The following issues were found
keras/tests/automatic_outside_compilation_test.py
167 issues
Line: 20
Column: 1
import collections
import os
from absl import flags
from keras import callbacks
from keras.distribute import distribute_strategy_test
from keras.engine import base_layer
from keras.engine import sequential as sequential_model_lib
from keras.engine import training
Reported by Pylint.
Line: 21
Column: 1
import os
from absl import flags
from keras import callbacks
from keras.distribute import distribute_strategy_test
from keras.engine import base_layer
from keras.engine import sequential as sequential_model_lib
from keras.engine import training
from keras.layers import convolutional as conv_layer_lib
Reported by Pylint.
Line: 22
Column: 1
from absl import flags
from keras import callbacks
from keras.distribute import distribute_strategy_test
from keras.engine import base_layer
from keras.engine import sequential as sequential_model_lib
from keras.engine import training
from keras.layers import convolutional as conv_layer_lib
from keras.layers import core as layer_lib
Reported by Pylint.
Line: 23
Column: 1
from absl import flags
from keras import callbacks
from keras.distribute import distribute_strategy_test
from keras.engine import base_layer
from keras.engine import sequential as sequential_model_lib
from keras.engine import training
from keras.layers import convolutional as conv_layer_lib
from keras.layers import core as layer_lib
from keras.layers import pooling as pool_layer_lib
Reported by Pylint.
Line: 24
Column: 1
from keras import callbacks
from keras.distribute import distribute_strategy_test
from keras.engine import base_layer
from keras.engine import sequential as sequential_model_lib
from keras.engine import training
from keras.layers import convolutional as conv_layer_lib
from keras.layers import core as layer_lib
from keras.layers import pooling as pool_layer_lib
import numpy as np
Reported by Pylint.
Line: 25
Column: 1
from keras.distribute import distribute_strategy_test
from keras.engine import base_layer
from keras.engine import sequential as sequential_model_lib
from keras.engine import training
from keras.layers import convolutional as conv_layer_lib
from keras.layers import core as layer_lib
from keras.layers import pooling as pool_layer_lib
import numpy as np
import tensorflow.compat.v2 as tf
Reported by Pylint.
Line: 26
Column: 1
from keras.engine import base_layer
from keras.engine import sequential as sequential_model_lib
from keras.engine import training
from keras.layers import convolutional as conv_layer_lib
from keras.layers import core as layer_lib
from keras.layers import pooling as pool_layer_lib
import numpy as np
import tensorflow.compat.v2 as tf
Reported by Pylint.
Line: 27
Column: 1
from keras.engine import sequential as sequential_model_lib
from keras.engine import training
from keras.layers import convolutional as conv_layer_lib
from keras.layers import core as layer_lib
from keras.layers import pooling as pool_layer_lib
import numpy as np
import tensorflow.compat.v2 as tf
from tensorboard.plugins.histogram import summary_v2 as histogram_summary_v2
Reported by Pylint.
Line: 28
Column: 1
from keras.engine import training
from keras.layers import convolutional as conv_layer_lib
from keras.layers import core as layer_lib
from keras.layers import pooling as pool_layer_lib
import numpy as np
import tensorflow.compat.v2 as tf
from tensorboard.plugins.histogram import summary_v2 as histogram_summary_v2
from tensorboard.plugins.image import summary_v2 as image_summary_v2
Reported by Pylint.
Line: 30
Column: 1
from keras.layers import core as layer_lib
from keras.layers import pooling as pool_layer_lib
import numpy as np
import tensorflow.compat.v2 as tf
from tensorboard.plugins.histogram import summary_v2 as histogram_summary_v2
from tensorboard.plugins.image import summary_v2 as image_summary_v2
from tensorboard.plugins.scalar import summary_v2 as scalar_summary_v2
from tensorflow.python.eager.context import set_soft_device_placement # pylint: disable=g-direct-tensorflow-import
Reported by Pylint.
keras/distribute/ctl_correctness_test.py
166 issues
Line: 17
Column: 1
# ==============================================================================
"""Custom Training Loop correctness test."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
from keras.distribute import optimizer_combinations
from keras.distribute import strategy_combinations
Reported by Pylint.
