The following issues were found

keras/optimizer_v2/adadelta_test.py
114 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Tests for Adadelta Optimizer."""

import tensorflow.compat.v2 as tf

from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras.optimizer_v2 import adadelta

            

Reported by Pylint.

Unable to import 'absl.testing'
Error

Line: 19 Column: 1

              
import tensorflow.compat.v2 as tf

from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras.optimizer_v2 import adadelta

_DATA_TYPES = [

            

Reported by Pylint.

Unable to import 'keras'
Error

Line: 21 Column: 1

              
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras.optimizer_v2 import adadelta

_DATA_TYPES = [
    tf.half, tf.float32, tf.float64, tf.complex64,
    tf.complex128

            

Reported by Pylint.

Unable to import 'keras.optimizer_v2'
Error

Line: 22 Column: 1

              from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras.optimizer_v2 import adadelta

_DATA_TYPES = [
    tf.half, tf.float32, tf.float64, tf.complex64,
    tf.complex128
]

            

Reported by Pylint.

TODO(lxuechen): This is hard to test in eager mode
Error

Line: 106 Column: 3

              
            if not tf.executing_eagerly():
              # Check that the accumulators have been updated
              # TODO(lxuechen): This is hard to test in eager mode
              for slot_idx in range(2):
                self.assertAllCloseAccordingToType(
                    np.array([accum, accum], dtype=dtype.as_numpy_dtype(0)),
                    self.evaluate(slot[slot_idx]),
                    rtol=1e-5)

            

Reported by Pylint.

TODO(tanzheny, omalleyt): Fix test in eager mode.
Error

Line: 144 Column: 3

                  self.doTestBasic(use_resource=True, use_callable_params=True)

  def testMinimizeSparseResourceVariable(self):
    # TODO(tanzheny, omalleyt): Fix test in eager mode.
    with tf.Graph().as_default():
      for dtype in _DATA_TYPES:
        var0 = tf.Variable([[1.0, 2.0]], dtype=dtype)
        x = tf.constant([[4.0], [5.0]], dtype=dtype)


            

Reported by Pylint.

Missing class docstring
Error

Line: 30 Column: 1

              ]


class AdadeltaOptimizerTest(tf.test.TestCase, parameterized.TestCase):

  def doTestBasic(self, use_resource=False, use_callable_params=False):
    num_updates = 4  # number of ADADELTA steps to perform
    for dtype in _DATA_TYPES:
      for grad in [0.2, 0.1, 0.01]:

            

Reported by Pylint.

Method name "doTestBasic" doesn't conform to snake_case naming style
Error

Line: 32 Column: 3

              
class AdadeltaOptimizerTest(tf.test.TestCase, parameterized.TestCase):

  def doTestBasic(self, use_resource=False, use_callable_params=False):
    num_updates = 4  # number of ADADELTA steps to perform
    for dtype in _DATA_TYPES:
      for grad in [0.2, 0.1, 0.01]:
        for lr in [1.0, 0.5, 0.1]:
          var0_init = [1.0, 2.0]

            

Reported by Pylint.

Missing function or method docstring
Error

Line: 32 Column: 3

              
class AdadeltaOptimizerTest(tf.test.TestCase, parameterized.TestCase):

  def doTestBasic(self, use_resource=False, use_callable_params=False):
    num_updates = 4  # number of ADADELTA steps to perform
    for dtype in _DATA_TYPES:
      for grad in [0.2, 0.1, 0.01]:
        for lr in [1.0, 0.5, 0.1]:
          var0_init = [1.0, 2.0]

            

Reported by Pylint.

Too many local variables (24/15)
Error

Line: 32 Column: 3

              
class AdadeltaOptimizerTest(tf.test.TestCase, parameterized.TestCase):

  def doTestBasic(self, use_resource=False, use_callable_params=False):
    num_updates = 4  # number of ADADELTA steps to perform
    for dtype in _DATA_TYPES:
      for grad in [0.2, 0.1, 0.01]:
        for lr in [1.0, 0.5, 0.1]:
          var0_init = [1.0, 2.0]

            

Reported by Pylint.

keras/distribute/dataset_creator_model_fit_test_base.py
114 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 18 Column: 1

              # ==============================================================================
"""Tests for `DatasetCreator` with `Model.fit` across usages and strategies."""

import tensorflow.compat.v2 as tf

import os

from absl.testing import parameterized
import numpy as np

            

Reported by Pylint.

