The following issues were found

keras/layers/preprocessing/discretization.py
108 issues
Bad option value 'g-classes-have-attributes'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Keras discretization preprocessing layer."""

# pylint: disable=g-classes-have-attributes
# pylint: disable=g-direct-tensorflow-import

from keras.engine import base_preprocessing_layer
from keras.layers.preprocessing import preprocessing_utils as utils
from keras.utils import tf_utils

            

Reported by Pylint.

Bad option value 'g-direct-tensorflow-import'
Error

Line: 18 Column: 1

              """Keras discretization preprocessing layer."""

# pylint: disable=g-classes-have-attributes
# pylint: disable=g-direct-tensorflow-import

from keras.engine import base_preprocessing_layer
from keras.layers.preprocessing import preprocessing_utils as utils
from keras.utils import tf_utils
import numpy as np

            

Reported by Pylint.

Unable to import 'tensorflow.compat.v2'
Error

Line: 24 Column: 1

              from keras.layers.preprocessing import preprocessing_utils as utils
from keras.utils import tf_utils
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export


def summarize(values, epsilon):

            

Reported by Pylint.

Unable to import 'tensorflow.python.platform'
Error

Line: 25 Column: 1

              from keras.utils import tf_utils
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export


def summarize(values, epsilon):
  """Reduce a 1D sequence of values to a summary.

            

Reported by Pylint.

Unable to import 'tensorflow.python.util.tf_export'
Error

Line: 26 Column: 1

              import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export


def summarize(values, epsilon):
  """Reduce a 1D sequence of values to a summary.


            

Reported by Pylint.

Bad option value 'unused-arguments'
Error

Line: 213 Column: 1

                      name="summary",
        shape=(2, None),
        dtype=tf.float32,
        initializer=lambda shape, dtype: [[], []],  # pylint: disable=unused-arguments
        trainable=False)

  def update_state(self, data):
    if self.input_bin_boundaries is not None:
      raise ValueError(

            

Reported by Pylint.

TODO(b/184863356): remove the numpy escape hatch here.
Error

Line: 79 Column: 3

                    A 2D `np.ndarray` that is a compressed summary. First column is the
      interpolated partition values, the second is the weights (counts).
  """
  # TODO(b/184863356): remove the numpy escape hatch here.
  return tf.numpy_function(
      lambda s: _compress_summary_numpy(s, epsilon), [summary], tf.float32)


def _compress_summary_numpy(summary, epsilon):

            

Reported by Pylint.

Attribute 'summary' defined outside __init__
Error

Line: 209 Column: 5

              
    # Summary contains two equal length vectors of bins at index 0 and weights
    # at index 1.
    self.summary = self.add_weight(
        name="summary",
        shape=(2, None),
        dtype=tf.float32,
        initializer=lambda shape, dtype: [[], []],  # pylint: disable=unused-arguments
        trainable=False)

            

Reported by Pylint.

Parameters differ from overridden 'compute_output_signature' method
Error

Line: 258 Column: 3

                def compute_output_shape(self, input_shape):
    return input_shape

  def compute_output_signature(self, input_spec):
    output_shape = self.compute_output_shape(input_spec.shape.as_list())
    output_dtype = tf.int64
    if isinstance(input_spec, tf.SparseTensorSpec):
      return tf.SparseTensorSpec(
          shape=output_shape, dtype=output_dtype)

            

Reported by Pylint.

Parameters differ from overridden 'call' method
Error

Line: 266 Column: 3

                        shape=output_shape, dtype=output_dtype)
    return tf.TensorSpec(shape=output_shape, dtype=output_dtype)

  def call(self, inputs):
    def bucketize(inputs):
      outputs = tf.raw_ops.Bucketize(
          input=inputs, boundaries=self.bin_boundaries)
      # All other preprocessing layers use int64 for int output, so we conform
      # here. Sadly the underlying op only supports int32, so we need to cast.

            

Reported by Pylint.

keras/engine/training_arrays_test.py
108 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Tests for model.fit calls with a Dataset object passed as validation_data."""

import tensorflow.compat.v2 as tf

import io
import sys

from absl.testing import parameterized

            

Reported by Pylint.

Unable to import 'absl.testing'
Error

Line: 22 Column: 1

              import io
import sys

from absl.testing import parameterized
import numpy as np

import keras
from tensorflow.python.framework import test_util
from keras import keras_parameterized

            

Reported by Pylint.

Unable to import 'tensorflow.python.framework'
Error

Line: 26 Column: 1

              import numpy as np

import keras
from tensorflow.python.framework import test_util
from keras import keras_parameterized
from keras import testing_utils
from keras.layers import core



            

Reported by Pylint.

