The following issues were found
keras/saving/saved_model/utils.py
149 issues
Line: 17
Column: 1
# ==============================================================================
"""Utility functions shared between SavedModel saving/loading implementations."""
import tensorflow.compat.v2 as tf
import itertools
import threading
import types
from keras import backend as K
Reported by Pylint.
Line: 22
Column: 1
import itertools
import threading
import types
from keras import backend as K
from keras.engine import base_layer_utils
from keras.utils import control_flow_util
from keras.utils import tf_contextlib
from keras.utils import tf_inspect
from keras.utils.generic_utils import LazyLoader
Reported by Pylint.
Line: 23
Column: 1
import threading
import types
from keras import backend as K
from keras.engine import base_layer_utils
from keras.utils import control_flow_util
from keras.utils import tf_contextlib
from keras.utils import tf_inspect
from keras.utils.generic_utils import LazyLoader
Reported by Pylint.
Line: 24
Column: 1
import types
from keras import backend as K
from keras.engine import base_layer_utils
from keras.utils import control_flow_util
from keras.utils import tf_contextlib
from keras.utils import tf_inspect
from keras.utils.generic_utils import LazyLoader
Reported by Pylint.
Line: 25
Column: 1
from keras import backend as K
from keras.engine import base_layer_utils
from keras.utils import control_flow_util
from keras.utils import tf_contextlib
from keras.utils import tf_inspect
from keras.utils.generic_utils import LazyLoader
# pylint:disable=g-inconsistent-quotes
Reported by Pylint.
Line: 26
Column: 1
from keras.engine import base_layer_utils
from keras.utils import control_flow_util
from keras.utils import tf_contextlib
from keras.utils import tf_inspect
from keras.utils.generic_utils import LazyLoader
# pylint:disable=g-inconsistent-quotes
training_lib = LazyLoader(
Reported by Pylint.
Line: 27
Column: 1
from keras.utils import control_flow_util
from keras.utils import tf_contextlib
from keras.utils import tf_inspect
from keras.utils.generic_utils import LazyLoader
# pylint:disable=g-inconsistent-quotes
training_lib = LazyLoader(
"training_lib", globals(),
Reported by Pylint.
Line: 30
Column: 1
from keras.utils.generic_utils import LazyLoader
# pylint:disable=g-inconsistent-quotes
training_lib = LazyLoader(
"training_lib", globals(),
"keras.engine.training")
# pylint:enable=g-inconsistent-quotes
Reported by Pylint.
Line: 34
Column: 1
training_lib = LazyLoader(
"training_lib", globals(),
"keras.engine.training")
# pylint:enable=g-inconsistent-quotes
def use_wrapped_call(layer, call_fn, default_training_value=None,
return_method=False):
"""Creates fn that adds the losses returned by call_fn & returns the outputs.
Reported by Pylint.
Line: 71
Column: 3
outputs, losses = fn(*args, **kwargs)
layer.add_loss(losses, inputs=True)
# TODO(kathywu): This is a temporary hack. When a network of layers is
# revived from SavedModel, only the top-level layer will have losses. This
# causes issues in eager mode because the child layers may have graph losses
# (thus model.losses returns a mix of Eager and graph tensors). To fix this,
# whenever eager losses are added to one layer, add eager losses to all
# child layers. This causes `.losses` to only return eager losses.
Reported by Pylint.
keras/tests/integration_test.py
149 issues
Line: 17
Column: 1
# ==============================================================================
"""Integration tests for Keras."""
import tensorflow.compat.v2 as tf
import os
import random
import numpy as np
Reported by Pylint.
Line: 24
Column: 1
import numpy as np
import keras
from keras import keras_parameterized
from keras import testing_utils
from keras.layers.legacy_rnn import rnn_cell_impl as rnn_cell
from keras.legacy_tf_layers import base as base_layer
from keras.utils import np_utils
Reported by Pylint.