Unable to import 'absl.testing'
Error

Line: 22 Column: 1

              
import os

from absl.testing import parameterized
import numpy as np

import keras
from keras import callbacks as callbacks_lib
from keras.engine import sequential

            

Reported by Pylint.

Unable to import 'tensorflow.python.platform'
Error

Line: 32 Column: 1

              from keras.layers.preprocessing import string_lookup
from keras.optimizer_v2 import gradient_descent
from keras.utils import dataset_creator
from tensorflow.python.platform import tf_logging as logging


class DatasetCreatorModelFitTestBase(tf.test.TestCase, parameterized.TestCase):
  """The base class for DatasetCreator with Model.fit tests."""


            

Reported by Pylint.

Unused argument 'use_lookup_layer'
Error

Line: 73 Column: 22

                                   steps_per_execution=1,
                     run_eagerly=False,
                     with_normalization_layer=False,
                     use_lookup_layer=False):

    class ResultAssertingCallback(callbacks_lib.Callback):
      """A callback that asserts the result of the tests."""

      def __init__(self):

            

Reported by Pylint.

__init__ method from base class 'Callback' is not called
Error

Line: 78 Column: 7

                  class ResultAssertingCallback(callbacks_lib.Callback):
      """A callback that asserts the result of the tests."""

      def __init__(self):
        self._prev_epoch = -1

      def on_epoch_end(self, epoch, logs=None):
        logging.info("testModelFit: epoch=%r, logs=%r", epoch, logs)
        if epoch <= self._prev_epoch:

            

Reported by Pylint.

Attribute '_accuracy_metric' defined outside __init__
Error

Line: 99 Column: 7

                          axis=-1, input_shape=(4, 4, 3), momentum=0.8)
        model.add(norm)
      model.add(core_layers.Dense(1, activation="sigmoid"))
      self._accuracy_metric = keras.metrics.Accuracy()

    model.compile(
        gradient_descent.SGD(),
        loss="binary_crossentropy",
        metrics=[self._accuracy_metric],

            

Reported by Pylint.

standard import "import os" should be placed before "import tensorflow.compat.v2 as tf"
Error

Line: 20 Column: 1

              
import tensorflow.compat.v2 as tf

import os

from absl.testing import parameterized
import numpy as np

import keras

            

Reported by Pylint.

Too few public methods (0/2)
Error

Line: 35 Column: 1

              from tensorflow.python.platform import tf_logging as logging


class DatasetCreatorModelFitTestBase(tf.test.TestCase, parameterized.TestCase):
  """The base class for DatasetCreator with Model.fit tests."""

  def _get_dataset_fn(self, use_lookup_layer):

    if use_lookup_layer:

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 36 Column: 1

              

class DatasetCreatorModelFitTestBase(tf.test.TestCase, parameterized.TestCase):
  """The base class for DatasetCreator with Model.fit tests."""

  def _get_dataset_fn(self, use_lookup_layer):

    if use_lookup_layer:


            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 38 Column: 1

              class DatasetCreatorModelFitTestBase(tf.test.TestCase, parameterized.TestCase):
  """The base class for DatasetCreator with Model.fit tests."""

  def _get_dataset_fn(self, use_lookup_layer):

    if use_lookup_layer:

      filepath = os.path.join(self.get_temp_dir(), "vocab")
      with open(filepath, "w") as f:

            

Reported by Pylint.

keras/distribute/multi_worker_testing_utils.py
111 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Utilities for testing multi-worker distribution strategies with Keras."""

import tensorflow.compat.v2 as tf

import threading
import unittest
import keras
from tensorflow.python.distribute.cluster_resolver import SimpleClusterResolver

            

Reported by Pylint.

Unable to import 'tensorflow.python.distribute.cluster_resolver'
Error

Line: 22 Column: 1

              import threading
import unittest
import keras
from tensorflow.python.distribute.cluster_resolver import SimpleClusterResolver
from keras.optimizer_v2 import gradient_descent
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training.server_lib import ClusterSpec



            

Reported by Pylint.

Unable to import 'tensorflow.python.platform'
Error

Line: 24 Column: 1

              import keras
from tensorflow.python.distribute.cluster_resolver import SimpleClusterResolver
from keras.optimizer_v2 import gradient_descent
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training.server_lib import ClusterSpec


_portpicker_import_error = None
try:

            

Reported by Pylint.

Unable to import 'tensorflow.python.training.server_lib'
Error

Line: 25 Column: 1

              from tensorflow.python.distribute.cluster_resolver import SimpleClusterResolver
from keras.optimizer_v2 import gradient_descent
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training.server_lib import ClusterSpec


_portpicker_import_error = None
try:
  import portpicker  # pylint: disable=g-import-not-at-top

            

Reported by Pylint.