Method 'get_config' is abstract in class 'Model' but is not overridden
Error

Line: 113 Column: 5

                @keras_parameterized.run_all_keras_modes
  def test_dict_float64_input(self):

    class MyModel(keras.Model):

      def __init__(self):
        super(MyModel, self).__init__(self)
        self.dense1 = keras.layers.Dense(10, activation="relu")
        self.dense2 = keras.layers.Dense(10, activation="relu")

            

Reported by Pylint.

Parameters differ from overridden 'call' method
Error

Line: 122 Column: 7

                      self.concat = keras.layers.Concatenate()
        self.dense3 = keras.layers.Dense(1, activation="sigmoid")

      def call(self, inputs):
        d1 = self.dense1(inputs["one"])
        d2 = self.dense2(inputs["two"])
        concat = self.concat([d1, d2])
        return self.dense3(concat)


            

Reported by Pylint.

Method 'get_config' is abstract in class 'Model' but is not overridden
Error

Line: 153 Column: 5

                  input_0 = keras.Input(shape=(None,), name="input_0")
    input_1 = keras.Input(shape=(None,), name="input_1")

    class my_model(keras.Model):

      def __init__(self):
        super(my_model, self).__init__(self)
        self.hidden_layer_0 = keras.layers.Dense(100, activation="relu")
        self.hidden_layer_1 = keras.layers.Dense(100, activation="relu")

            

Reported by Pylint.

Parameters differ from overridden 'call' method
Error

Line: 162 Column: 7

                      self.concat = keras.layers.Concatenate()
        self.out_layer = keras.layers.Dense(1, activation="sigmoid")

      def call(self, inputs=[input_0, input_1]):
        activation_0 = self.hidden_layer_0(inputs["input_0"])
        activation_1 = self.hidden_layer_1(inputs["input_1"])
        concat = self.concat([activation_0, activation_1])
        return self.out_layer(concat)


            

Reported by Pylint.

Dangerous default value [] as argument
Error

Line: 162 Column: 7

                      self.concat = keras.layers.Concatenate()
        self.out_layer = keras.layers.Dense(1, activation="sigmoid")

      def call(self, inputs=[input_0, input_1]):
        activation_0 = self.hidden_layer_0(inputs["input_0"])
        activation_1 = self.hidden_layer_1(inputs["input_1"])
        concat = self.concat([activation_0, activation_1])
        return self.out_layer(concat)


            

Reported by Pylint.

standard import "import io" should be placed before "import tensorflow.compat.v2 as tf"
Error

Line: 19 Column: 1

              
import tensorflow.compat.v2 as tf

import io
import sys

from absl.testing import parameterized
import numpy as np


            

Reported by Pylint.

standard import "import sys" should be placed before "import tensorflow.compat.v2 as tf"
Error

Line: 20 Column: 1

              import tensorflow.compat.v2 as tf

import io
import sys

from absl.testing import parameterized
import numpy as np

import keras

            

Reported by Pylint.

keras/preprocessing/dataset_utils.py
106 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Keras image dataset loading utilities."""

import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes

import multiprocessing
import os


            

Reported by Pylint.

Bad option value 'g-classes-have-attributes'
Error

Line: 18 Column: 1

              """Keras image dataset loading utilities."""

import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes

import multiprocessing
import os

import numpy as np

            

Reported by Pylint.

Module 'numpy.random' has no 'RandomState' member
Error

Line: 121 Column: 11

                  # Shuffle globally to erase macro-structure
    if seed is None:
      seed = np.random.randint(1e6)
    rng = np.random.RandomState(seed)
    rng.shuffle(file_paths)
    rng = np.random.RandomState(seed)
    rng.shuffle(labels)
  return file_paths, labels, class_names


            

Reported by Pylint.

Module 'numpy.random' has no 'RandomState' member
Error

Line: 123 Column: 11

                    seed = np.random.randint(1e6)
    rng = np.random.RandomState(seed)
    rng.shuffle(file_paths)
    rng = np.random.RandomState(seed)
    rng.shuffle(labels)
  return file_paths, labels, class_names


def iter_valid_files(directory, follow_links, formats):

            

Reported by Pylint.

standard import "import multiprocessing" should be placed before "import tensorflow.compat.v2 as tf"
Error

Line: 20 Column: 1

              import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes

import multiprocessing
import os

import numpy as np



            

Reported by Pylint.

standard import "import os" should be placed before "import tensorflow.compat.v2 as tf"
Error

Line: 21 Column: 1

              # pylint: disable=g-classes-have-attributes

import multiprocessing
import os

import numpy as np


def index_directory(directory,

            

Reported by Pylint.

