The following issues were found
keras/callbacks_v1_test.py
312 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras callbacks."""
import tensorflow.compat.v2 as tf
import os
import shutil
import tempfile
Reported by Pylint.
Line: 23
Column: 1
import shutil
import tempfile
from absl.testing import parameterized
import numpy as np
from keras import callbacks
from keras import callbacks_v1
from keras import combinations
from keras import layers
Reported by Pylint.
Line: 283
Column: 7
loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
callbacks_v1.TensorBoard._init_writer = _init_writer
tsb = callbacks_v1.TensorBoard(
log_dir=tmpdir,
histogram_freq=1,
write_images=True,
write_grads=True,
Reported by Pylint.
Line: 433
Column: 11
def add_summary(self, summary, step):
if 'batch_' in summary.value[0].tag:
self.batch_summary = (step, summary)
elif 'epoch_' in summary.value[0].tag:
self.epoch_summary = (step, summary)
def flush(self):
pass
Reported by Pylint.
Line: 435
Column: 11
if 'batch_' in summary.value[0].tag:
self.batch_summary = (step, summary)
elif 'epoch_' in summary.value[0].tag:
self.epoch_summary = (step, summary)
def flush(self):
pass
def close(self):
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import os
import shutil
import tempfile
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import os
import shutil
import tempfile
from absl.testing import parameterized
import numpy as np
from keras import callbacks
Reported by Pylint.
Line: 21
Column: 1
import os
import shutil
import tempfile
from absl.testing import parameterized
import numpy as np
from keras import callbacks
from keras import callbacks_v1
Reported by Pylint.
Line: 44
Column: 1
BATCH_SIZE = 5
class TestTensorBoardV1(tf.test.TestCase, parameterized.TestCase):
def test_TensorBoard(self):
np.random.seed(1337)
temp_dir = self.get_temp_dir()
Reported by Pylint.
Line: 46
Column: 1
class TestTensorBoardV1(tf.test.TestCase, parameterized.TestCase):
def test_TensorBoard(self):
np.random.seed(1337)
temp_dir = self.get_temp_dir()
self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True)
Reported by Pylint.
keras/distribute/distribute_coordinator_utils.py
306 issues
Line: 28
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
import copy
import json
import os
import threading
Reported by Pylint.
Line: 35
Column: 1
import os
import threading
import time
from tensorflow.core.protobuf import cluster_pb2
from tensorflow.python.platform import tf_logging as logging
_worker_context = threading.local()
_thread_local = threading.local()
Reported by Pylint.
Line: 36
Column: 1
import threading
import time
from tensorflow.core.protobuf import cluster_pb2
from tensorflow.python.platform import tf_logging as logging
_worker_context = threading.local()
_thread_local = threading.local()
Reported by Pylint.
Line: 419
Column: 1
def _configure_session_config_for_std_servers(strategy, eval_strategy,
session_config, cluster_spec,
task_type, task_id):
# pylint: disable=g-doc-args
"""Call strategy's `configure` to mutate the session_config.
The session_config is currently needed as default config for a TensorFlow
server. In the future, we should be able to remove this method and only pass
the session config to a client session.
Reported by Pylint.
Line: 177
Column: 3
ValueError: if `worker_barrier` is not passed to the __init__ method.
"""
if not self._worker_barrier:
# TODO(yuefengz): we should throw an error in independent worker mode.
return
self._worker_barrier.wait()
def session_creator(self,
scaffold=None,
Reported by Pylint.
Line: 443
Column: 3
del session_config.device_filters[:]
# TODO(yuefengz): propagate cluster_spec in the STANDALONE_CLIENT mode.
# TODO(yuefengz): we may need a smart way to figure out whether the current task
# is the special task when we support cluster_spec propagation.
def run_distribute_coordinator(worker_fn,
strategy,
eval_fn=None,
Reported by Pylint.
Line: 444
Column: 3
# TODO(yuefengz): propagate cluster_spec in the STANDALONE_CLIENT mode.
# TODO(yuefengz): we may need a smart way to figure out whether the current task
# is the special task when we support cluster_spec propagation.
def run_distribute_coordinator(worker_fn,
strategy,
eval_fn=None,
eval_strategy=None,
Reported by Pylint.