Bad option value 'g-import-not-at-top'
Error

Line: 30 Column: 1

              
_portpicker_import_error = None
try:
  import portpicker  # pylint: disable=g-import-not-at-top
except (ImportError, ModuleNotFoundError) as _error:  # pylint: disable=invalid-name
  _portpicker_import_error = _error
  portpicker = None

ASSIGNED_PORTS = set()

            

Reported by Pylint.

Module 'keras.initializers' has no 'TruncatedNormal' member
Error

Line: 70 Column: 26

                    32,
      kernel_size=(3, 3),
      activation="relu",
      kernel_initializer=keras.initializers.TruncatedNormal(seed=99))(inputs)
  x = keras.layers.BatchNormalization()(x)
  x = keras.layers.Flatten()(x) + keras.layers.Flatten()(x)
  x = keras.layers.Dense(
      10,
      activation="softmax",

            

Reported by Pylint.

Module 'keras.initializers' has no 'TruncatedNormal' member
Error

Line: 76 Column: 26

                x = keras.layers.Dense(
      10,
      activation="softmax",
      kernel_initializer=keras.initializers.TruncatedNormal(seed=99))(x)
  model = keras.Model(inputs=inputs, outputs=x)

  # TODO(yuefengz): optimizer with slot variables doesn't work because of
  # optimizer's bug.
  # TODO(yuefengz): we should not allow non-v2 optimizer.

            

Reported by Pylint.

TODO(yuefengz): optimizer with slot variables doesn't work because of
Error

Line: 79 Column: 3

                    kernel_initializer=keras.initializers.TruncatedNormal(seed=99))(x)
  model = keras.Model(inputs=inputs, outputs=x)

  # TODO(yuefengz): optimizer with slot variables doesn't work because of
  # optimizer's bug.
  # TODO(yuefengz): we should not allow non-v2 optimizer.
  model.compile(
      loss=keras.losses.sparse_categorical_crossentropy,
      optimizer=gradient_descent.SGD(learning_rate=0.001),

            

Reported by Pylint.

TODO(yuefengz): we should not allow non-v2 optimizer.
Error

Line: 81 Column: 3

              
  # TODO(yuefengz): optimizer with slot variables doesn't work because of
  # optimizer's bug.
  # TODO(yuefengz): we should not allow non-v2 optimizer.
  model.compile(
      loss=keras.losses.sparse_categorical_crossentropy,
      optimizer=gradient_descent.SGD(learning_rate=0.001),
      metrics=["accuracy"])
  return model

            

Reported by Pylint.

Using the global statement
Error

Line: 100 Column: 3

                if _portpicker_import_error:
    raise _portpicker_import_error  # pylint: disable=raising-bad-type

  global ASSIGNED_PORTS
  with lock:
    while True:
      try:
        port = portpicker.pick_unused_port()
      except portpicker.NoFreePortFoundError:

            

Reported by Pylint.

keras/regularizers_test.py
111 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Tests for Keras regularizers."""

import tensorflow.compat.v2 as tf

from absl.testing import parameterized
import numpy as np

import keras

            

Reported by Pylint.

Unable to import 'absl.testing'
Error

Line: 19 Column: 1

              
import tensorflow.compat.v2 as tf

from absl.testing import parameterized
import numpy as np

import keras
from keras import keras_parameterized
from keras import regularizers

            

Reported by Pylint.

Missing class docstring
Error

Line: 33 Column: 1

              NUM_CLASSES = 2


class KerasRegularizersTest(keras_parameterized.TestCase,
                            parameterized.TestCase):

  def create_model(self, kernel_regularizer=None, activity_regularizer=None):
    model = keras.models.Sequential()
    model.add(keras.layers.Dense(NUM_CLASSES,

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 36 Column: 1

              class KerasRegularizersTest(keras_parameterized.TestCase,
                            parameterized.TestCase):

  def create_model(self, kernel_regularizer=None, activity_regularizer=None):
    model = keras.models.Sequential()
    model.add(keras.layers.Dense(NUM_CLASSES,
                                 kernel_regularizer=kernel_regularizer,
                                 activity_regularizer=activity_regularizer,
                                 input_shape=(DATA_DIM,)))

            

Reported by Pylint.