Line: 25
Column: 1
import numpy as np
import keras
from keras import keras_parameterized
from keras import testing_utils
from keras.layers.legacy_rnn import rnn_cell_impl as rnn_cell
from keras.legacy_tf_layers import base as base_layer
from keras.utils import np_utils
Reported by Pylint.
Line: 26
Column: 1
import keras
from keras import keras_parameterized
from keras import testing_utils
from keras.layers.legacy_rnn import rnn_cell_impl as rnn_cell
from keras.legacy_tf_layers import base as base_layer
from keras.utils import np_utils
Reported by Pylint.
Line: 27
Column: 1
import keras
from keras import keras_parameterized
from keras import testing_utils
from keras.layers.legacy_rnn import rnn_cell_impl as rnn_cell
from keras.legacy_tf_layers import base as base_layer
from keras.utils import np_utils
class KerasIntegrationTest(keras_parameterized.TestCase):
Reported by Pylint.
Line: 28
Column: 1
from keras import keras_parameterized
from keras import testing_utils
from keras.layers.legacy_rnn import rnn_cell_impl as rnn_cell
from keras.legacy_tf_layers import base as base_layer
from keras.utils import np_utils
class KerasIntegrationTest(keras_parameterized.TestCase):
Reported by Pylint.
Line: 29
Column: 1
from keras import testing_utils
from keras.layers.legacy_rnn import rnn_cell_impl as rnn_cell
from keras.legacy_tf_layers import base as base_layer
from keras.utils import np_utils
class KerasIntegrationTest(keras_parameterized.TestCase):
def _save_and_reload_model(self, model):
Reported by Pylint.
Line: 35
Column: 5
class KerasIntegrationTest(keras_parameterized.TestCase):
def _save_and_reload_model(self, model):
self.temp_dir = self.get_temp_dir()
fpath = os.path.join(self.temp_dir,
'test_model_%s' % (random.randint(0, 1e7),))
if tf.executing_eagerly():
save_format = 'tf'
else:
Reported by Pylint.
Line: 42
Column: 15
save_format = 'tf'
else:
if (not isinstance(model, keras.Sequential) and
not model._is_graph_network):
return model # Not supported
save_format = 'h5'
model.save(fpath, save_format=save_format)
model = keras.models.load_model(fpath)
return model
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import os
import random
import numpy as np
import keras
Reported by Pylint.
keras/layers/core/lambda_layer.py
148 issues
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Contains the Lambda layer."""
# pylint: disable=g-classes-have-attributes,g-direct-tensorflow-import
import sys
import textwrap
import types as python_types
import warnings
from keras.engine.base_layer import Layer
Reported by Pylint.
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Contains the Lambda layer."""
# pylint: disable=g-classes-have-attributes,g-direct-tensorflow-import
import sys
import textwrap
import types as python_types
import warnings
from keras.engine.base_layer import Layer
Reported by Pylint.
Line: 26
Column: 1
from keras.utils import tf_inspect
from keras.utils import tf_utils
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow.python.platform import tf_logging
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.Lambda')
Reported by Pylint.
Line: 27
Column: 1
from keras.utils import tf_utils
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow.python.platform import tf_logging
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.Lambda')
class Lambda(Layer):
Reported by Pylint.
Line: 28
Column: 1
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow.python.platform import tf_logging
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.Lambda')
class Lambda(Layer):
"""Wraps arbitrary expressions as a `Layer` object.
Reported by Pylint.
Line: 160
Column: 11
try:
return super(Lambda, self).compute_output_shape(input_shape)
except NotImplementedError:
raise NotImplementedError(
'We could not automatically infer the shape of the Lambda\'s '
'output. Please specify `output_shape` for this Lambda.')
if callable(self._output_shape):
output_shapes = self._output_shape(input_shape)
Reported by Pylint.