Line: 577
Column: 3
task_id = int(task_env.get("index", task_id))
if cluster_spec:
# TODO(yuefengz): validate cluster_spec.
cluster_spec = normalize_cluster_spec(cluster_spec)
elif hasattr(strategy.extended, "_cluster_resolver"):
cluster_resolver = strategy.extended._cluster_resolver # pylint: disable=protected-access
task_type = cluster_resolver.task_type
task_id = cluster_resolver.task_id
Reported by Pylint.
Line: 30
Column: 1
import tensorflow.compat.v2 as tf
import copy
import json
import os
import threading
import time
from tensorflow.core.protobuf import cluster_pb2
Reported by Pylint.
Line: 31
Column: 1
import tensorflow.compat.v2 as tf
import copy
import json
import os
import threading
import time
from tensorflow.core.protobuf import cluster_pb2
from tensorflow.python.platform import tf_logging as logging
Reported by Pylint.
keras/optimizer_v2/adamax_test.py
304 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Adamax."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras.optimizer_v2 import adamax
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras.optimizer_v2 import adamax
Reported by Pylint.
Line: 21
Column: 1
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras.optimizer_v2 import adamax
def adamax_update_numpy(param,
g_t,
Reported by Pylint.
Line: 22
Column: 1
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras.optimizer_v2 import adamax
def adamax_update_numpy(param,
g_t,
t,
Reported by Pylint.
Line: 63
Column: 22
def get_beta_accumulators(opt, dtype):
local_step = tf.cast(opt.iterations + 1, dtype)
beta_1_t = tf.cast(opt._get_hyper("beta_1"), dtype)
beta_1_power = tf.pow(beta_1_t, local_step)
return beta_1_power
class AdamaxOptimizerTest(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
Line: 71
Column: 3
class AdamaxOptimizerTest(tf.test.TestCase, parameterized.TestCase):
def testResourceSparse(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [tf.half, tf.float32, tf.float64]:
with tf.Graph().as_default(), self.cached_session():
# Initialize variables for numpy implementation.
zero_slots = lambda: np.zeros((3), dtype=dtype.as_numpy_dtype) # pylint: disable=cell-var-from-loop
m0, v0, m1, v1 = zero_slots(), zero_slots(), zero_slots(), zero_slots()
Reported by Pylint.
Line: 118
Column: 3
self.assertAllCloseAccordingToType(var1_np, var1)
def testSparseDevicePlacement(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for index_dtype in [tf.int32, tf.int64]:
with tf.Graph().as_default(), self.cached_session(
force_gpu=tf.test.is_gpu_available()):
# If a GPU is available, tests that all optimizer ops can be placed on
# it (i.e. they have GPU kernels).
Reported by Pylint.
Line: 133
Column: 3
minimize_op.run()
def testSparseRepeatedIndices(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [tf.half, tf.float32, tf.float64]:
with tf.Graph().as_default(), self.cached_session():
repeated_index_update_var = tf.Variable(
[[1.0], [2.0]], dtype=dtype)
aggregated_update_var = tf.Variable(
Reported by Pylint.
Line: 265
Column: 3
rtol=1e-2)
def testTensorLearningRate(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [tf.half, tf.float32, tf.float64]:
with tf.Graph().as_default(), self.cached_session():
# Initialize variables for numpy implementation.
m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
Reported by Pylint.
Line: 302
Column: 3
self.assertAllCloseAccordingToType(var1_np, var1)
def testSharing(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [tf.half, tf.float32, tf.float64]:
with tf.Graph().as_default(), self.cached_session():
# Initialize variables for numpy implementation.
m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
Reported by Pylint.
keras/layers/cudnn_recurrent_test.py
302 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for cudnn recurrent layers."""
import tensorflow.compat.v2 as tf
import os
import tempfile
from absl.testing import parameterized
Reported by Pylint.
Line: 22
Column: 1
import os
import tempfile
from absl.testing import parameterized
import numpy as np
import keras
from tensorflow.python.framework import test_util
from keras import combinations
Reported by Pylint.
Line: 26
Column: 1
import numpy as np
import keras
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.optimizer_v2.rmsprop import RMSprop
Reported by Pylint.