Missing function or method docstring
Error

Line: 36 Column: 3

              class KerasRegularizersTest(keras_parameterized.TestCase,
                            parameterized.TestCase):

  def create_model(self, kernel_regularizer=None, activity_regularizer=None):
    model = keras.models.Sequential()
    model.add(keras.layers.Dense(NUM_CLASSES,
                                 kernel_regularizer=kernel_regularizer,
                                 activity_regularizer=activity_regularizer,
                                 input_shape=(DATA_DIM,)))

            

Reported by Pylint.

Method could be a function
Error

Line: 36 Column: 3

              class KerasRegularizersTest(keras_parameterized.TestCase,
                            parameterized.TestCase):

  def create_model(self, kernel_regularizer=None, activity_regularizer=None):
    model = keras.models.Sequential()
    model.add(keras.layers.Dense(NUM_CLASSES,
                                 kernel_regularizer=kernel_regularizer,
                                 activity_regularizer=activity_regularizer,
                                 input_shape=(DATA_DIM,)))

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 37 Column: 1

                                          parameterized.TestCase):

  def create_model(self, kernel_regularizer=None, activity_regularizer=None):
    model = keras.models.Sequential()
    model.add(keras.layers.Dense(NUM_CLASSES,
                                 kernel_regularizer=kernel_regularizer,
                                 activity_regularizer=activity_regularizer,
                                 input_shape=(DATA_DIM,)))
    return model

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 38 Column: 1

              
  def create_model(self, kernel_regularizer=None, activity_regularizer=None):
    model = keras.models.Sequential()
    model.add(keras.layers.Dense(NUM_CLASSES,
                                 kernel_regularizer=kernel_regularizer,
                                 activity_regularizer=activity_regularizer,
                                 input_shape=(DATA_DIM,)))
    return model


            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 42 Column: 1

                                               kernel_regularizer=kernel_regularizer,
                                 activity_regularizer=activity_regularizer,
                                 input_shape=(DATA_DIM,)))
    return model

  def get_data(self):
    (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
        train_samples=10,
        test_samples=10,

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 44 Column: 1

                                               input_shape=(DATA_DIM,)))
    return model

  def get_data(self):
    (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
        train_samples=10,
        test_samples=10,
        input_shape=(DATA_DIM,),
        num_classes=NUM_CLASSES)

            

Reported by Pylint.

keras/applications/xception.py
111 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 26 Column: 1

                    https://arxiv.org/abs/1610.02357) (CVPR 2017)
"""

import tensorflow.compat.v2 as tf

from keras import backend
from keras.applications import imagenet_utils
from keras.engine import training
from keras.layers import VersionAwareLayers

            

Reported by Pylint.

Unable to import 'tensorflow.python.util.tf_export'
Error

Line: 34 Column: 1

              from keras.layers import VersionAwareLayers
from keras.utils import data_utils
from keras.utils import layer_utils
from tensorflow.python.util.tf_export import keras_export


TF_WEIGHTS_PATH = (
    'https://storage.googleapis.com/tensorflow/keras-applications/'
    'xception/xception_weights_tf_dim_ordering_tf_kernels.h5')

            

Reported by Pylint.

Too many arguments (7/5)
Error

Line: 49 Column: 1

              
@keras_export('keras.applications.xception.Xception',
              'keras.applications.Xception')
def Xception(
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,

            

Reported by Pylint.

Too many local variables (16/15)
Error

Line: 49 Column: 1

              
@keras_export('keras.applications.xception.Xception',
              'keras.applications.Xception')
def Xception(
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,

            

Reported by Pylint.

Too many branches (15/12)
Error

Line: 49 Column: 1

              
@keras_export('keras.applications.xception.Xception',
              'keras.applications.Xception')
def Xception(
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,

            

Reported by Pylint.

Too many statements (97/50)
Error

Line: 49 Column: 1

              
@keras_export('keras.applications.xception.Xception',
              'keras.applications.Xception')
def Xception(
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 57 Column: 1

                  pooling=None,
    classes=1000,
    classifier_activation='softmax'):
  """Instantiates the Xception architecture.

  Reference:
  - [Xception: Deep Learning with Depthwise Separable Convolutions](
      https://arxiv.org/abs/1610.02357) (CVPR 2017)


            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 116 Column: 1

                Returns:
    A `keras.Model` instance.
  """
  if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')


            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 117 Column: 1

                  A `keras.Model` instance.
  """
  if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 122 Column: 1

                                   '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = imagenet_utils.obtain_input_shape(

            

Reported by Pylint.

keras/layers/serialization_test.py
110 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Tests for layer serialization utils."""

import tensorflow.compat.v2 as tf

from absl.testing import parameterized

import keras
from keras import combinations

            

Reported by Pylint.

