The following issues were found
keras/premade/linear.py
88 issues
Line: 17
Column: 1
# ==============================================================================
"""Built-in linear model classes."""
import tensorflow.compat.v2 as tf
from keras import activations
from keras import initializers
from keras import regularizers
from keras.engine import base_layer
from keras.engine import input_spec
Reported by Pylint.
Line: 25
Column: 1
from keras.engine import input_spec
from keras.engine import training
from keras.layers import core
from tensorflow.python.util import deprecation # pylint: disable=g-direct-tensorflow-import
from tensorflow.python.util.tf_export import keras_export
@keras_export(
'keras.experimental.LinearModel',
Reported by Pylint.
Line: 25
Column: 1
from keras.engine import input_spec
from keras.engine import training
from keras.layers import core
from tensorflow.python.util import deprecation # pylint: disable=g-direct-tensorflow-import
from tensorflow.python.util.tf_export import keras_export
@keras_export(
'keras.experimental.LinearModel',
Reported by Pylint.
Line: 26
Column: 1
from keras.engine import training
from keras.layers import core
from tensorflow.python.util import deprecation # pylint: disable=g-direct-tensorflow-import
from tensorflow.python.util.tf_export import keras_export
@keras_export(
'keras.experimental.LinearModel',
v1=['keras.experimental.LinearModel', 'keras.models.LinearModel'])
Reported by Pylint.
Line: 102
Column: 7
def build(self, input_shape):
if isinstance(input_shape, dict):
names = sorted(list(input_shape.keys()))
self.input_specs = []
self.dense_layers = []
for name in names:
shape = input_shape[name]
layer = core.Dense(
units=self.units,
Reported by Pylint.
Line: 103
Column: 7
if isinstance(input_shape, dict):
names = sorted(list(input_shape.keys()))
self.input_specs = []
self.dense_layers = []
for name in names:
shape = input_shape[name]
layer = core.Dense(
units=self.units,
use_bias=False,
Reported by Pylint.
Line: 118
Column: 7
self.dense_layers.append(layer)
elif isinstance(input_shape, (tuple, list)) and all(
isinstance(shape, tf.TensorShape) for shape in input_shape):
self.dense_layers = []
for shape in input_shape:
layer = core.Dense(
units=self.units,
use_bias=False,
kernel_initializer=self.kernel_initializer,
Reported by Pylint.
Line: 135
Column: 7
kernel_initializer=self.kernel_initializer,
kernel_regularizer=self.kernel_regularizer)
layer.build(input_shape)
self.dense_layers = [layer]
if self.use_bias:
self.bias = self.add_weight(
'bias',
shape=self.units,
Reported by Pylint.
Line: 138
Column: 7
self.dense_layers = [layer]
if self.use_bias:
self.bias = self.add_weight(
'bias',
shape=self.units,
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
dtype=self.dtype,
Reported by Pylint.
Line: 146
Column: 7
dtype=self.dtype,
trainable=True)
else:
self.bias = None
self.built = True
def call(self, inputs):
result = None
if isinstance(inputs, dict):
Reported by Pylint.
keras/engine/functional_utils.py
88 issues
Line: 22
Column: 1
from keras.engine import keras_tensor
from keras.engine import node as node_module
import tensorflow.compat.v2 as tf
_KERAS_TENSOR_TYPE_CHECK_ERROR_MSG = (
'Found unexpected instance while processing input tensors for keras '
'functional model. Expecting KerasTensor which is from tf.keras.Input() '
'or output from keras layer call(). Got: {}')
Reported by Pylint.
Line: 245
Column: 3
An identical copy of the input KerasTensor.
"""
# Create a scratch graph since we don't intend to use the placeholders.
with backend._scratch_graph() as scratch_graph: # pylint: disable=protected-access
with scratch_graph.as_default():
placeholder = keras_tensor.keras_tensor_to_placeholder(kt)
return keras_tensor.keras_tensor_from_tensor(placeholder)
Reported by Pylint.
Line: 31
Column: 1
def is_input_keras_tensor(tensor):
"""Check if tensor is directly generated from `tf.keras.Input`.