Line: 140
Column: 22
output = layer(inputs, initial_state=initial_state)
self.assertTrue(
any(initial_state[0] is t
for t in layer._inbound_nodes[0].input_tensors))
model = keras.models.Model([inputs] + initial_state, output)
model.compile(
loss='categorical_crossentropy',
optimizer=RMSprop(learning_rate=0.001),
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import os
import tempfile
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import os
import tempfile
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 34
Column: 1
@keras_parameterized.run_all_keras_modes
class CuDNNTest(keras_parameterized.TestCase):
@parameterized.named_parameters(
*testing_utils.generate_combinations_with_testcase_name(
layer_class=[keras.layers.CuDNNGRU, keras.layers.CuDNNLSTM],
return_sequences=[True, False]))
Reported by Pylint.
Line: 36
Column: 1
@keras_parameterized.run_all_keras_modes
class CuDNNTest(keras_parameterized.TestCase):
@parameterized.named_parameters(
*testing_utils.generate_combinations_with_testcase_name(
layer_class=[keras.layers.CuDNNGRU, keras.layers.CuDNNLSTM],
return_sequences=[True, False]))
@test_util.run_gpu_only
def test_cudnn_rnn_return_sequence(self, layer_class, return_sequences):
Reported by Pylint.
Line: 40
Column: 1
*testing_utils.generate_combinations_with_testcase_name(
layer_class=[keras.layers.CuDNNGRU, keras.layers.CuDNNLSTM],
return_sequences=[True, False]))
@test_util.run_gpu_only
def test_cudnn_rnn_return_sequence(self, layer_class, return_sequences):
input_size = 10
timesteps = 6
units = 2
num_samples = 32
Reported by Pylint.
Line: 41
Column: 1
layer_class=[keras.layers.CuDNNGRU, keras.layers.CuDNNLSTM],
return_sequences=[True, False]))
@test_util.run_gpu_only
def test_cudnn_rnn_return_sequence(self, layer_class, return_sequences):
input_size = 10
timesteps = 6
units = 2
num_samples = 32
testing_utils.layer_test(
Reported by Pylint.
keras/layers/preprocessing/category_encoding_test.py
302 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras text category_encoding preprocessing layer."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
from keras import backend
from keras import keras_parameterized
Reported by Pylint.
Line: 31
Column: 1
@keras_parameterized.run_all_keras_modes(always_skip_v1=True)
class CategoryEncodingInputTest(keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest
):
def test_dense_input_sparse_output(self):
input_array = tf.constant([[1, 2, 3], [3, 3, 0]])
Reported by Pylint.
Line: 35
Column: 3
preprocessing_test_utils.PreprocessingLayerTest
):
def test_dense_input_sparse_output(self):
input_array = tf.constant([[1, 2, 3], [3, 3, 0]])
# The expected output should be (X for missing value):
# [[X, 1, 1, 1, X, X]
# [1, X, X, 2, X, X]]
Reported by Pylint.
Line: 35
Column: 1
preprocessing_test_utils.PreprocessingLayerTest
):
def test_dense_input_sparse_output(self):
input_array = tf.constant([[1, 2, 3], [3, 3, 0]])
# The expected output should be (X for missing value):
# [[X, 1, 1, 1, X, X]
# [1, X, X, 2, X, X]]
Reported by Pylint.
Line: 36
Column: 1
):
def test_dense_input_sparse_output(self):
input_array = tf.constant([[1, 2, 3], [3, 3, 0]])
# The expected output should be (X for missing value):
# [[X, 1, 1, 1, X, X]
# [1, X, X, 2, X, X]]
expected_indices = [[0, 1], [0, 2], [0, 3], [1, 0], [1, 3]]
Reported by Pylint.
Line: 41
Column: 1
# The expected output should be (X for missing value):
# [[X, 1, 1, 1, X, X]
# [1, X, X, 2, X, X]]
expected_indices = [[0, 1], [0, 2], [0, 3], [1, 0], [1, 3]]
expected_values = [1, 1, 1, 1, 2]
num_tokens = 6
input_data = keras.Input(shape=(None,), dtype=tf.int32)
layer = category_encoding.CategoryEncoding(
Reported by Pylint.
Line: 42
Column: 1
# [[X, 1, 1, 1, X, X]
# [1, X, X, 2, X, X]]
expected_indices = [[0, 1], [0, 2], [0, 3], [1, 0], [1, 3]]
expected_values = [1, 1, 1, 1, 2]
num_tokens = 6
input_data = keras.Input(shape=(None,), dtype=tf.int32)
layer = category_encoding.CategoryEncoding(
num_tokens=num_tokens, output_mode=category_encoding.COUNT, sparse=True)
Reported by Pylint.