Line: 179
Column: 3
output_shapes = tf_utils.convert_shapes(self._output_shape, to_tuples=False)
return tf.nest.map_structure(_add_batch, output_shapes)
def call(self, inputs, mask=None, training=None):
# We must copy for thread safety, but it only needs to be a shallow copy.
kwargs = {k: v for k, v in self.arguments.items()}
if self._fn_expects_mask_arg:
kwargs['mask'] = mask
if self._fn_expects_training_arg:
Reported by Pylint.
Line: 295
Column: 3
return output, output_type, module
@classmethod
def from_config(cls, config, custom_objects=None):
config = config.copy()
function = cls._parse_function_from_config(config, custom_objects,
'function', 'module',
'function_type')
Reported by Pylint.
Line: 32
Column: 1
@keras_export('keras.layers.Lambda')
class Lambda(Layer):
"""Wraps arbitrary expressions as a `Layer` object.
The `Lambda` layer exists so that arbitrary expressions can be used
as a `Layer` when constructing `Sequential`
and Functional API models. `Lambda` layers are best suited for simple
Reported by Pylint.
Line: 33
Column: 1
@keras_export('keras.layers.Lambda')
class Lambda(Layer):
"""Wraps arbitrary expressions as a `Layer` object.
The `Lambda` layer exists so that arbitrary expressions can be used
as a `Layer` when constructing `Sequential`
and Functional API models. `Lambda` layers are best suited for simple
operations or quick experimentation. For more advanced use cases, follow
Reported by Pylint.
keras/utils/version_utils_test.py
148 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras utilities to split v1 and v2 classes."""
import tensorflow.compat.v2 as tf
import abc
import numpy as np
Reported by Pylint.
Line: 58
Column: 5
inputs = keras.Input(10)
outputs = keras.layers.Dense(1)(inputs)
class MyModel(keras.Model):
pass
model = MyModel(inputs, outputs)
model_class = model.__class__.__bases__[0].__bases__[0]
self._check_model_class(model_class)
Reported by Pylint.
Line: 58
Column: 5
inputs = keras.Input(10)
outputs = keras.layers.Dense(1)(inputs)
class MyModel(keras.Model):
pass
model = MyModel(inputs, outputs)
model_class = model.__class__.__bases__[0].__bases__[0]
self._check_model_class(model_class)
Reported by Pylint.
Line: 75
Column: 5
inputs = keras.Input(10)
outputs = keras.layers.Dense(1)(inputs)
class MyModel(keras.Model):
pass
model = MyModel(inputs, outputs)
model_class = model.__class__.__bases__[0].__bases__[0]
self._check_model_class(model_class)
Reported by Pylint.
Line: 75
Column: 5
inputs = keras.Input(10)
outputs = keras.layers.Dense(1)(inputs)
class MyModel(keras.Model):
pass
model = MyModel(inputs, outputs)
model_class = model.__class__.__bases__[0].__bases__[0]
self._check_model_class(model_class)
Reported by Pylint.
Line: 91
Column: 5
def test_subclass_model(self):
class MyModel(keras.Model):
def call(self, x):
return 2 * x
model = MyModel()
Reported by Pylint.
Line: 93
Column: 7
class MyModel(keras.Model):
def call(self, x):
return 2 * x
model = MyModel()
model_class = model.__class__.__bases__[0]
self._check_model_class(model_class)
Reported by Pylint.
Line: 108
Column: 7
Useful for testing a layer without a variable.
"""
def call(self, inputs):
return inputs
layer = IdentityLayer()
self._check_layer_class(layer)
Reported by Pylint.
Line: 116
Column: 5
def test_multiple_subclass_model(self):
class Model1(keras.Model):
pass
class Model2(Model1):
def call(self, x):
Reported by Pylint.