Too many arguments (7/5)
Error

Line: 26 Column: 1

              import numpy as np


def index_directory(directory,
                    labels,
                    formats,
                    class_names=None,
                    shuffle=True,
                    seed=None,

            

Reported by Pylint.

Too many branches (16/12)
Error

Line: 26 Column: 1

              import numpy as np


def index_directory(directory,
                    labels,
                    formats,
                    class_names=None,
                    shuffle=True,
                    seed=None,

            

Reported by Pylint.

Too many local variables (21/15)
Error

Line: 26 Column: 1

              import numpy as np


def index_directory(directory,
                    labels,
                    formats,
                    class_names=None,
                    shuffle=True,
                    seed=None,

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 33 Column: 1

                                  shuffle=True,
                    seed=None,
                    follow_links=False):
  """Make list of all files in the subdirs of `directory`, with their labels.

  Args:
    directory: The target directory (string).
    labels: Either "inferred"
        (labels are generated from the directory structure),

            

Reported by Pylint.

keras/distribute/sharded_variable_test.py
105 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 18 Column: 1

              # ==============================================================================
"""Tests for ClusterCoordinator and Keras models."""

import tensorflow.compat.v2 as tf
import keras
from keras.distribute import multi_worker_testing_utils
from keras.engine import base_layer



            

Reported by Pylint.

Access to a protected member _checkpoint_dependencies of a client class
Error

Line: 73 Column: 46

                                             layer.trainable_variables)
    self.assert_list_all_equal(layer.weights, layer.variables)

    checkpoint_deps = set(dep.ref for dep in layer._checkpoint_dependencies)
    self.assertEqual(checkpoint_deps, set([layer.w, layer.b]))

  def test_keras_layer_add_weight(self):

    class Layer(base_layer.Layer):

            

Reported by Pylint.

Access to a protected member _checkpoint_dependencies of a client class
Error

Line: 106 Column: 46

                                             layer.trainable_variables)
    self.assert_list_all_equal(layer.weights, layer.variables)

    checkpoint_deps = set(dep.ref for dep in layer._checkpoint_dependencies)
    self.assertEqual(checkpoint_deps, set([layer.w, layer.b]))

  def test_keras_metrics(self):
    with self.strategy.scope():
      fp = keras.metrics.FalsePositives(thresholds=[0.2, 0.5, 0.7, 0.8])

            

Reported by Pylint.

Missing class docstring
Error

Line: 24 Column: 1

              from keras.engine import base_layer


class ShardedVariableTest(tf.test.TestCase):

  @classmethod
  def setUpClass(cls):
    super().setUpClass()
    cls.strategy = tf.distribute.experimental.ParameterServerStrategy(

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 26 Column: 1

              
class ShardedVariableTest(tf.test.TestCase):

  @classmethod
  def setUpClass(cls):
    super().setUpClass()
    cls.strategy = tf.distribute.experimental.ParameterServerStrategy(
        multi_worker_testing_utils.make_parameter_server_cluster(3, 2),
        variable_partitioner=tf.distribute.experimental.partitioners.FixedShardsPartitioner(2))

            

Reported by Pylint.

Missing function or method docstring
Error

Line: 27 Column: 3

              class ShardedVariableTest(tf.test.TestCase):

  @classmethod
  def setUpClass(cls):
    super().setUpClass()
    cls.strategy = tf.distribute.experimental.ParameterServerStrategy(
        multi_worker_testing_utils.make_parameter_server_cluster(3, 2),
        variable_partitioner=tf.distribute.experimental.partitioners.FixedShardsPartitioner(2))


            

Reported by Pylint.

Method name "setUpClass" doesn't conform to snake_case naming style
Error

Line: 27 Column: 3

              class ShardedVariableTest(tf.test.TestCase):

  @classmethod
  def setUpClass(cls):
    super().setUpClass()
    cls.strategy = tf.distribute.experimental.ParameterServerStrategy(
        multi_worker_testing_utils.make_parameter_server_cluster(3, 2),
        variable_partitioner=tf.distribute.experimental.partitioners.FixedShardsPartitioner(2))


            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 27 Column: 1

              class ShardedVariableTest(tf.test.TestCase):

  @classmethod
  def setUpClass(cls):
    super().setUpClass()
    cls.strategy = tf.distribute.experimental.ParameterServerStrategy(
        multi_worker_testing_utils.make_parameter_server_cluster(3, 2),
        variable_partitioner=tf.distribute.experimental.partitioners.FixedShardsPartitioner(2))