Line: 43
Column: 1
# [1, X, X, 2, X, X]]
expected_indices = [[0, 1], [0, 2], [0, 3], [1, 0], [1, 3]]
expected_values = [1, 1, 1, 1, 2]
num_tokens = 6
input_data = keras.Input(shape=(None,), dtype=tf.int32)
layer = category_encoding.CategoryEncoding(
num_tokens=num_tokens, output_mode=category_encoding.COUNT, sparse=True)
int_data = layer(input_data)
Reported by Pylint.
Line: 45
Column: 1
expected_values = [1, 1, 1, 1, 2]
num_tokens = 6
input_data = keras.Input(shape=(None,), dtype=tf.int32)
layer = category_encoding.CategoryEncoding(
num_tokens=num_tokens, output_mode=category_encoding.COUNT, sparse=True)
int_data = layer(input_data)
model = keras.Model(inputs=input_data, outputs=int_data)
Reported by Pylint.
keras/layers/pooling.py
299 issues
Line: 17
Column: 1
# ==============================================================================
"""Pooling layers."""
import tensorflow.compat.v2 as tf
import functools
from keras import backend
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
Reported by Pylint.
Line: 24
Column: 1
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
from keras.utils import conv_utils
from tensorflow.python.util.tf_export import keras_export
class Pooling1D(Layer):
"""Pooling layer for arbitrary pooling functions, for 1D inputs.
Reported by Pylint.
Line: 65
Column: 3
self.data_format = conv_utils.normalize_data_format(data_format)
self.input_spec = InputSpec(ndim=3)
def call(self, inputs):
pad_axis = 2 if self.data_format == 'channels_last' else 3
inputs = tf.expand_dims(inputs, pad_axis)
outputs = self.pool_function(
inputs,
self.pool_size + (1,),
Reported by Pylint.
Line: 348
Column: 3
self.data_format = conv_utils.normalize_data_format(data_format)
self.input_spec = InputSpec(ndim=4)
def call(self, inputs):
if self.data_format == 'channels_last':
pool_shape = (1,) + self.pool_size + (1,)
strides = (1,) + self.strides + (1,)
else:
pool_shape = (1, 1) + self.pool_size
Reported by Pylint.
Line: 686
Column: 3
self.data_format = conv_utils.normalize_data_format(data_format)
self.input_spec = InputSpec(ndim=5)
def call(self, inputs):
pool_shape = (1,) + self.pool_size + (1,)
strides = (1,) + self.strides + (1,)
if self.data_format == 'channels_first':
# TF does not support `channels_first` with 3D pooling operations,
Reported by Pylint.
Line: 693
Column: 3
if self.data_format == 'channels_first':
# TF does not support `channels_first` with 3D pooling operations,
# so we must handle this case manually.
# TODO(fchollet): remove this when TF pooling is feature-complete.
inputs = tf.transpose(inputs, (0, 2, 3, 4, 1))
outputs = self.pool_function(
inputs,
ksize=pool_shape,
Reported by Pylint.
Line: 904
Column: 3
else:
return tf.TensorShape([input_shape[0], input_shape[2]])
def call(self, inputs):
raise NotImplementedError
def get_config(self):
config = {'data_format': self.data_format, 'keepdims': self.keepdims}
base_config = super(GlobalPooling1D, self).get_config()
Reported by Pylint.
Line: 969
Column: 3
**kwargs)
self.supports_masking = True
def call(self, inputs, mask=None):
steps_axis = 1 if self.data_format == 'channels_last' else 2
if mask is not None:
mask = tf.cast(mask, inputs[0].dtype)
mask = tf.expand_dims(
mask, 2 if self.data_format == 'channels_last' else 1)
Reported by Pylint.
Line: 1071
Column: 3
else:
return tf.TensorShape([input_shape[0], input_shape[1]])
def call(self, inputs):
raise NotImplementedError
def get_config(self):
config = {'data_format': self.data_format, 'keepdims': self.keepdims}
base_config = super(GlobalPooling2D, self).get_config()
Reported by Pylint.
Line: 1211
Column: 3
else:
return tf.TensorShape([input_shape[0], input_shape[1]])
def call(self, inputs):
raise NotImplementedError
def get_config(self):
config = {'data_format': self.data_format, 'keepdims': self.keepdims}
base_config = super(GlobalPooling3D, self).get_config()
Reported by Pylint.
keras/distribute/keras_utils_test.py
299 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for tf.keras models with callbacks, checkpointing with dist strategy."""
import tensorflow.compat.v2 as tf
import collections
import tempfile
from absl.testing import parameterized
Reported by Pylint.