Line: 116
Column: 5
def test_multiple_subclass_model(self):
class Model1(keras.Model):
pass
class Model2(Model1):
def call(self, x):
Reported by Pylint.
keras/saving/saved_model_experimental.py
147 issues
Line: 17
Column: 1
# ==============================================================================
"""Deprecated experimental Keras SavedModel implementation."""
import tensorflow.compat.v2 as tf
import os
import warnings
from keras import backend
from keras import optimizer_v1
Reported by Pylint.
Line: 29
Column: 1
from keras.saving import utils_v1 as model_utils
from keras.utils import mode_keys
from keras.utils.generic_utils import LazyLoader
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
# To avoid circular dependencies between keras/engine and keras/saving,
# code in keras/saving must delay imports.
Reported by Pylint.
Line: 30
Column: 1
from keras.utils import mode_keys
from keras.utils.generic_utils import LazyLoader
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
# To avoid circular dependencies between keras/engine and keras/saving,
# code in keras/saving must delay imports.
# TODO(b/134426265): Switch back to single-quotes to match the rest of the file
Reported by Pylint.
Line: 37
Column: 1
# TODO(b/134426265): Switch back to single-quotes to match the rest of the file
# once the issue with copybara is fixed.
# pylint:disable=g-inconsistent-quotes
metrics_lib = LazyLoader("metrics_lib", globals(),
"keras.metrics")
models_lib = LazyLoader("models_lib", globals(),
"keras.models")
sequential = LazyLoader(
Reported by Pylint.
Line: 45
Column: 1
sequential = LazyLoader(
"sequential", globals(),
"keras.engine.sequential")
# pylint:enable=g-inconsistent-quotes
# File name for json format of SavedModel.
SAVED_MODEL_FILENAME_JSON = 'saved_model.json'
Reported by Pylint.
Line: 251
Column: 3
f'Cannot export mode {mode}.')
model_graph = tf.compat.v1.get_default_graph()
with tf.Graph().as_default() as g, backend.learning_phase_scope(
mode == mode_keys.ModeKeys.TRAIN):
if input_signature is None:
input_tensors = None
else:
Reported by Pylint.
Line: 35
Column: 3
# To avoid circular dependencies between keras/engine and keras/saving,
# code in keras/saving must delay imports.
# TODO(b/134426265): Switch back to single-quotes to match the rest of the file
# once the issue with copybara is fixed.
# pylint:disable=g-inconsistent-quotes
metrics_lib = LazyLoader("metrics_lib", globals(),
"keras.metrics")
models_lib = LazyLoader("models_lib", globals(),
Reported by Pylint.
Line: 167
Column: 3
'called on inputs or `build()` is called with an '
'`input_shape`, or the first layer in the model has '
'`input_shape` during construction.')
# TODO(kathywu): Build the model with input_signature to create the
# weights before _export_model_variables().
else:
raise NotImplementedError(
'Subclassed models can only be exported for serving. Please set '
'argument serving_only=True.')
Reported by Pylint.
Line: 179
Column: 3
# Manually save variables to export them in an object-based checkpoint. This
# skips the `builder.add_meta_graph_and_variables()` step, which saves a
# named-based checkpoint.
# TODO(b/113134168): Add fn to Builder to save with object-based saver.
# TODO(b/113178242): This should only export the model json structure. Only
# one save is needed once the weights can be copied from the model to clone.
checkpoint_path = _export_model_variables(model, path)
# Export each mode. Use ModeKeys enums defined for `Estimator` to ensure that
Reported by Pylint.
Line: 180
Column: 3
# skips the `builder.add_meta_graph_and_variables()` step, which saves a
# named-based checkpoint.
# TODO(b/113134168): Add fn to Builder to save with object-based saver.
# TODO(b/113178242): This should only export the model json structure. Only
# one save is needed once the weights can be copied from the model to clone.
checkpoint_path = _export_model_variables(model, path)
# Export each mode. Use ModeKeys enums defined for `Estimator` to ensure that
# Keras models and `Estimator`s are exported with the same format.
Reported by Pylint.
keras/keras_parameterized.py
145 issues
Line: 17
Column: 1
# ==============================================================================
"""Utilities for unit-testing Keras."""
import tensorflow.compat.v2 as tf
import collections
import functools
import itertools
import unittest
Reported by Pylint.