Line: 262
Column: 3
def test_dnn_correctness_minus_tpus(self, distribution, optimizer_fn,
iteration_type, inside_func,
sync_batchnorm, jit_compile):
# TODO(anjs): Identify why this particular V1 optimizer needs a higher tol.
if 'FtrlV1' in optimizer_fn._name and 'TPU' in type(distribution).__name__:
self.skipTest('Reduced tolerance of the order of 1e-1 required.')
self.dnn_correctness(distribution, optimizer_fn, iteration_type,
inside_func, sync_batchnorm, jit_compile)
Reported by Pylint.
Line: 263
Column: 20
iteration_type, inside_func,
sync_batchnorm, jit_compile):
# TODO(anjs): Identify why this particular V1 optimizer needs a higher tol.
if 'FtrlV1' in optimizer_fn._name and 'TPU' in type(distribution).__name__:
self.skipTest('Reduced tolerance of the order of 1e-1 required.')
self.dnn_correctness(distribution, optimizer_fn, iteration_type,
inside_func, sync_batchnorm, jit_compile)
def dnn_correctness(self,
Reported by Pylint.
Line: 34
Column: 1
class MaybeStrategyScope:
"""Provides a context allowing no distribution strategy."""
def __init__(self, strategy):
self._strategy = strategy
self._scope = None
Reported by Pylint.
Line: 36
Column: 1
class MaybeStrategyScope:
"""Provides a context allowing no distribution strategy."""
def __init__(self, strategy):
self._strategy = strategy
self._scope = None
def __enter__(self):
if self._strategy:
Reported by Pylint.
Line: 37
Column: 1
"""Provides a context allowing no distribution strategy."""
def __init__(self, strategy):
self._strategy = strategy
self._scope = None
def __enter__(self):
if self._strategy:
self._scope = self._strategy.scope()
Reported by Pylint.
Line: 38
Column: 1
def __init__(self, strategy):
self._strategy = strategy
self._scope = None
def __enter__(self):
if self._strategy:
self._scope = self._strategy.scope()
self._scope.__enter__()
Reported by Pylint.
Line: 40
Column: 1
self._strategy = strategy
self._scope = None
def __enter__(self):
if self._strategy:
self._scope = self._strategy.scope()
self._scope.__enter__()
def __exit__(self, exc_type, value, traceback):
Reported by Pylint.
Line: 41
Column: 1
self._scope = None
def __enter__(self):
if self._strategy:
self._scope = self._strategy.scope()
self._scope.__enter__()
def __exit__(self, exc_type, value, traceback):
if self._strategy:
Reported by Pylint.
keras/applications/inception_v3.py
165 issues
Line: 23
Column: 1
http://arxiv.org/abs/1512.00567) (CVPR 2016)
"""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.applications import imagenet_utils
from keras.engine import training
from keras.layers import VersionAwareLayers
Reported by Pylint.
Line: 31
Column: 1
from keras.layers import VersionAwareLayers
from keras.utils import data_utils
from keras.utils import layer_utils
from tensorflow.python.util.tf_export import keras_export
WEIGHTS_PATH = (
'https://storage.googleapis.com/tensorflow/keras-applications/'
'inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels.h5')
Reported by Pylint.
Line: 46
Column: 1
@keras_export('keras.applications.inception_v3.InceptionV3',
'keras.applications.InceptionV3')
def InceptionV3(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
Reported by Pylint.
Line: 46
Column: 1
@keras_export('keras.applications.inception_v3.InceptionV3',
'keras.applications.InceptionV3')
def InceptionV3(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
Reported by Pylint.
Line: 46
Column: 1
@keras_export('keras.applications.inception_v3.InceptionV3',
'keras.applications.InceptionV3')
def InceptionV3(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
Reported by Pylint.
Line: 46
Column: 1
@keras_export('keras.applications.inception_v3.InceptionV3',
'keras.applications.InceptionV3')
def InceptionV3(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
Reported by Pylint.
Line: 54
Column: 1
pooling=None,
classes=1000,
classifier_activation='softmax'):
"""Instantiates the Inception v3 architecture.
Reference:
- [Rethinking the Inception Architecture for Computer Vision](
http://arxiv.org/abs/1512.00567) (CVPR 2016)
Reported by Pylint.
Line: 114
Column: 1
Returns:
A `keras.Model` instance.