Line: 22
Column: 1
import collections
import tempfile
from absl.testing import parameterized
import numpy as np
import keras
from keras import losses
from keras.distribute import distribute_strategy_test as keras_test_lib
Reported by Pylint.
Line: 40
Column: 3
run.
"""
def __init__(self):
self.method_counts = collections.defaultdict(int)
methods_to_count = [
'on_batch_begin', 'on_batch_end', 'on_epoch_begin', 'on_epoch_end',
'on_predict_batch_begin', 'on_predict_batch_end', 'on_predict_begin',
'on_predict_end', 'on_test_batch_begin', 'on_test_batch_end',
Reported by Pylint.
Line: 227
Column: 53
tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu,
],
mode=['graph', 'eager']))
def test_unsupported_features(self, distribution, mode):
with self.cached_session():
with distribution.scope():
model = keras_test_lib.get_model()
optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.001)
loss = 'mse'
Reported by Pylint.
Line: 282
Column: 7
self, distribution):
with distribution.scope():
class _SimpleMLP(keras.Model):
def __init__(self, num_labels):
super(_SimpleMLP, self).__init__()
self.dense = keras.layers.Dense(num_labels)
Reported by Pylint.
Line: 288
Column: 9
super(_SimpleMLP, self).__init__()
self.dense = keras.layers.Dense(num_labels)
def call(self, inputs):
return self.dense(inputs)
model = _SimpleMLP(3)
if not tf.executing_eagerly():
Reported by Pylint.
Line: 348
Column: 3
class TestDistributionStrategyWithLossMasking(tf.test.TestCase,
parameterized.TestCase):
# TODO(priyag): Enable all strategies for this test. Currently it does not
# work for TPU due to some invalid datatype.
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
distribution=[
tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu,
Reported by Pylint.
Line: 443
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html#b306-mktemp-q
'mse')
model.fit(dataset, epochs=1, steps_per_epoch=1)
weights_file = tempfile.mktemp('.h5')
model.save_weights(weights_file)
model_2 = keras_test_lib.get_model()
model_2.compile(
optimizer(),
Reported by Bandit.
Line: 461
Column: 3
tf.__internal__.test.combinations.combine(
optimizer=optimizer_combinations.rmsprop_optimizer_keras_v2_fn)))
def test_save_load_trackable(self, distribution, optimizer):
# TODO(b/123533246): Enable the test for TPU once bug is fixed
if (isinstance(distribution,
(tf.distribute.experimental.TPUStrategy, tf.compat.v1.distribute.experimental.TPUStrategy)) and
distribution.extended.steps_per_run > 1):
self.skipTest('MultiStep TPU Strategy deadlocks with optimizer restore.')
with self.cached_session():
Reported by Pylint.
Line: 475
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html#b306-mktemp-q
'mse')
model.fit(dataset, epochs=1, steps_per_epoch=1)
weights_file = tempfile.mktemp()
model.save_weights(weights_file)
model_2 = keras_test_lib.get_model()
model_2.compile(
optimizer(),
Reported by Bandit.
keras/mixed_precision/layer_test.py
299 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests keras.layers.Layer works properly with mixed precision."""
import tensorflow.compat.v2 as tf
import os
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 21
Column: 1
import os
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras import keras_parameterized
from keras import layers
from keras import models
Reported by Pylint.
Line: 106
Column: 9
class LayerWithIntVar(base_layer.Layer):
def build(self, _):
self.v = self.add_weight('v', dtype='int32', trainable=False)
def call(self, inputs):
# Only float variables should be autocasted. This will fail if self.v is
# autocasted to float32
return tf.cast(inputs, 'int32') + self.v
Reported by Pylint.
Line: 108
Column: 7
def build(self, _):
self.v = self.add_weight('v', dtype='int32', trainable=False)
def call(self, inputs):
# Only float variables should be autocasted. This will fail if self.v is
# autocasted to float32
return tf.cast(inputs, 'int32') + self.v
x = tf.constant([1.])
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import os
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras import keras_parameterized
Reported by Pylint.