Unable to import 'absl.testing'
Error

Line: 19 Column: 1

              
import tensorflow.compat.v2 as tf

from absl.testing import parameterized

import keras
from keras import combinations
from keras.layers import recurrent as rnn_v1
from keras.layers import recurrent_v2 as rnn_v2

            

Reported by Pylint.

Module 'keras.initializers' has no 'OnesV2' member
Error

Line: 55 Column: 24

                                   keras.regularizers.L2)
    if tf.__internal__.tf2.enabled():
      self.assertEqual(new_layer.kernel_initializer.__class__,
                       keras.initializers.OnesV2)
    else:
      self.assertEqual(new_layer.kernel_initializer.__class__,
                       keras.initializers.Ones)
    self.assertEqual(new_layer.units, 3)


            

Reported by Pylint.

Module 'keras.initializers' has no 'Ones' member
Error

Line: 58 Column: 24

                                     keras.initializers.OnesV2)
    else:
      self.assertEqual(new_layer.kernel_initializer.__class__,
                       keras.initializers.Ones)
    self.assertEqual(new_layer.units, 3)

  def test_implicit_serialize_deserialize_fails_without_object(self):
    layer = keras.layers.Dense(
        SerializableInt(3),

            

Reported by Pylint.

Module 'keras.initializers' has no 'OnesV2' member
Error

Line: 90 Column: 24

                                   keras.regularizers.L2)
    if tf.__internal__.tf2.enabled():
      self.assertEqual(new_layer.kernel_initializer.__class__,
                       keras.initializers.OnesV2)
    else:
      self.assertEqual(new_layer.kernel_initializer.__class__,
                       keras.initializers.Ones)
    self.assertEqual(new_layer.units.__class__, SerializableInt)
    self.assertEqual(new_layer.units, 3)

            

Reported by Pylint.

Module 'keras.initializers' has no 'Ones' member
Error

Line: 93 Column: 24

                                     keras.initializers.OnesV2)
    else:
      self.assertEqual(new_layer.kernel_initializer.__class__,
                       keras.initializers.Ones)
    self.assertEqual(new_layer.units.__class__, SerializableInt)
    self.assertEqual(new_layer.units, 3)

  @parameterized.parameters(
      [batchnorm_v1.BatchNormalization, batchnorm_v2.BatchNormalization])

            

Reported by Pylint.

Module 'keras.initializers' has no 'ZerosV2' member
Error

Line: 109 Column: 24

                  if tf.__internal__.tf2.enabled():
      self.assertIsInstance(new_layer, batchnorm_v2.BatchNormalization)
      self.assertEqual(new_layer.beta_initializer.__class__,
                       keras.initializers.ZerosV2)
    else:
      self.assertIsInstance(new_layer, batchnorm_v1.BatchNormalization)
      self.assertEqual(new_layer.beta_initializer.__class__,
                       keras.initializers.Zeros)
    self.assertEqual(new_layer.gamma_regularizer.__class__,

            

Reported by Pylint.

Module 'keras.initializers' has no 'Zeros' member
Error

Line: 113 Column: 24

                  else:
      self.assertIsInstance(new_layer, batchnorm_v1.BatchNormalization)
      self.assertEqual(new_layer.beta_initializer.__class__,
                       keras.initializers.Zeros)
    self.assertEqual(new_layer.gamma_regularizer.__class__,
                     keras.regularizers.L2)

  @parameterized.parameters(
      [batchnorm_v1.BatchNormalization, batchnorm_v2.BatchNormalization])

            

Reported by Pylint.

Module 'keras.initializers' has no 'ZerosV2' member
Error

Line: 128 Column: 24

                  if tf.__internal__.tf2.enabled():
      self.assertIsInstance(new_layer, batchnorm_v2.BatchNormalization)
      self.assertEqual(new_layer.beta_initializer.__class__,
                       keras.initializers.ZerosV2)
    else:
      self.assertIsInstance(new_layer, batchnorm_v1.BatchNormalization)
      self.assertEqual(new_layer.beta_initializer.__class__,
                       keras.initializers.Zeros)
    self.assertEqual(new_layer.gamma_regularizer.__class__,

            

Reported by Pylint.