            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 28 Column: 1

              
  @classmethod
  def setUpClass(cls):
    super().setUpClass()
    cls.strategy = tf.distribute.experimental.ParameterServerStrategy(
        multi_worker_testing_utils.make_parameter_server_cluster(3, 2),
        variable_partitioner=tf.distribute.experimental.partitioners.FixedShardsPartitioner(2))

  def assert_list_all_equal(self, list1, list2):

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 29 Column: 1

                @classmethod
  def setUpClass(cls):
    super().setUpClass()
    cls.strategy = tf.distribute.experimental.ParameterServerStrategy(
        multi_worker_testing_utils.make_parameter_server_cluster(3, 2),
        variable_partitioner=tf.distribute.experimental.partitioners.FixedShardsPartitioner(2))

  def assert_list_all_equal(self, list1, list2):
    """Used in lieu of `assertAllEqual`.

            

Reported by Pylint.

keras/integration_test/gradients_test.py
105 issues
Unable to import 'tensorflow'
Error

Line: 17 Column: 1

              # ==============================================================================

import numpy as np
import tensorflow as tf


class TestKerasModelClass(tf.keras.Model):
  """A simple tensorflow keras Model class definition."""


            

Reported by Pylint.

Unused argument 'input_shape'
Error

Line: 27 Column: 19

                  super(TestKerasModelClass, self).__init__()
    self.width = width

  def build(self, input_shape):
    self.weight = self.add_weight(
        name="test_keras_var",
        shape=(self.width,),
        dtype=tf.float32,
        trainable=True,

            

Reported by Pylint.

Attribute 'weight' defined outside __init__
Error

Line: 28 Column: 5

                  self.width = width

  def build(self, input_shape):
    self.weight = self.add_weight(
        name="test_keras_var",
        shape=(self.width,),
        dtype=tf.float32,
        trainable=True,
    )

            

Reported by Pylint.

Unused argument 'input_shape'
Error

Line: 116 Column: 23

                      super().__init__(**kwargs)
        self.embedding = None

      def build(self, input_shape):
        self.embedding = tf.Variable(tf.random.uniform([50, 16]))

      def call(self, x):
        return tf.nn.embedding_lookup(self.embedding, x)


            

Reported by Pylint.

Missing module docstring
Error

Line: 1 Column: 1

              # Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 21 Column: 1

              

class TestKerasModelClass(tf.keras.Model):
  """A simple tensorflow keras Model class definition."""

  def __init__(self, width):
    super(TestKerasModelClass, self).__init__()
    self.width = width


            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 23 Column: 1

              class TestKerasModelClass(tf.keras.Model):
  """A simple tensorflow keras Model class definition."""

  def __init__(self, width):
    super(TestKerasModelClass, self).__init__()
    self.width = width

  def build(self, input_shape):
    self.weight = self.add_weight(

            

Reported by Pylint.

Consider using Python 3 style super() without arguments
Error

Line: 24 Column: 5

                """A simple tensorflow keras Model class definition."""

  def __init__(self, width):
    super(TestKerasModelClass, self).__init__()
    self.width = width

  def build(self, input_shape):
    self.weight = self.add_weight(
        name="test_keras_var",

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 24 Column: 1

                """A simple tensorflow keras Model class definition."""

  def __init__(self, width):
    super(TestKerasModelClass, self).__init__()
    self.width = width

  def build(self, input_shape):
    self.weight = self.add_weight(
        name="test_keras_var",

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 25 Column: 1

              
  def __init__(self, width):
    super(TestKerasModelClass, self).__init__()
    self.width = width

  def build(self, input_shape):
    self.weight = self.add_weight(
        name="test_keras_var",
        shape=(self.width,),

            

Reported by Pylint.

keras/saving/utils_v1/export_utils.py
104 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 26 Column: 1

              from keras.saving.utils_v1 import mode_keys
from keras.saving.utils_v1 import unexported_constants
from keras.saving.utils_v1.mode_keys import KerasModeKeys as ModeKeys
import tensorflow.compat.v2 as tf

from tensorflow.python.platform import tf_logging as logging


# Mapping of the modes to appropriate MetaGraph tags in the SavedModel.

            

Reported by Pylint.

Unable to import 'tensorflow.python.platform'
Error

Line: 28 Column: 1

              from keras.saving.utils_v1.mode_keys import KerasModeKeys as ModeKeys
import tensorflow.compat.v2 as tf

from tensorflow.python.platform import tf_logging as logging


# Mapping of the modes to appropriate MetaGraph tags in the SavedModel.
EXPORT_TAG_MAP = mode_keys.ModeKeyMap(**{
    ModeKeys.PREDICT: [tf.saved_model.SERVING],

            

Reported by Pylint.