Line: 24
Column: 1
import itertools
import unittest
from absl.testing import parameterized
import keras
from keras import testing_utils
try:
Reported by Pylint.
Line: 30
Column: 1
from keras import testing_utils
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
class TestCase(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
Line: 155
Column: 3
def _test_h5_saved_model_format(f, test_or_class, *args, **kwargs):
with testing_utils.saved_model_format_scope('h5'):
f(test_or_class, *args, **kwargs)
def _test_tf_saved_model_format(f, test_or_class, *args, **kwargs):
with testing_utils.saved_model_format_scope('tf'):
Reported by Pylint.
Line: 160
Column: 3
def _test_tf_saved_model_format(f, test_or_class, *args, **kwargs):
with testing_utils.saved_model_format_scope('tf'):
f(test_or_class, *args, **kwargs)
def _test_tf_saved_model_format_no_traces(f, test_or_class, *args, **kwargs):
with testing_utils.saved_model_format_scope('tf', save_traces=False):
Reported by Pylint.
Line: 165
Column: 3
def _test_tf_saved_model_format_no_traces(f, test_or_class, *args, **kwargs):
with testing_utils.saved_model_format_scope('tf', save_traces=False):
f(test_or_class, *args, **kwargs)
def run_with_all_weight_formats(test_or_class=None, exclude_formats=None):
"""Runs all tests with the supported formats for saving weights."""
Reported by Pylint.
Line: 295
Column: 3
def _test_functional_model_type(f, test_or_class, *args, **kwargs):
with testing_utils.model_type_scope('functional'):
f(test_or_class, *args, **kwargs)
def _test_subclass_model_type(f, test_or_class, *args, **kwargs):
with testing_utils.model_type_scope('subclass'):
Reported by Pylint.
Line: 300
Column: 3
def _test_subclass_model_type(f, test_or_class, *args, **kwargs):
with testing_utils.model_type_scope('subclass'):
f(test_or_class, *args, **kwargs)
def _test_sequential_model_type(f, test_or_class, *args, **kwargs):
with testing_utils.model_type_scope('sequential'):
Reported by Pylint.
Line: 305
Column: 3
def _test_sequential_model_type(f, test_or_class, *args, **kwargs):
with testing_utils.model_type_scope('sequential'):
f(test_or_class, *args, **kwargs)
def run_all_keras_modes(test_or_class=None,
config=None,
Reported by Pylint.
Line: 415
Column: 5
def _v1_session_test(f, test_or_class, config, *args, **kwargs):
with tf.compat.v1.get_default_graph().as_default():
with testing_utils.run_eagerly_scope(False):
with test_or_class.test_session(config=config):
f(test_or_class, *args, **kwargs)
def _v2_eager_test(f, test_or_class, *args, **kwargs):
Reported by Pylint.
keras/preprocessing/sequence_test.py
143 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for sequence data preprocessing utils."""
import tensorflow.compat.v2 as tf
from math import ceil
import numpy as np
Reported by Pylint.
Line: 100
Column: 26
def test_remove_long_seq(self):
a = [[[1, 1]], [[2, 1], [2, 2]], [[3, 1], [3, 2], [3, 3]]]
new_seq, new_label = preprocessing_sequence._remove_long_seq(
maxlen=3, seq=a, label=['a', 'b', ['c', 'd']])
self.assertEqual(new_seq, [[[1, 1]], [[2, 1], [2, 2]]])
self.assertEqual(new_label, ['a', 'b'])
def test_TimeseriesGenerator(self):
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from math import ceil
import numpy as np
from keras.preprocessing import sequence as preprocessing_sequence
Reported by Pylint.