Line: 37
Column: 1
class MultiplyLayerWithFunction(mp_test_util.MultiplyLayer):
"""Same as MultiplyLayer, but _multiply is decorated with a tf.function."""
@tf.function
def _multiply(self, x, y):
return super(MultiplyLayerWithFunction, self)._multiply(x, y)
Reported by Pylint.
Line: 39
Column: 1
class MultiplyLayerWithFunction(mp_test_util.MultiplyLayer):
"""Same as MultiplyLayer, but _multiply is decorated with a tf.function."""
@tf.function
def _multiply(self, x, y):
return super(MultiplyLayerWithFunction, self)._multiply(x, y)
# If called outside any strategy.scope() calls, this will return the default
Reported by Pylint.
Line: 40
Column: 1
"""Same as MultiplyLayer, but _multiply is decorated with a tf.function."""
@tf.function
def _multiply(self, x, y):
return super(MultiplyLayerWithFunction, self)._multiply(x, y)
# If called outside any strategy.scope() calls, this will return the default
# strategy.
Reported by Pylint.
Line: 41
Column: 1
@tf.function
def _multiply(self, x, y):
return super(MultiplyLayerWithFunction, self)._multiply(x, y)
# If called outside any strategy.scope() calls, this will return the default
# strategy.
default_strategy_fn = tf.distribute.get_strategy
Reported by Pylint.
Line: 41
Column: 12
@tf.function
def _multiply(self, x, y):
return super(MultiplyLayerWithFunction, self)._multiply(x, y)
# If called outside any strategy.scope() calls, this will return the default
# strategy.
default_strategy_fn = tf.distribute.get_strategy
Reported by Pylint.
keras/layers/legacy_rnn/rnn_cell_wrapper_impl.py
298 issues
Line: 20
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
import hashlib
import numbers
import sys
import types as python_types
Reported by Pylint.
Line: 27
Column: 1
import sys
import types as python_types
import warnings
from keras.utils import generic_utils
class DropoutWrapperBase:
"""Operator adding dropout to inputs and outputs of the given cell."""
Reported by Pylint.
Line: 153
Column: 26
shape = convert_to_batch_shape(s)
return tf.random.uniform(shape, seed=inner_seed, dtype=dtype)
if (not isinstance(self._input_keep_prob, numbers.Real) or
self._input_keep_prob < 1.0):
if input_size is None:
raise ValueError(
"When variational_recurrent=True and input_keep_prob < 1.0 or "
"is unknown, input_size must be provided")
Reported by Pylint.
Line: 154
Column: 11
return tf.random.uniform(shape, seed=inner_seed, dtype=dtype)
if (not isinstance(self._input_keep_prob, numbers.Real) or
self._input_keep_prob < 1.0):
if input_size is None:
raise ValueError(
"When variational_recurrent=True and input_keep_prob < 1.0 or "
"is unknown, input_size must be provided")
self._recurrent_input_noise = _enumerated_map_structure_up_to(
Reported by Pylint.
Line: 181
Column: 12
@property
def wrapped_cell(self):
return self.cell
@property
def state_size(self):
return self.cell.state_size
Reported by Pylint.
Line: 185
Column: 12
@property
def state_size(self):
return self.cell.state_size
@property
def output_size(self):
return self.cell.output_size
Reported by Pylint.
Line: 189
Column: 12
@property
def output_size(self):
return self.cell.output_size
def build(self, inputs_shape):
self.cell.build(inputs_shape)
self.built = True
Reported by Pylint.
Line: 192
Column: 5
return self.cell.output_size
def build(self, inputs_shape):
self.cell.build(inputs_shape)
self.built = True
def zero_state(self, batch_size, dtype):
with tf.name_scope(type(self).__name__ + "ZeroState"):
return self.cell.zero_state(batch_size, dtype)
Reported by Pylint.
Line: 197
Column: 14
def zero_state(self, batch_size, dtype):
with tf.name_scope(type(self).__name__ + "ZeroState"):
return self.cell.zero_state(batch_size, dtype)
def _variational_recurrent_dropout_value(
self, unused_index, value, noise, keep_prob):
"""Performs dropout given the pre-calculated noise tensor."""
# uniform [keep_prob, 1.0 + keep_prob)
Reported by Pylint.