"""
if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded; '
f'Received: weights={weights}')
Reported by Pylint.
Line: 115
Column: 1
A `keras.Model` instance.
"""
if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded; '
f'Received: weights={weights}')
Reported by Pylint.
Line: 121
Column: 1
'or the path to the weights file to be loaded; '
f'Received: weights={weights}')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top` '
'as true, `classes` should be 1000; '
f'Received classes={classes}')
# Determine proper input shape
Reported by Pylint.
keras/layers/simplernn_test.py
165 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for SimpleRNN layer."""
import tensorflow.compat.v2 as tf
import copy
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 21
Column: 1
import copy
from absl.testing import parameterized
import numpy as np
import keras
from keras import combinations
from keras import testing_utils
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import copy
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 30
Column: 1
@combinations.generate(combinations.keras_mode_combinations())
class SimpleRNNLayerTest(tf.test.TestCase, parameterized.TestCase):
def test_return_sequences_SimpleRNN(self):
num_samples = 2
timesteps = 3
embedding_dim = 4
Reported by Pylint.
Line: 32
Column: 3
@combinations.generate(combinations.keras_mode_combinations())
class SimpleRNNLayerTest(tf.test.TestCase, parameterized.TestCase):
def test_return_sequences_SimpleRNN(self):
num_samples = 2
timesteps = 3
embedding_dim = 4
units = 2
testing_utils.layer_test(
Reported by Pylint.
Line: 32
Column: 1
@combinations.generate(combinations.keras_mode_combinations())
class SimpleRNNLayerTest(tf.test.TestCase, parameterized.TestCase):
def test_return_sequences_SimpleRNN(self):
num_samples = 2
timesteps = 3
embedding_dim = 4
units = 2
testing_utils.layer_test(
Reported by Pylint.
Line: 32
Column: 3
@combinations.generate(combinations.keras_mode_combinations())
class SimpleRNNLayerTest(tf.test.TestCase, parameterized.TestCase):
def test_return_sequences_SimpleRNN(self):
num_samples = 2
timesteps = 3
embedding_dim = 4
units = 2
testing_utils.layer_test(
Reported by Pylint.
Line: 32
Column: 3
@combinations.generate(combinations.keras_mode_combinations())
class SimpleRNNLayerTest(tf.test.TestCase, parameterized.TestCase):
def test_return_sequences_SimpleRNN(self):
num_samples = 2
timesteps = 3
embedding_dim = 4
units = 2
testing_utils.layer_test(
Reported by Pylint.
Line: 33
Column: 1
class SimpleRNNLayerTest(tf.test.TestCase, parameterized.TestCase):
def test_return_sequences_SimpleRNN(self):
num_samples = 2
timesteps = 3
embedding_dim = 4
units = 2
testing_utils.layer_test(
keras.layers.SimpleRNN,
Reported by Pylint.
Line: 34
Column: 1
def test_return_sequences_SimpleRNN(self):
num_samples = 2
timesteps = 3
embedding_dim = 4
units = 2
testing_utils.layer_test(
keras.layers.SimpleRNN,
kwargs={'units': units,
Reported by Pylint.
keras/layers/advanced_activations.py
164 issues
Line: 17
Column: 1
# ==============================================================================
"""Layers that act as activation functions."""
import tensorflow.compat.v2 as tf
from keras import backend
from keras import constraints
from keras import initializers
from keras import regularizers
from keras.engine.base_layer import Layer
Reported by Pylint.
Line: 25
Column: 1
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
from keras.utils import tf_utils
from tensorflow.python.util.tf_export import keras_export
def get_globals():
return globals()
Reported by Pylint.
Line: 76
Column: 3
self.supports_masking = True
self.alpha = backend.cast_to_floatx(alpha)
def call(self, inputs):
return backend.relu(inputs, alpha=self.alpha)
def get_config(self):
config = {'alpha': float(self.alpha)}
base_config = super(LeakyReLU, self).get_config()
Reported by Pylint.
Line: 148
Column: 5
if self.shared_axes is not None:
for i in self.shared_axes:
param_shape[i - 1] = 1
self.alpha = self.add_weight(
shape=param_shape,
name='alpha',
initializer=self.alpha_initializer,
regularizer=self.alpha_regularizer,
constraint=self.alpha_constraint)
Reported by Pylint.