Line: 26
Column: 1
from keras.preprocessing import sequence as preprocessing_sequence
class TestSequence(tf.test.TestCase):
def test_pad_sequences(self):
a = [[1], [1, 2], [1, 2, 3]]
# test padding
Reported by Pylint.
Line: 28
Column: 3
class TestSequence(tf.test.TestCase):
def test_pad_sequences(self):
a = [[1], [1, 2], [1, 2, 3]]
# test padding
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='pre')
self.assertAllClose(b, [[0, 0, 1], [0, 1, 2], [1, 2, 3]])
Reported by Pylint.
Line: 28
Column: 1
class TestSequence(tf.test.TestCase):
def test_pad_sequences(self):
a = [[1], [1, 2], [1, 2, 3]]
# test padding
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='pre')
self.assertAllClose(b, [[0, 0, 1], [0, 1, 2], [1, 2, 3]])
Reported by Pylint.
Line: 29
Column: 5
class TestSequence(tf.test.TestCase):
def test_pad_sequences(self):
a = [[1], [1, 2], [1, 2, 3]]
# test padding
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='pre')
self.assertAllClose(b, [[0, 0, 1], [0, 1, 2], [1, 2, 3]])
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='post')
Reported by Pylint.
Line: 29
Column: 1
class TestSequence(tf.test.TestCase):
def test_pad_sequences(self):
a = [[1], [1, 2], [1, 2, 3]]
# test padding
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='pre')
self.assertAllClose(b, [[0, 0, 1], [0, 1, 2], [1, 2, 3]])
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='post')
Reported by Pylint.
Line: 32
Column: 5
a = [[1], [1, 2], [1, 2, 3]]
# test padding
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='pre')
self.assertAllClose(b, [[0, 0, 1], [0, 1, 2], [1, 2, 3]])
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='post')
self.assertAllClose(b, [[1, 0, 0], [1, 2, 0], [1, 2, 3]])
# test truncating
Reported by Pylint.
Line: 32
Column: 1
a = [[1], [1, 2], [1, 2, 3]]
# test padding
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='pre')
self.assertAllClose(b, [[0, 0, 1], [0, 1, 2], [1, 2, 3]])
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='post')
self.assertAllClose(b, [[1, 0, 0], [1, 2, 0], [1, 2, 3]])
# test truncating
Reported by Pylint.
keras/applications/efficientnet.py
143 issues
Line: 24
Column: 1
https://arxiv.org/abs/1905.11946) (ICML 2019)
"""
import tensorflow.compat.v2 as tf
import copy
import math
from keras import backend
Reported by Pylint.
Line: 35
Column: 1
from keras.layers import VersionAwareLayers
from keras.utils import data_utils
from keras.utils import layer_utils
from tensorflow.python.util.tf_export import keras_export
BASE_WEIGHTS_PATH = 'https://storage.googleapis.com/keras-applications/'
WEIGHTS_HASHES = {
Reported by Pylint.
Line: 26
Column: 1
import tensorflow.compat.v2 as tf
import copy
import math
from keras import backend
from keras.applications import imagenet_utils
from keras.engine import training
Reported by Pylint.
Line: 27
Column: 1
import tensorflow.compat.v2 as tf
import copy
import math
from keras import backend
from keras.applications import imagenet_utils
from keras.engine import training
from keras.layers import VersionAwareLayers
Reported by Pylint.
Line: 207
Column: 1
"""
def EfficientNet(
width_coefficient,
depth_coefficient,
default_size,
dropout_rate=0.2,
drop_connect_rate=0.2,
Reported by Pylint.
Line: 207
Column: 1
"""
def EfficientNet(
width_coefficient,
depth_coefficient,
default_size,
dropout_rate=0.2,
drop_connect_rate=0.2,
Reported by Pylint.
Line: 207
Column: 1
"""
def EfficientNet(
width_coefficient,
depth_coefficient,
default_size,
dropout_rate=0.2,
drop_connect_rate=0.2,
Reported by Pylint.