Module 'keras.initializers' has no 'Zeros' member
Error

Line: 132 Column: 24

                  else:
      self.assertIsInstance(new_layer, batchnorm_v1.BatchNormalization)
      self.assertEqual(new_layer.beta_initializer.__class__,
                       keras.initializers.Zeros)
    self.assertEqual(new_layer.gamma_regularizer.__class__,
                     keras.regularizers.L2)

  @parameterized.parameters([rnn_v1.LSTM, rnn_v2.LSTM])
  def test_serialize_deserialize_lstm(self, layer):

            

Reported by Pylint.

keras/engine/base_preprocessing_layer.py
109 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 22 Column: 1

              from keras.engine import data_adapter
from keras.engine.base_layer import Layer
from keras.utils import version_utils
import tensorflow.compat.v2 as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.python.eager import context
from tensorflow.python.util.tf_export import keras_export
from tensorflow.tools.docs import doc_controls


            

Reported by Pylint.

Bad option value 'g-direct-tensorflow-import'
Error

Line: 23 Column: 1

              from keras.engine.base_layer import Layer
from keras.utils import version_utils
import tensorflow.compat.v2 as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.python.eager import context
from tensorflow.python.util.tf_export import keras_export
from tensorflow.tools.docs import doc_controls



            

Reported by Pylint.

Unable to import 'tensorflow.python.eager'
Error

Line: 24 Column: 1

              from keras.utils import version_utils
import tensorflow.compat.v2 as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.python.eager import context
from tensorflow.python.util.tf_export import keras_export
from tensorflow.tools.docs import doc_controls


keras_kpl_gauge = tf.__internal__.monitoring.BoolGauge(

            

Reported by Pylint.

Unable to import 'tensorflow.python.util.tf_export'
Error

Line: 25 Column: 1

              import tensorflow.compat.v2 as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.python.eager import context
from tensorflow.python.util.tf_export import keras_export
from tensorflow.tools.docs import doc_controls


keras_kpl_gauge = tf.__internal__.monitoring.BoolGauge(
    '/tensorflow/api/keras/layers/preprocessing',

            

Reported by Pylint.

Unable to import 'tensorflow.tools.docs'
Error

Line: 26 Column: 1

              # pylint: disable=g-direct-tensorflow-import
from tensorflow.python.eager import context
from tensorflow.python.util.tf_export import keras_export
from tensorflow.tools.docs import doc_controls


keras_kpl_gauge = tf.__internal__.monitoring.BoolGauge(
    '/tensorflow/api/keras/layers/preprocessing',
    'keras preprocessing layers usage', 'method')

            

Reported by Pylint.

Bad option value 'g-doc-exception'
Error

Line: 228 Column: 1

                  """
    _disallow_inside_tf_function('adapt')
    if not version_utils.should_use_v2():
      raise RuntimeError('`adapt` is only supported in tensorflow v2.')  # pylint: disable=g-doc-exception
    if not self._is_compiled:
      self.compile()  # Compile with defaults.
    if self.built:
      self.reset_state()
    data_handler = data_adapter.DataHandler(

            

Reported by Pylint.

Unnecessary pass statement
Error

Line: 90 Column: 5

                  preprocessing layer's state. This method handles any one-time operations
    that should occur on the layer's state before `Layer.__call__`.
    """
    pass

  @doc_controls.do_not_generate_docs
  def make_adapt_function(self):
    """Creates a function to execute one step of `adapt`.


            

Reported by Pylint.

Attribute '_run_eagerly' defined outside __init__
Error

Line: 152 Column: 5

              
    if run_eagerly is None:
      run_eagerly = self.dynamic
    self._run_eagerly = run_eagerly

    self._is_compiled = True

  def adapt(self, data, batch_size=None, steps=None):
    """Fits the state of the preprocessing layer to the data being passed.

            

Reported by Pylint.

Attribute '_steps_per_execution' defined outside __init__
Error

Line: 257 Column: 5

              
  @tf.__internal__.tracking.no_automatic_dependency_tracking
  def _configure_steps_per_execution(self, steps_per_execution):
    self._steps_per_execution = tf.Variable(
        steps_per_execution,
        dtype='int64',
        aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA)

  # TODO(omalleyt): Unify this logic with `Layer._maybe_build`.

            

Reported by Pylint.

TODO(omalleyt): Unify this logic with `Layer._maybe_build`.
Error

Line: 262 Column: 3

                      dtype='int64',
        aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA)

  # TODO(omalleyt): Unify this logic with `Layer._maybe_build`.
  def _adapt_maybe_build(self, data):
    if not self.built:
      try:
        # If this is a Numpy array or tensor, we can get shape from .shape.
        # If not, an attribute error will be thrown.