TODO(b/67733540): consider printing the full signatures, not just names
Error

Line: 159 Column: 3

                for signature_name, sig in signature_def_map.items():
    sig_names_by_method_name[sig.method_name].append(signature_name)

  # TODO(b/67733540): consider printing the full signatures, not just names
  for method_name, sig_names in sig_names_by_method_name.items():
    if method_name in _FRIENDLY_METHOD_NAMES:
      method_name = _FRIENDLY_METHOD_NAMES[method_name]
    logging.info('Signatures INCLUDED in export for {}: {}'.format(
        method_name, sig_names if sig_names else 'None'))

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 60 Column: 1

                                           export_outputs,
                             receiver_tensors_alternatives=None,
                             serving_only=True):
  """Build `SignatureDef`s for all export outputs.

  Args:
    receiver_tensors: a `Tensor`, or a dict of string to `Tensor`, specifying
      input nodes where this receiver expects to be fed by default.  Typically,
      this is a single placeholder expecting serialized `tf.Example` protos.

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 86 Column: 1

                Raises:
    ValueError: if export_outputs is not a dict
  """
  if not isinstance(receiver_tensors, dict):
    receiver_tensors = {SINGLE_RECEIVER_DEFAULT_NAME: receiver_tensors}
  if export_outputs is None or not isinstance(export_outputs, dict):
    raise ValueError('`export_outputs` must be a dict. Received '
                     f'{export_outputs} with type '
                     f'{type(export_outputs).__name__}.')

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 87 Column: 1

                  ValueError: if export_outputs is not a dict
  """
  if not isinstance(receiver_tensors, dict):
    receiver_tensors = {SINGLE_RECEIVER_DEFAULT_NAME: receiver_tensors}
  if export_outputs is None or not isinstance(export_outputs, dict):
    raise ValueError('`export_outputs` must be a dict. Received '
                     f'{export_outputs} with type '
                     f'{type(export_outputs).__name__}.')


            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 88 Column: 1

                """
  if not isinstance(receiver_tensors, dict):
    receiver_tensors = {SINGLE_RECEIVER_DEFAULT_NAME: receiver_tensors}
  if export_outputs is None or not isinstance(export_outputs, dict):
    raise ValueError('`export_outputs` must be a dict. Received '
                     f'{export_outputs} with type '
                     f'{type(export_outputs).__name__}.')

  signature_def_map = {}

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 89 Column: 1

                if not isinstance(receiver_tensors, dict):
    receiver_tensors = {SINGLE_RECEIVER_DEFAULT_NAME: receiver_tensors}
  if export_outputs is None or not isinstance(export_outputs, dict):
    raise ValueError('`export_outputs` must be a dict. Received '
                     f'{export_outputs} with type '
                     f'{type(export_outputs).__name__}.')

  signature_def_map = {}
  excluded_signatures = {}

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 93 Column: 1

                                   f'{export_outputs} with type '
                     f'{type(export_outputs).__name__}.')

  signature_def_map = {}
  excluded_signatures = {}
  for output_key, export_output in export_outputs.items():
    signature_name = '{}'.format(output_key or 'None')
    try:
      signature = export_output.as_signature_def(receiver_tensors)

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 94 Column: 1

                                   f'{type(export_outputs).__name__}.')

  signature_def_map = {}
  excluded_signatures = {}
  for output_key, export_output in export_outputs.items():
    signature_name = '{}'.format(output_key or 'None')
    try:
      signature = export_output.as_signature_def(receiver_tensors)
      signature_def_map[signature_name] = signature

            

Reported by Pylint.

keras/tests/convert_to_constants_test.py
103 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Tests for convert_to_constants.py."""

import tensorflow.compat.v2 as tf

import os

import numpy as np


            

Reported by Pylint.

Unable to import 'keras'
Error

Line: 23 Column: 1

              
import numpy as np

import keras
from tensorflow.python.framework import convert_to_constants
from keras import testing_utils
from tensorflow.python.saved_model.load import load
from tensorflow.python.saved_model.save import save


            

Reported by Pylint.

Unable to import 'tensorflow.python.framework'
Error

Line: 24 Column: 1

              import numpy as np

import keras
from tensorflow.python.framework import convert_to_constants
from keras import testing_utils
from tensorflow.python.saved_model.load import load
from tensorflow.python.saved_model.save import save



            

Reported by Pylint.