Line: 268
Column: 24
def _should_dropout(p):
return (not isinstance(p, float)) or p < 1
if _should_dropout(self._input_keep_prob):
inputs = self._dropout(inputs, "input", self._recurrent_input_noise,
self._input_keep_prob)
output, new_state = cell_call_fn(inputs, state, **kwargs)
if _should_dropout(self._state_keep_prob):
# Identify which subsets of the state to perform dropout on and
Reported by Pylint.
keras/optimizer_v2/ftrl_test.py
298 issues
Line: 17
Column: 1
# ==============================================================================
"""Functional tests for Ftrl operations."""
import tensorflow.compat.v2 as tf
import numpy as np
from keras.optimizer_v2 import ftrl
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import numpy as np
from keras.optimizer_v2 import ftrl
class FtrlOptimizerTest(tf.test.TestCase):
def doTestFtrlwithoutRegularization(self, use_resource=False):
Reported by Pylint.
Line: 26
Column: 3
class FtrlOptimizerTest(tf.test.TestCase):
def doTestFtrlwithoutRegularization(self, use_resource=False):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [tf.float32]:
with tf.Graph().as_default(), self.cached_session():
if use_resource:
var0 = tf.Variable([0.0, 0.0], dtype=dtype)
var1 = tf.Variable([0.0, 0.0], dtype=dtype)
Reported by Pylint.
Line: 66
Column: 3
self.doTestFtrlwithoutRegularization(use_resource=True)
def testFtrlwithoutRegularization2(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [tf.half, tf.float32]:
with tf.Graph().as_default(), self.cached_session():
var0 = tf.Variable([1.0, 2.0], dtype=dtype)
var1 = tf.Variable([4.0, 3.0], dtype=dtype)
grads0 = tf.constant([0.1, 0.2], dtype=dtype)
Reported by Pylint.
Line: 96
Column: 3
np.array([-0.28232238, -0.56096673]), v1_val)
def testMinimizeSparseResourceVariable(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [tf.half, tf.float32, tf.float64]:
with tf.Graph().as_default(), self.cached_session():
var0 = tf.Variable([[1.0, 2.0]], dtype=dtype)
x = tf.constant([[4.0], [5.0]], dtype=dtype)
Reported by Pylint.
Line: 118
Column: 3
atol=0.01)
def testFtrlWithL1(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [tf.half, tf.float32]:
with tf.Graph().as_default(), self.cached_session():
var0 = tf.Variable([1.0, 2.0], dtype=dtype)
var1 = tf.Variable([4.0, 3.0], dtype=dtype)
grads0 = tf.constant([0.1, 0.2], dtype=dtype)
Reported by Pylint.
Line: 148
Column: 3
np.array([-0.93460727, -1.86147261]), v1_val)
def testFtrlWithBeta(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [tf.half, tf.float32]:
with tf.Graph().as_default(), self.cached_session():
var0 = tf.Variable([1.0, 2.0], dtype=dtype)
var1 = tf.Variable([4.0, 3.0], dtype=dtype)
grads0 = tf.constant([0.1, 0.2], dtype=dtype)
Reported by Pylint.
Line: 174
Column: 3
np.array([-0.717741, -1.425132]), v1_val)
def testFtrlWithL2_Beta(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [tf.half, tf.float32]:
with tf.Graph().as_default(), self.cached_session():
var0 = tf.Variable([1.0, 2.0], dtype=dtype)
var1 = tf.Variable([4.0, 3.0], dtype=dtype)
grads0 = tf.constant([0.1, 0.2], dtype=dtype)
Reported by Pylint.
Line: 205
Column: 3
np.array([-0.294335, -0.586556]), v1_val)
def testFtrlWithL1_L2(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [tf.half, tf.float32]:
with tf.Graph().as_default(), self.cached_session():
var0 = tf.Variable([1.0, 2.0], dtype=dtype)
var1 = tf.Variable([4.0, 3.0], dtype=dtype)
grads0 = tf.constant([0.1, 0.2], dtype=dtype)
Reported by Pylint.
Line: 242
Column: 3
towards the origin causes the gradient descent trajectory to differ. The
weights will tend to have smaller magnitudes with this parameter set.
"""
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [tf.half, tf.float32]:
with tf.Graph().as_default(), self.cached_session():
var0 = tf.Variable([1.0, 2.0], dtype=dtype)
var1 = tf.Variable([4.0, 3.0], dtype=dtype)
grads0 = tf.constant([0.1, 0.2], dtype=dtype)
Reported by Pylint.