Line: 163
Column: 3
self.input_spec = InputSpec(ndim=len(input_shape), axes=axes)
self.built = True
def call(self, inputs):
pos = backend.relu(inputs)
neg = -self.alpha * backend.relu(-inputs)
return pos + neg
def get_config(self):
Reported by Pylint.
Line: 215
Column: 3
self.supports_masking = True
self.alpha = backend.cast_to_floatx(alpha)
def call(self, inputs):
return backend.elu(inputs, self.alpha)
def get_config(self):
config = {'alpha': float(self.alpha)}
base_config = super(ELU, self).get_config()
Reported by Pylint.
Line: 263
Column: 3
self.supports_masking = True
self.theta = backend.cast_to_floatx(theta)
def call(self, inputs):
theta = tf.cast(self.theta, inputs.dtype)
return inputs * tf.cast(tf.greater(inputs, theta), inputs.dtype)
def get_config(self):
config = {'theta': float(self.theta)}
Reported by Pylint.
Line: 333
Column: 3
self.supports_masking = True
self.axis = axis
def call(self, inputs, mask=None):
if mask is not None:
# Since mask is 1.0 for positions we want to keep and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -1e.9 for masked positions.
adder = (1.0 - tf.cast(mask, inputs.dtype)) * (
Reported by Pylint.
Line: 430
Column: 3
self.negative_slope = backend.cast_to_floatx(negative_slope)
self.threshold = backend.cast_to_floatx(threshold)
def call(self, inputs):
# alpha is used for leaky relu slope in activations instead of
# negative_slope.
return backend.relu(inputs,
alpha=self.negative_slope,
max_value=self.max_value,
Reported by Pylint.
Line: 28
Column: 1
from tensorflow.python.util.tf_export import keras_export
def get_globals():
return globals()
@keras_export('keras.layers.LeakyReLU')
class LeakyReLU(Layer):
Reported by Pylint.
keras/utils/traceback_utils_test.py
164 issues
Line: 19
Column: 1
from keras import layers
from keras.utils import traceback_utils
import tensorflow.compat.v2 as tf
class TracebackUtilsTest(tf.test.TestCase):
def test_info_injection_basics(self):
Reported by Pylint.
Line: 93
Column: 1
fn()
except Exception as e: # pylint: disable=broad-except
# Info should be injected exactly once.
self.assertEqual(str(e).count('Call arguments received:'), 1) # pylint: disable=g-assert-in-except
def test_custom_layer_call_nested(self):
class InnerLayer(layers.Layer):
Reported by Pylint.
Line: 99
Column: 7
class InnerLayer(layers.Layer):
def call(self, inputs, training=False, mask=None):
return inputs + tf.zeros((3, 4))
class OuterLayer(layers.Layer):
def __init__(self):
Reported by Pylint.
Line: 99
Column: 46
class InnerLayer(layers.Layer):
def call(self, inputs, training=False, mask=None):
return inputs + tf.zeros((3, 4))
class OuterLayer(layers.Layer):
def __init__(self):
Reported by Pylint.
Line: 99
Column: 30
class InnerLayer(layers.Layer):
def call(self, inputs, training=False, mask=None):
return inputs + tf.zeros((3, 4))
class OuterLayer(layers.Layer):
def __init__(self):
Reported by Pylint.
Line: 108
Column: 30
super().__init__()
self.inner = InnerLayer()
def call(self, inputs, training=True):
return self.inner(inputs)
def fn():
layer = OuterLayer()
layer(tf.zeros((3, 5)), training=False)
Reported by Pylint.
Line: 108
Column: 7
super().__init__()
self.inner = InnerLayer()
def call(self, inputs, training=True):
return self.inner(inputs)
def fn():
layer = OuterLayer()
layer(tf.zeros((3, 5)), training=False)
Reported by Pylint.
Line: 121
Column: 46
class MyLayer(layers.Layer):
def call(self, inputs, training=False, mask=None):
return inputs + tf.zeros((3, 4))
def fn():
layer = MyLayer()
layer(tf.zeros((3, 5)), training=False)
Reported by Pylint.