Unable to import 'keras'
Error

Line: 25 Column: 1

              
import keras
from tensorflow.python.framework import convert_to_constants
from keras import testing_utils
from tensorflow.python.saved_model.load import load
from tensorflow.python.saved_model.save import save


class VariablesToConstantsTest(tf.test.TestCase):

            

Reported by Pylint.

Unable to import 'tensorflow.python.saved_model.load'
Error

Line: 26 Column: 1

              import keras
from tensorflow.python.framework import convert_to_constants
from keras import testing_utils
from tensorflow.python.saved_model.load import load
from tensorflow.python.saved_model.save import save


class VariablesToConstantsTest(tf.test.TestCase):


            

Reported by Pylint.

Unable to import 'tensorflow.python.saved_model.save'
Error

Line: 27 Column: 1

              from tensorflow.python.framework import convert_to_constants
from keras import testing_utils
from tensorflow.python.saved_model.load import load
from tensorflow.python.saved_model.save import save


class VariablesToConstantsTest(tf.test.TestCase):

  def _freezeModel(self, model):

            

Reported by Pylint.

Unused argument 'obj'
Error

Line: 61 Column: 36

                  """Returns the number of ReadVariableOp in the graph."""
    return sum(node.op == "ReadVariableOp" for node in graph_def.node)

  def _testConvertedFunction(self, obj, func, converted_concrete_func,
                             input_data):
    # Ensure the converted graph has no variables and no function calls.
    constant_graph_def = converted_concrete_func.graph.as_graph_def()
    self.assertEqual(0, self._getNumVariables(constant_graph_def))
    self.assertFalse(self._hasStatefulPartitionedCallOp(constant_graph_def))

            

Reported by Pylint.

standard import "import os" should be placed before "import tensorflow.compat.v2 as tf"
Error

Line: 19 Column: 1

              
import tensorflow.compat.v2 as tf

import os

import numpy as np

import keras
from tensorflow.python.framework import convert_to_constants

            

Reported by Pylint.

Imports from package tensorflow are not grouped
Error

Line: 26 Column: 1

              import keras
from tensorflow.python.framework import convert_to_constants
from keras import testing_utils
from tensorflow.python.saved_model.load import load
from tensorflow.python.saved_model.save import save


class VariablesToConstantsTest(tf.test.TestCase):


            

Reported by Pylint.

Missing class docstring
Error

Line: 30 Column: 1

              from tensorflow.python.saved_model.save import save


class VariablesToConstantsTest(tf.test.TestCase):

  def _freezeModel(self, model):
    """Freezes the model.

    Args:

            

Reported by Pylint.

keras/tests/saver_test.py
101 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # =============================================================================
"""Tests for tensorflow.python.training.saver.py."""

import tensorflow.compat.v2 as tf

import functools
import os
from keras.engine import training
from keras.layers import core

            

Reported by Pylint.

Unable to import 'keras.engine'
Error

Line: 21 Column: 1

              
import functools
import os
from keras.engine import training
from keras.layers import core
from tensorflow.python.training.tracking import util as trackable_utils


class NonLayerTrackable(tf.Module):

            

Reported by Pylint.

Unable to import 'keras.layers'
Error

Line: 22 Column: 1

              import functools
import os
from keras.engine import training
from keras.layers import core
from tensorflow.python.training.tracking import util as trackable_utils


class NonLayerTrackable(tf.Module):


            

Reported by Pylint.

Unable to import 'tensorflow.python.training.tracking'
Error

Line: 23 Column: 1

              import os
from keras.engine import training
from keras.layers import core
from tensorflow.python.training.tracking import util as trackable_utils


class NonLayerTrackable(tf.Module):

  def __init__(self):

            

Reported by Pylint.

Access to a protected member _named_dense of a client class
Error

Line: 66 Column: 19

                  self.evaluate(train_op)
    # A regular variable, a slot variable, and a non-slot Optimizer variable
    # with known values to check when loading.
    self.evaluate(model._named_dense.bias.assign([1.]))
    self.evaluate(optimizer.get_slot(
        var=model._named_dense.bias, name="m").assign([2.]))
    beta1_power, _ = optimizer._get_beta_accumulators()
    self.evaluate(beta1_power.assign(3.))
    return root_trackable

            

Reported by Pylint.

Access to a protected member _named_dense of a client class
Error

Line: 68 Column: 13

                  # with known values to check when loading.
    self.evaluate(model._named_dense.bias.assign([1.]))
    self.evaluate(optimizer.get_slot(
        var=model._named_dense.bias, name="m").assign([2.]))
    beta1_power, _ = optimizer._get_beta_accumulators()
    self.evaluate(beta1_power.assign(3.))
    return root_trackable

  def _set_sentinels(self, root_trackable):

            

Reported by Pylint.