            

Reported by Pylint.

keras/optimizer_v2/rmsprop.py
109 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # ==============================================================================
"""RMSprop optimizer implementation."""

import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes

import numpy as np
from keras import backend_config
from keras.optimizer_v2 import optimizer_v2

            

Reported by Pylint.

Bad option value 'g-classes-have-attributes'
Error

Line: 18 Column: 1

              """RMSprop optimizer implementation."""

import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes

import numpy as np
from keras import backend_config
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export

            

Reported by Pylint.

Unable to import 'keras'
Error

Line: 21 Column: 1

              # pylint: disable=g-classes-have-attributes

import numpy as np
from keras import backend_config
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export


@keras_export("keras.optimizers.RMSprop")

            

Reported by Pylint.

Unable to import 'keras.optimizer_v2'
Error

Line: 22 Column: 1

              
import numpy as np
from keras import backend_config
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export


@keras_export("keras.optimizers.RMSprop")
class RMSprop(optimizer_v2.OptimizerV2):

            

Reported by Pylint.

Unable to import 'tensorflow.python.util.tf_export'
Error

Line: 23 Column: 1

              import numpy as np
from keras import backend_config
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export


@keras_export("keras.optimizers.RMSprop")
class RMSprop(optimizer_v2.OptimizerV2):
  r"""Optimizer that implements the RMSprop algorithm.

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 28 Column: 1

              
@keras_export("keras.optimizers.RMSprop")
class RMSprop(optimizer_v2.OptimizerV2):
  r"""Optimizer that implements the RMSprop algorithm.

  The gist of RMSprop is to:

  - Maintain a moving (discounted) average of the square of gradients
  - Divide the gradient by the root of this average

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 88 Column: 1

                    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
  """

  _HAS_AGGREGATE_GRAD = True

  def __init__(self,
               learning_rate=0.001,
               rho=0.9,
               momentum=0.0,

            

Reported by Pylint.

Too many arguments (7/5)
Error

Line: 90 Column: 3

              
  _HAS_AGGREGATE_GRAD = True

  def __init__(self,
               learning_rate=0.001,
               rho=0.9,
               momentum=0.0,
               epsilon=1e-7,
               centered=False,

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 90 Column: 1

              
  _HAS_AGGREGATE_GRAD = True

  def __init__(self,
               learning_rate=0.001,
               rho=0.9,
               momentum=0.0,
               epsilon=1e-7,
               centered=False,

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 98 Column: 1

                             centered=False,
               name="RMSprop",
               **kwargs):
    """Construct a new RMSprop optimizer.

    Args:
      learning_rate: A `Tensor`, floating point value, or a schedule that is a
        `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable
        that takes no arguments and returns the actual value to use. The

            

Reported by Pylint.

keras/distribute/distributed_file_utils_test.py
109 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Tests for distributed_file_utils."""

import tensorflow.compat.v2 as tf

import os

from keras.distribute import distributed_file_utils


            

Reported by Pylint.

standard import "import os" should be placed before "import tensorflow.compat.v2 as tf"
Error

Line: 19 Column: 1

              
import tensorflow.compat.v2 as tf

import os

from keras.distribute import distributed_file_utils


class DistributedFileUtilsTest(tf.test.TestCase):

            

Reported by Pylint.

Missing class docstring
Error

Line: 24 Column: 1

              from keras.distribute import distributed_file_utils


class DistributedFileUtilsTest(tf.test.TestCase):

  class MockedExtended:
    pass

  class MockedChiefStrategy:

            

Reported by Pylint.

Too few public methods (0/2)
Error

Line: 26 Column: 3

              
class DistributedFileUtilsTest(tf.test.TestCase):

  class MockedExtended:
    pass

  class MockedChiefStrategy:

    def __init__(self):

            

Reported by Pylint.

Missing class docstring
Error

Line: 26 Column: 3

              
class DistributedFileUtilsTest(tf.test.TestCase):

  class MockedExtended:
    pass

  class MockedChiefStrategy:

    def __init__(self):

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 26 Column: 1

              
class DistributedFileUtilsTest(tf.test.TestCase):

  class MockedExtended:
    pass

  class MockedChiefStrategy:

    def __init__(self):

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 27 Column: 1

              class DistributedFileUtilsTest(tf.test.TestCase):

  class MockedExtended:
    pass

  class MockedChiefStrategy:

    def __init__(self):
      self.extended = DistributedFileUtilsTest.MockedExtended()

            

Reported by Pylint.