Line: 121
Column: 7
class MyLayer(layers.Layer):
def call(self, inputs, training=False, mask=None):
return inputs + tf.zeros((3, 4))
def fn():
layer = MyLayer()
layer(tf.zeros((3, 5)), training=False)
Reported by Pylint.
Line: 121
Column: 30
class MyLayer(layers.Layer):
def call(self, inputs, training=False, mask=None):
return inputs + tf.zeros((3, 4))
def fn():
layer = MyLayer()
layer(tf.zeros((3, 5)), training=False)
Reported by Pylint.
keras/engine/node.py
163 issues
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
# pylint: disable=protected-access
# pylint: disable=g-classes-have-attributes
"""Contains the `Node` class."""
import tensorflow.compat.v2 as tf
import collections
Reported by Pylint.
Line: 19
Column: 1
# pylint: disable=g-classes-have-attributes
"""Contains the `Node` class."""
import tensorflow.compat.v2 as tf
import collections
import copy
import json
import numpy as np
Reported by Pylint.
Line: 204
Column: 7
json.dumps(kwargs, default=json_utils.get_json_type)
except TypeError:
kwarg_types = tf.nest.map_structure(type, kwargs)
raise TypeError('Layer ' + self.layer.name +
' was passed non-JSON-serializable arguments. ' +
'Arguments had types: ' +
str(kwarg_types) + '. They cannot be serialized out '
'when saving the model.')
Reported by Pylint.
Line: 21
Column: 1
import tensorflow.compat.v2 as tf
import collections
import copy
import json
import numpy as np
from keras import backend
from keras.engine import base_layer_utils
Reported by Pylint.
Line: 22
Column: 1
import tensorflow.compat.v2 as tf
import collections
import copy
import json
import numpy as np
from keras import backend
from keras.engine import base_layer_utils
from keras.saving.saved_model import json_utils
Reported by Pylint.
Line: 23
Column: 1
import collections
import copy
import json
import numpy as np
from keras import backend
from keras.engine import base_layer_utils
from keras.saving.saved_model import json_utils
from keras.utils import tf_utils
Reported by Pylint.
Line: 33
Column: 1
_CONSTANT_VALUE = '_CONSTANT_VALUE'
class Node:
"""A `Node` describes a layer `__call__()` event.
A Functional model is a DAG with `Node` instances as nodes, and `KerasTensor`
instances as edges. Nodes aren't `Layer` instances, because a single layer
could be called multiple times, which would result in graph cycles.
Reported by Pylint.
Line: 34
Column: 1
class Node:
"""A `Node` describes a layer `__call__()` event.
A Functional model is a DAG with `Node` instances as nodes, and `KerasTensor`
instances as edges. Nodes aren't `Layer` instances, because a single layer
could be called multiple times, which would result in graph cycles.
Reported by Pylint.
Line: 63
Column: 1
outputs: The output tensors of the `Layer.__call__()`
"""
def __init__(self,
layer,
call_args=None,
call_kwargs=None,
outputs=None):
call_args = [] if call_args is None else call_args
Reported by Pylint.
Line: 68
Column: 1
call_args=None,
call_kwargs=None,
outputs=None):
call_args = [] if call_args is None else call_args
call_kwargs = {} if call_kwargs is None else call_kwargs
outputs = [] if outputs is None else outputs
self.layer = layer
self.is_input = not call_args and not call_kwargs
Reported by Pylint.
keras/utils/conv_utils_test.py
161 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for conv_utils."""
import tensorflow.compat.v2 as tf
import itertools
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 21
Column: 1
import itertools
from absl.testing import parameterized
import numpy as np
from keras.utils import conv_utils
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import itertools
from absl.testing import parameterized
import numpy as np
from keras.utils import conv_utils
Reported by Pylint.
Line: 28
Column: 10
def _get_const_output_shape(input_shape, dim):
return tuple([min(d, dim) for d in input_shape])
input_shapes = [
(0,),
(0, 0),
Reported by Pylint.
Line: 28
Column: 1
def _get_const_output_shape(input_shape, dim):
return tuple([min(d, dim) for d in input_shape])
input_shapes = [
(0,),
(0, 0),
Reported by Pylint.
Line: 52
Column: 1
]
class TestBasicConvUtilsTest(tf.test.TestCase):
def test_convert_data_format(self):
self.assertEqual('NCDHW', conv_utils.convert_data_format(
'channels_first', 5))
self.assertEqual('NCHW', conv_utils.convert_data_format(
Reported by Pylint.