Line: 207
Column: 1
"""
def EfficientNet(
width_coefficient,
depth_coefficient,
default_size,
dropout_rate=0.2,
drop_connect_rate=0.2,
Reported by Pylint.
Line: 224
Column: 1
pooling=None,
classes=1000,
classifier_activation='softmax'):
"""Instantiates the EfficientNet architecture using given scaling coefficients.
Args:
width_coefficient: float, scaling coefficient for network width.
depth_coefficient: float, scaling coefficient for network depth.
default_size: integer, default input image size.
Reported by Pylint.
Line: 274
Column: 1
ValueError: if `classifier_activation` is not `softmax` or `None` when
using a pretrained top layer.
"""
if blocks_args == 'default':
blocks_args = DEFAULT_BLOCKS_ARGS
if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
Reported by Pylint.
keras/applications/inception_resnet_v2.py
141 issues
Line: 24
Column: 1
(AAAI 2017)
"""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.applications import imagenet_utils
from keras.engine import training
from keras.layers import VersionAwareLayers
Reported by Pylint.
Line: 32
Column: 1
from keras.layers import VersionAwareLayers
from keras.utils import data_utils
from keras.utils import layer_utils
from tensorflow.python.util.tf_export import keras_export
BASE_WEIGHT_URL = ('https://storage.googleapis.com/tensorflow/'
'keras-applications/inception_resnet_v2/')
layers = None
Reported by Pylint.
Line: 112
Column: 3
Returns:
A `keras.Model` instance.
"""
global layers
if 'layers' in kwargs:
layers = kwargs.pop('layers')
else:
layers = VersionAwareLayers()
if kwargs:
Reported by Pylint.
Line: 42
Column: 1
@keras_export('keras.applications.inception_resnet_v2.InceptionResNetV2',
'keras.applications.InceptionResNetV2')
def InceptionResNetV2(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
Reported by Pylint.
Line: 42
Column: 1
@keras_export('keras.applications.inception_resnet_v2.InceptionResNetV2',
'keras.applications.InceptionResNetV2')
def InceptionResNetV2(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
Reported by Pylint.
Line: 42
Column: 1
@keras_export('keras.applications.inception_resnet_v2.InceptionResNetV2',
'keras.applications.InceptionResNetV2')
def InceptionResNetV2(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
Reported by Pylint.
Line: 42
Column: 1
@keras_export('keras.applications.inception_resnet_v2.InceptionResNetV2',
'keras.applications.InceptionResNetV2')
def InceptionResNetV2(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
Reported by Pylint.
Line: 50
Column: 1
classes=1000,
classifier_activation='softmax',
**kwargs):
"""Instantiates the Inception-ResNet v2 architecture.
Reference:
- [Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning](https://arxiv.org/abs/1602.07261)
(AAAI 2017)
Reported by Pylint.
Line: 112
Column: 1
Returns:
A `keras.Model` instance.
"""
global layers
if 'layers' in kwargs:
layers = kwargs.pop('layers')
else:
layers = VersionAwareLayers()
if kwargs:
Reported by Pylint.
Line: 113
Column: 1
A `keras.Model` instance.
"""
global layers
if 'layers' in kwargs:
layers = kwargs.pop('layers')
else:
layers = VersionAwareLayers()
if kwargs:
raise ValueError('Unknown argument(s): %s' % (kwargs,))
Reported by Pylint.
keras/utils/metrics_utils_test.py
141 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for metrics_utils."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
from keras import combinations
from keras.utils import metrics_utils
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
from keras import combinations
from keras.utils import metrics_utils
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
Reported by Pylint.
Line: 210
Column: 1
def test_failing_different_ragged_and_dense_ranks(self, x_list, y_list):
x = tf.ragged.constant(x_list)
y = tf.ragged.constant(y_list)
with self.assertRaises(ValueError): # pylint: disable=g-error-prone-assert-raises
[x, y
], _ = metrics_utils.ragged_assert_compatible_and_get_flat_values([x, y])
@parameterized.parameters([
{
Reported by Pylint.