Too few public methods (0/2)
Error

Line: 29 Column: 3

                class MockedExtended:
    pass

  class MockedChiefStrategy:

    def __init__(self):
      self.extended = DistributedFileUtilsTest.MockedExtended()
      self.extended._in_multi_worker_mode = lambda: True
      self.extended.should_checkpoint = True

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 29 Column: 1

                class MockedExtended:
    pass

  class MockedChiefStrategy:

    def __init__(self):
      self.extended = DistributedFileUtilsTest.MockedExtended()
      self.extended._in_multi_worker_mode = lambda: True
      self.extended.should_checkpoint = True

            

Reported by Pylint.

Missing class docstring
Error

Line: 29 Column: 3

                class MockedExtended:
    pass

  class MockedChiefStrategy:

    def __init__(self):
      self.extended = DistributedFileUtilsTest.MockedExtended()
      self.extended._in_multi_worker_mode = lambda: True
      self.extended.should_checkpoint = True

            

Reported by Pylint.

keras/engine/training_arrays_test.py
108 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Tests for model.fit calls with a Dataset object passed as validation_data."""

import tensorflow.compat.v2 as tf

import io
import sys

from absl.testing import parameterized

            

Reported by Pylint.

Unable to import 'absl.testing'
Error

Line: 22 Column: 1

              import io
import sys

from absl.testing import parameterized
import numpy as np

import keras
from tensorflow.python.framework import test_util
from keras import keras_parameterized

            

Reported by Pylint.

Unable to import 'tensorflow.python.framework'
Error

Line: 26 Column: 1

              import numpy as np

import keras
from tensorflow.python.framework import test_util
from keras import keras_parameterized
from keras import testing_utils
from keras.layers import core



            

Reported by Pylint.

Method 'get_config' is abstract in class 'Model' but is not overridden
Error

Line: 113 Column: 5

                @keras_parameterized.run_all_keras_modes
  def test_dict_float64_input(self):

    class MyModel(keras.Model):

      def __init__(self):
        super(MyModel, self).__init__(self)
        self.dense1 = keras.layers.Dense(10, activation="relu")
        self.dense2 = keras.layers.Dense(10, activation="relu")

            

Reported by Pylint.

Parameters differ from overridden 'call' method
Error

Line: 122 Column: 7

                      self.concat = keras.layers.Concatenate()
        self.dense3 = keras.layers.Dense(1, activation="sigmoid")

      def call(self, inputs):
        d1 = self.dense1(inputs["one"])
        d2 = self.dense2(inputs["two"])
        concat = self.concat([d1, d2])
        return self.dense3(concat)


            

Reported by Pylint.

Method 'get_config' is abstract in class 'Model' but is not overridden
Error

Line: 153 Column: 5

                  input_0 = keras.Input(shape=(None,), name="input_0")
    input_1 = keras.Input(shape=(None,), name="input_1")

    class my_model(keras.Model):

      def __init__(self):
        super(my_model, self).__init__(self)
        self.hidden_layer_0 = keras.layers.Dense(100, activation="relu")
        self.hidden_layer_1 = keras.layers.Dense(100, activation="relu")

            

Reported by Pylint.

Parameters differ from overridden 'call' method
Error

Line: 162 Column: 7

                      self.concat = keras.layers.Concatenate()
        self.out_layer = keras.layers.Dense(1, activation="sigmoid")

      def call(self, inputs=[input_0, input_1]):
        activation_0 = self.hidden_layer_0(inputs["input_0"])
        activation_1 = self.hidden_layer_1(inputs["input_1"])
        concat = self.concat([activation_0, activation_1])
        return self.out_layer(concat)


            

Reported by Pylint.

Dangerous default value [] as argument
Error

Line: 162 Column: 7

                      self.concat = keras.layers.Concatenate()
        self.out_layer = keras.layers.Dense(1, activation="sigmoid")

      def call(self, inputs=[input_0, input_1]):
        activation_0 = self.hidden_layer_0(inputs["input_0"])
        activation_1 = self.hidden_layer_1(inputs["input_1"])
        concat = self.concat([activation_0, activation_1])
        return self.out_layer(concat)


            

Reported by Pylint.

standard import "import io" should be placed before "import tensorflow.compat.v2 as tf"
Error

Line: 19 Column: 1

              
import tensorflow.compat.v2 as tf

import io
import sys

from absl.testing import parameterized
import numpy as np


            

Reported by Pylint.

standard import "import sys" should be placed before "import tensorflow.compat.v2 as tf"
Error

Line: 20 Column: 1

              import tensorflow.compat.v2 as tf

import io
import sys

from absl.testing import parameterized
import numpy as np

import keras

            

Reported by Pylint.