Line: 54
Column: 1
class TestBasicConvUtilsTest(tf.test.TestCase):
def test_convert_data_format(self):
self.assertEqual('NCDHW', conv_utils.convert_data_format(
'channels_first', 5))
self.assertEqual('NCHW', conv_utils.convert_data_format(
'channels_first', 4))
self.assertEqual('NCW', conv_utils.convert_data_format('channels_first', 3))
Reported by Pylint.
Line: 54
Column: 3
class TestBasicConvUtilsTest(tf.test.TestCase):
def test_convert_data_format(self):
self.assertEqual('NCDHW', conv_utils.convert_data_format(
'channels_first', 5))
self.assertEqual('NCHW', conv_utils.convert_data_format(
'channels_first', 4))
self.assertEqual('NCW', conv_utils.convert_data_format('channels_first', 3))
Reported by Pylint.
Line: 55
Column: 1
class TestBasicConvUtilsTest(tf.test.TestCase):
def test_convert_data_format(self):
self.assertEqual('NCDHW', conv_utils.convert_data_format(
'channels_first', 5))
self.assertEqual('NCHW', conv_utils.convert_data_format(
'channels_first', 4))
self.assertEqual('NCW', conv_utils.convert_data_format('channels_first', 3))
self.assertEqual('NHWC', conv_utils.convert_data_format('channels_last', 4))
Reported by Pylint.
Line: 57
Column: 1
def test_convert_data_format(self):
self.assertEqual('NCDHW', conv_utils.convert_data_format(
'channels_first', 5))
self.assertEqual('NCHW', conv_utils.convert_data_format(
'channels_first', 4))
self.assertEqual('NCW', conv_utils.convert_data_format('channels_first', 3))
self.assertEqual('NHWC', conv_utils.convert_data_format('channels_last', 4))
self.assertEqual('NWC', conv_utils.convert_data_format('channels_last', 3))
self.assertEqual('NDHWC', conv_utils.convert_data_format(
Reported by Pylint.
keras/integration_test/parameter_server_keras_preprocessing_test.py
161 issues
Line: 22
Column: 1
import os
import random
import tempfile
from absl.testing import parameterized
import numpy as np
import portpicker
import tensorflow as tf
Reported by Pylint.
Line: 24
Column: 1
import tempfile
from absl.testing import parameterized
import numpy as np
import portpicker
import tensorflow as tf
# These vocabularies usually come from TFT or a Beam pipeline.
FEATURE_VOCAB = [
Reported by Pylint.
Line: 25
Column: 1
from absl.testing import parameterized
import numpy as np
import portpicker
import tensorflow as tf
# These vocabularies usually come from TFT or a Beam pipeline.
FEATURE_VOCAB = [
"avenger", "ironman", "batman", "hulk", "spiderman", "kingkong",
Reported by Pylint.
Line: 157
Column: 1
"label": tf.TensorSpec([1], tf.string)
}).shuffle(100).batch(32)
train_dataset = raw_dataset.map(lambda x: ( # pylint: disable=g-long-lambda
{
"features": feature_ps(x["features"])
}, label_ps(x["label"])))
return train_dataset
Reported by Pylint.
Line: 37
Column: 1
def create_in_process_cluster(num_workers, num_ps):
"""Creates and starts local servers and returns the cluster_resolver."""
worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)]
ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)]
cluster_dict = {}
Reported by Pylint.
Line: 39
Column: 1
def create_in_process_cluster(num_workers, num_ps):
"""Creates and starts local servers and returns the cluster_resolver."""
worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)]
ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)]
cluster_dict = {}
cluster_dict["worker"] = ["localhost:%s" % port for port in worker_ports]
if num_ps > 0:
Reported by Pylint.
Line: 40
Column: 1
"""Creates and starts local servers and returns the cluster_resolver."""
worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)]
ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)]
cluster_dict = {}
cluster_dict["worker"] = ["localhost:%s" % port for port in worker_ports]
if num_ps > 0:
cluster_dict["ps"] = ["localhost:%s" % port for port in ps_ports]
Reported by Pylint.