Access to a protected member _get_beta_accumulators of a client class
Error

Line: 69 Column: 22

                  self.evaluate(model._named_dense.bias.assign([1.]))
    self.evaluate(optimizer.get_slot(
        var=model._named_dense.bias, name="m").assign([2.]))
    beta1_power, _ = optimizer._get_beta_accumulators()
    self.evaluate(beta1_power.assign(3.))
    return root_trackable

  def _set_sentinels(self, root_trackable):
    self.evaluate(root_trackable.model._named_dense.bias.assign([101.]))

            

Reported by Pylint.

Access to a protected member _named_dense of a client class
Error

Line: 74 Column: 19

                  return root_trackable

  def _set_sentinels(self, root_trackable):
    self.evaluate(root_trackable.model._named_dense.bias.assign([101.]))
    self.evaluate(
        root_trackable.optimizer.get_slot(
            var=root_trackable.model._named_dense.bias, name="m")
        .assign([102.]))
    beta1_power, _ = root_trackable.optimizer._get_beta_accumulators()

            

Reported by Pylint.

Access to a protected member _named_dense of a client class
Error

Line: 77 Column: 17

                  self.evaluate(root_trackable.model._named_dense.bias.assign([101.]))
    self.evaluate(
        root_trackable.optimizer.get_slot(
            var=root_trackable.model._named_dense.bias, name="m")
        .assign([102.]))
    beta1_power, _ = root_trackable.optimizer._get_beta_accumulators()
    self.evaluate(beta1_power.assign(103.))

  def _check_sentinels(self, root_trackable):

            

Reported by Pylint.

Access to a protected member _get_beta_accumulators of a client class
Error

Line: 79 Column: 22

                      root_trackable.optimizer.get_slot(
            var=root_trackable.model._named_dense.bias, name="m")
        .assign([102.]))
    beta1_power, _ = root_trackable.optimizer._get_beta_accumulators()
    self.evaluate(beta1_power.assign(103.))

  def _check_sentinels(self, root_trackable):
    self.assertAllEqual(
        [1.], self.evaluate(root_trackable.model._named_dense.bias))

            

Reported by Pylint.

keras/optimizer_v2/nadam.py
99 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Nadam optimizer implementation."""

import tensorflow.compat.v2 as tf
from keras import backend_config
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export


            

Reported by Pylint.

Unable to import 'keras'
Error

Line: 18 Column: 1

              """Nadam optimizer implementation."""

import tensorflow.compat.v2 as tf
from keras import backend_config
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export



            

Reported by Pylint.

Unable to import 'keras.optimizer_v2'
Error

Line: 19 Column: 1

              
import tensorflow.compat.v2 as tf
from keras import backend_config
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export


@keras_export('keras.optimizers.Nadam')

            

Reported by Pylint.

Unable to import 'keras.optimizer_v2'
Error

Line: 20 Column: 1

              import tensorflow.compat.v2 as tf
from keras import backend_config
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export


@keras_export('keras.optimizers.Nadam')
class Nadam(optimizer_v2.OptimizerV2):

            

Reported by Pylint.

Unable to import 'tensorflow.python.util.tf_export'
Error

Line: 21 Column: 1

              from keras import backend_config
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export


@keras_export('keras.optimizers.Nadam')
class Nadam(optimizer_v2.OptimizerV2):
  r"""Optimizer that implements the NAdam algorithm.

            

Reported by Pylint.

Attribute '_m_cache_read' defined outside __init__
Error

Line: 138 Column: 5

              
  def _prepare(self, var_list):
    # Get the value of the momentum cache before starting to apply gradients.
    self._m_cache_read = tf.identity(self._m_cache)
    return super(Nadam, self)._prepare(var_list)

  def _resource_apply_dense(self, grad, var, apply_state=None):
    var_device, var_dtype = var.device, var.dtype.base_dtype
    coefficients = ((apply_state or {}).get((var_device, var_dtype))

            

Reported by Pylint.

Too few public methods (1/2)
Error

Line: 25 Column: 1

              

@keras_export('keras.optimizers.Nadam')
class Nadam(optimizer_v2.OptimizerV2):
  r"""Optimizer that implements the NAdam algorithm.
  Much like Adam is essentially RMSprop with momentum, Nadam is Adam with
  Nesterov momentum.

  Args:

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 26 Column: 1

              
@keras_export('keras.optimizers.Nadam')
class Nadam(optimizer_v2.OptimizerV2):
  r"""Optimizer that implements the NAdam algorithm.
  Much like Adam is essentially RMSprop with momentum, Nadam is Adam with
  Nesterov momentum.

