPE
_KERAS_STYLE_SCOPE = True
def _is_in_keras_style_scope():
global _KERAS_STYLE_SCOPE
Reported by Pylint.
Line: 154
Column: 3
def _is_in_keras_style_scope():
global _KERAS_STYLE_SCOPE
return _KERAS_STYLE_SCOPE
@keras_export(v1=['keras.__internal__.legacy.layers.Layer'])
@tf_export(v1=['layers.Layer'])
Reported by Pylint.
keras/engine/input_layer_test.py
247 issues
Line: 17
Column: 1
#,============================================================================
"""Tests for InputLayer construction."""
import tensorflow.compat.v2 as tf
from tensorflow.python.framework import type_spec
from keras import backend
from keras import combinations
from keras import keras_parameterized
from keras.engine import functional
Reported by Pylint.
Line: 18
Column: 1
"""Tests for InputLayer construction."""
import tensorflow.compat.v2 as tf
from tensorflow.python.framework import type_spec
from keras import backend
from keras import combinations
from keras import keras_parameterized
from keras.engine import functional
from keras.engine import input_layer as input_layer_lib
Reported by Pylint.
Line: 294
Column: 41
# Create a Keras Input
rt = tf.RaggedTensor.from_row_splits(
values=[3, 1, 4, 1, 5, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8])
x = input_layer_lib.Input(type_spec=rt._type_spec)
# Verify you can construct and use a model w/ this input
model = functional.Functional(x, x * 2)
# And that the model works
Reported by Pylint.
Line: 322
Column: 45
# Create a Keras Input
rt = tf.RaggedTensor.from_row_splits(
values=[3, 1, 4, 1, 5, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8])
x = input_layer_lib.Input(type_spec=rt._type_spec)
# Verify you can construct and use a model w/ this input
model_container['model'] = functional.Functional(x, x * 3)
return model_container['model'](inp)
Reported by Pylint.
Line: 363
Column: 23
inp = backend.placeholder(shape=None, dtype=tf.string)
x = input_layer_lib.InputLayer(input_tensor=inp, dtype=tf.string)
loaded = input_layer_lib.InputLayer.from_config(x.get_config())
self.assertIsNone(loaded._batch_input_shape)
if __name__ == '__main__':
tf.test.main()
Reported by Pylint.
Line: 28
Column: 1
from keras.saving import model_config
class TwoTensors(tf.__internal__.CompositeTensor):
"""A simple value type to test TypeSpec.
Contains two tensors (x, y) and a string (color). The color value is a
stand-in for any extra type metadata we might need to store.
Reported by Pylint.
Line: 29
Column: 1
class TwoTensors(tf.__internal__.CompositeTensor):
"""A simple value type to test TypeSpec.
Contains two tensors (x, y) and a string (color). The color value is a
stand-in for any extra type metadata we might need to store.
This value type contains no single dtype.
Reported by Pylint.
Line: 37
Column: 3
This value type contains no single dtype.
"""
def __init__(self, x, y, color='red', assign_variant_dtype=False):
assert isinstance(color, str)
self.x = tf.convert_to_tensor(x)
self.y = tf.convert_to_tensor(y)
self.color = color
self.shape = tf.TensorShape(None)
Reported by Pylint.
Line: 37
Column: 3
This value type contains no single dtype.
"""
def __init__(self, x, y, color='red', assign_variant_dtype=False):
assert isinstance(color, str)
self.x = tf.convert_to_tensor(x)
self.y = tf.convert_to_tensor(y)
self.color = color
self.shape = tf.TensorShape(None)
Reported by Pylint.
Line: 37
Column: 1
This value type contains no single dtype.
"""
def __init__(self, x, y, color='red', assign_variant_dtype=False):
assert isinstance(color, str)
self.x = tf.convert_to_tensor(x)
self.y = tf.convert_to_tensor(y)
self.color = color
self.shape = tf.TensorShape(None)
Reported by Pylint.