Line: 42
Column: 1
worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)]
ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)]
cluster_dict = {}
cluster_dict["worker"] = ["localhost:%s" % port for port in worker_ports]
if num_ps > 0:
cluster_dict["ps"] = ["localhost:%s" % port for port in ps_ports]
cluster_spec = tf.train.ClusterSpec(cluster_dict)
Reported by Pylint.
Line: 43
Column: 1
ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)]
cluster_dict = {}
cluster_dict["worker"] = ["localhost:%s" % port for port in worker_ports]
if num_ps > 0:
cluster_dict["ps"] = ["localhost:%s" % port for port in ps_ports]
cluster_spec = tf.train.ClusterSpec(cluster_dict)
Reported by Pylint.
Line: 44
Column: 1
cluster_dict = {}
cluster_dict["worker"] = ["localhost:%s" % port for port in worker_ports]
if num_ps > 0:
cluster_dict["ps"] = ["localhost:%s" % port for port in ps_ports]
cluster_spec = tf.train.ClusterSpec(cluster_dict)
# Workers need some inter_ops threads to work properly.
Reported by Pylint.
keras/optimizers_test.py
160 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras optimizers."""
import tensorflow.compat.v2 as tf
import gc
import weakref
import numpy as np
Reported by Pylint.
Line: 29
Column: 1
from keras import optimizer_v1
from keras import testing_utils
from keras.utils import np_utils
from tensorflow.python.training.adam import AdamOptimizer
from tensorflow.python.training.experimental.loss_scale_optimizer import MixedPrecisionLossScaleOptimizer
def _get_model(input_dim, num_hidden, output_dim):
model = keras.models.Sequential()
Reported by Pylint.
Line: 30
Column: 1
from keras import testing_utils
from keras.utils import np_utils
from tensorflow.python.training.adam import AdamOptimizer
from tensorflow.python.training.experimental.loss_scale_optimizer import MixedPrecisionLossScaleOptimizer
def _get_model(input_dim, num_hidden, output_dim):
model = keras.models.Sequential()
model.add(keras.layers.Dense(num_hidden,
Reported by Pylint.
Line: 137
Column: 3
with self.cached_session():
self._test_optimizer(optimizer_v1.Adam())
# Accuracy seems dependent on the seed initialization.
# TODO(b/121051441): fix test flakiness.
self._test_optimizer(optimizer_v1.Adam(decay=1e-3), target=0.73)
self._test_optimizer(optimizer_v1.Adam(amsgrad=True))
def test_adamax(self):
with self.cached_session():
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import gc
import weakref
import numpy as np
import keras
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import gc
import weakref
import numpy as np
import keras
from keras import keras_parameterized
Reported by Pylint.
Line: 29
Column: 1
from keras import optimizer_v1
from keras import testing_utils
from keras.utils import np_utils
from tensorflow.python.training.adam import AdamOptimizer
from tensorflow.python.training.experimental.loss_scale_optimizer import MixedPrecisionLossScaleOptimizer
def _get_model(input_dim, num_hidden, output_dim):
model = keras.models.Sequential()
Reported by Pylint.
Line: 30
Column: 1
from keras import testing_utils
from keras.utils import np_utils
from tensorflow.python.training.adam import AdamOptimizer
from tensorflow.python.training.experimental.loss_scale_optimizer import MixedPrecisionLossScaleOptimizer
def _get_model(input_dim, num_hidden, output_dim):
model = keras.models.Sequential()
model.add(keras.layers.Dense(num_hidden,
Reported by Pylint.
Line: 30
Column: 1
from keras import testing_utils
from keras.utils import np_utils
from tensorflow.python.training.adam import AdamOptimizer
from tensorflow.python.training.experimental.loss_scale_optimizer import MixedPrecisionLossScaleOptimizer
def _get_model(input_dim, num_hidden, output_dim):
model = keras.models.Sequential()
model.add(keras.layers.Dense(num_hidden,
Reported by Pylint.
Line: 34
Column: 1
def _get_model(input_dim, num_hidden, output_dim):
model = keras.models.Sequential()
model.add(keras.layers.Dense(num_hidden,
activation='relu',
input_shape=(input_dim,)))
model.add(keras.layers.Dense(output_dim, activation='softmax'))
return model
Reported by Pylint.