Line: 225
Column: 1
x = tf.ragged.constant(x_list)
y = tf.ragged.constant(y_list)
mask = tf.ragged.constant(mask_list)
with self.assertRaises(ValueError): # pylint: disable=g-error-prone-assert-raises
[x, y
], _ = metrics_utils.ragged_assert_compatible_and_get_flat_values([x, y],
mask)
# we do not support such cases that ragged_ranks are different but overall
Reported by Pylint.
Line: 238
Column: 1
# adding a ragged dimension
x = tf.RaggedTensor.from_row_splits(dt, row_splits=[0, 1])
y = tf.ragged.constant([[[[1, 2]]]])
with self.assertRaises(ValueError): # pylint: disable=g-error-prone-assert-raises
[x, y], _ = \
metrics_utils.ragged_assert_compatible_and_get_flat_values([x, y])
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
Reported by Pylint.
Line: 248
Column: 27
def test_one_dimensional(self):
x = tf.constant([.3, .1, .2, -.5, 42.])
top_1 = self.evaluate(metrics_utils._filter_top_k(x=x, k=1))
top_2 = self.evaluate(metrics_utils._filter_top_k(x=x, k=2))
top_3 = self.evaluate(metrics_utils._filter_top_k(x=x, k=3))
self.assertAllClose(top_1, [
metrics_utils.NEG_INF, metrics_utils.NEG_INF, metrics_utils.NEG_INF,
Reported by Pylint.
Line: 249
Column: 27
def test_one_dimensional(self):
x = tf.constant([.3, .1, .2, -.5, 42.])
top_1 = self.evaluate(metrics_utils._filter_top_k(x=x, k=1))
top_2 = self.evaluate(metrics_utils._filter_top_k(x=x, k=2))
top_3 = self.evaluate(metrics_utils._filter_top_k(x=x, k=3))
self.assertAllClose(top_1, [
metrics_utils.NEG_INF, metrics_utils.NEG_INF, metrics_utils.NEG_INF,
metrics_utils.NEG_INF, 42.
Reported by Pylint.
Line: 250
Column: 27
x = tf.constant([.3, .1, .2, -.5, 42.])
top_1 = self.evaluate(metrics_utils._filter_top_k(x=x, k=1))
top_2 = self.evaluate(metrics_utils._filter_top_k(x=x, k=2))
top_3 = self.evaluate(metrics_utils._filter_top_k(x=x, k=3))
self.assertAllClose(top_1, [
metrics_utils.NEG_INF, metrics_utils.NEG_INF, metrics_utils.NEG_INF,
metrics_utils.NEG_INF, 42.
])
Reported by Pylint.
Line: 266
Column: 27
def test_three_dimensional(self):
x = tf.constant([[[.3, .1, .2], [-.3, -.2, -.1]],
[[5., .2, 42.], [-.3, -.6, -.99]]])
top_2 = self.evaluate(metrics_utils._filter_top_k(x=x, k=2))
self.assertAllClose(
top_2,
[[[.3, metrics_utils.NEG_INF, .2], [metrics_utils.NEG_INF, -.2, -.1]],
[[5., metrics_utils.NEG_INF, 42.], [-.3, -.6, metrics_utils.NEG_INF]]])
Reported by Pylint.
Line: 283
Column: 14
# This loses the static shape.
x = tf.numpy_function(_identity, (x,), tf.float32)
return metrics_utils._filter_top_k(x=x, k=2)
x = tf.constant([.3, .1, .2, -.5, 42.])
top_2 = self.evaluate(_filter_top_k(x))
self.assertAllClose(top_2, [
.3, metrics_utils.NEG_INF, metrics_utils.NEG_INF, metrics_utils.NEG_INF,
Reported by Pylint.