  Args:
    learning_rate: A Tensor or a floating point value.  The learning rate.

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 56 Column: 1

                  - [Dozat, 2015](http://cs229.stanford.edu/proj2015/054_report.pdf).
  """

  _HAS_AGGREGATE_GRAD = True

  def __init__(self,
               learning_rate=0.001,
               beta_1=0.9,
               beta_2=0.999,

            

Reported by Pylint.

Too many arguments (6/5)
Error

Line: 58 Column: 3

              
  _HAS_AGGREGATE_GRAD = True

  def __init__(self,
               learning_rate=0.001,
               beta_1=0.9,
               beta_2=0.999,
               epsilon=1e-7,
               name='Nadam',

            

Reported by Pylint.

keras/layers/preprocessing/category_encoding.py
99 issues
Unable to import 'tensorflow.compat.v2'
Error

Line: 17 Column: 1

              # ==============================================================================
"""Keras CategoryEncoding preprocessing layer."""

import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes

import numpy as np
from keras import backend
from keras.engine import base_layer

            

Reported by Pylint.

Bad option value 'g-classes-have-attributes'
Error

Line: 18 Column: 1

              """Keras CategoryEncoding preprocessing layer."""

import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes

import numpy as np
from keras import backend
from keras.engine import base_layer
from keras.engine import base_preprocessing_layer

            

Reported by Pylint.

Unable to import 'tensorflow.python.platform'
Error

Line: 26 Column: 1

              from keras.engine import base_preprocessing_layer
from keras.utils import layer_utils
from keras.utils import tf_utils
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export

INT = "int"
ONE_HOT = "one_hot"
MULTI_HOT = "multi_hot"

            

Reported by Pylint.

Unable to import 'tensorflow.python.util.tf_export'
Error

Line: 27 Column: 1

              from keras.utils import layer_utils
from keras.utils import tf_utils
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export

INT = "int"
ONE_HOT = "one_hot"
MULTI_HOT = "multi_hot"
COUNT = "count"

            

Reported by Pylint.

Parameters differ from overridden 'compute_output_signature' method
Error

Line: 159 Column: 3

                  else:
      return tf.TensorShape(input_shape[:-1] + [self.num_tokens])

  def compute_output_signature(self, input_spec):
    output_shape = self.compute_output_shape(input_spec.shape.as_list())
    if self.sparse:
      return tf.SparseTensorSpec(
          shape=output_shape, dtype=tf.int64)
    else:

            

Reported by Pylint.

Parameters differ from overridden 'call' method
Error

Line: 176 Column: 3

                  base_config = super(CategoryEncoding, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs, count_weights=None):
    if isinstance(inputs, (list, np.ndarray)):
      inputs = tf.convert_to_tensor(inputs)

    def expand_dims(inputs, axis):
      if tf_utils.is_sparse(inputs):

            

Reported by Pylint.

TODO(b/190445202): remove output rank restriction.
Error

Line: 195 Column: 3

                    if inputs.shape[-1] != 1:
        inputs = expand_dims(inputs, -1)

    # TODO(b/190445202): remove output rank restriction.
    if inputs.shape.rank > 2:
      raise ValueError(
          "Received input shape {}, which would result in output rank {}. "
          "Currently only outputs up to rank 2 are supported.".format(
              original_shape, inputs.shape.rank))

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 38 Column: 1

              @keras_export("keras.layers.CategoryEncoding",
              "keras.layers.experimental.preprocessing.CategoryEncoding")
class CategoryEncoding(base_layer.Layer):
  """Category encoding layer.

  This layer provides options for condensing data into a categorical encoding
  when the total number of tokens are known in advance. It accepts integer
  values as inputs, and it outputs a dense representation of those
  inputs. For integer inputs where the total number of tokens is not known,

            

Reported by Pylint.

Bad indentation. Found 2 spaces, expected 4
Style

Line: 112 Column: 1

                    `"multi_hot"` or `"one_hot"` modes.
  """

  def __init__(self,
               num_tokens=None,
               output_mode="multi_hot",
               sparse=False,
               **kwargs):
    # max_tokens is an old name for the num_tokens arg we continue to support

            

Reported by Pylint.

Bad indentation. Found 4 spaces, expected 8
Style

Line: 119 Column: 1

                             **kwargs):
    # max_tokens is an old name for the num_tokens arg we continue to support
    # because of usage.
    if "max_tokens" in kwargs:
      logging.warning(
          "max_tokens is deprecated, please use num_tokens instead.")
      num_tokens = kwargs["max_tokens"]
      del kwargs["max_tokens"]


            

Reported by Pylint.