This check is useful when constructing the functional model, since we will
need to clone Nodes and KerasTensors if the model is building from non input
tensor.
Reported by Pylint.
Line: 46
Column: 1
Raises:
ValueError: if the tensor is not a KerasTensor instance.
"""
if not node_module.is_keras_tensor(tensor):
raise ValueError(_KERAS_TENSOR_TYPE_CHECK_ERROR_MSG.format(tensor))
return tensor.node.is_input
def find_nodes_by_inputs_and_outputs(inputs, outputs):
Reported by Pylint.
Line: 47
Column: 1
ValueError: if the tensor is not a KerasTensor instance.
"""
if not node_module.is_keras_tensor(tensor):
raise ValueError(_KERAS_TENSOR_TYPE_CHECK_ERROR_MSG.format(tensor))
return tensor.node.is_input
def find_nodes_by_inputs_and_outputs(inputs, outputs):
"""Fetch all Nodes in the graph defined by "inputs" and "outputs".
Reported by Pylint.
Line: 48
Column: 1
"""
if not node_module.is_keras_tensor(tensor):
raise ValueError(_KERAS_TENSOR_TYPE_CHECK_ERROR_MSG.format(tensor))
return tensor.node.is_input
def find_nodes_by_inputs_and_outputs(inputs, outputs):
"""Fetch all Nodes in the graph defined by "inputs" and "outputs".
Reported by Pylint.
Line: 52
Column: 1
def find_nodes_by_inputs_and_outputs(inputs, outputs):
"""Fetch all Nodes in the graph defined by "inputs" and "outputs".
This method is used to find and then clone Nodes when creating a new
sub-model from an existing functional model.
Args:
Reported by Pylint.
Line: 76
Column: 1
# The bottom up approach will ensure all the nodes we visit are actually
# in use. If we reach the top and didn't find the nodes in the `inputs`,
# that's an error, since the user didn't specify the correct inputs.
start_keras_tensors = tf.nest.flatten(outputs)
end_keras_tensors = tf.nest.flatten(inputs)
for t in start_keras_tensors + end_keras_tensors:
if not node_module.is_keras_tensor(t):
raise ValueError(_KERAS_TENSOR_TYPE_CHECK_ERROR_MSG.format(t))
Reported by Pylint.
Line: 77
Column: 1
# in use. If we reach the top and didn't find the nodes in the `inputs`,
# that's an error, since the user didn't specify the correct inputs.
start_keras_tensors = tf.nest.flatten(outputs)
end_keras_tensors = tf.nest.flatten(inputs)
for t in start_keras_tensors + end_keras_tensors:
if not node_module.is_keras_tensor(t):
raise ValueError(_KERAS_TENSOR_TYPE_CHECK_ERROR_MSG.format(t))
end_ids = set([id(kt) for kt in end_keras_tensors])
Reported by Pylint.
Line: 79
Column: 1
start_keras_tensors = tf.nest.flatten(outputs)
end_keras_tensors = tf.nest.flatten(inputs)
for t in start_keras_tensors + end_keras_tensors:
if not node_module.is_keras_tensor(t):
raise ValueError(_KERAS_TENSOR_TYPE_CHECK_ERROR_MSG.format(t))
end_ids = set([id(kt) for kt in end_keras_tensors])
# Track all the end tensors we found so far, if we didn't reach all the
# user-specified keras inputs after we finish the search, then that's an
Reported by Pylint.
keras/mixed_precision/loss_scale_benchmark.py
87 issues
Line: 17
Column: 1
# ==============================================================================
"""Benchmarks for LossScaleOptimizer."""
import tensorflow.compat.v2 as tf
import time
from keras.mixed_precision import loss_scale_optimizer
from keras.optimizer_v2 import adam
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import time
from keras.mixed_precision import loss_scale_optimizer
from keras.optimizer_v2 import adam
def _get_strategy(num_gpus):
Reported by Pylint.
Line: 25
Column: 1
def _get_strategy(num_gpus):
if num_gpus > 1:
return tf.distribute.MirroredStrategy(
['/GPU:%d' % i for i in range(num_gpus)])
else:
return tf.distribute.get_strategy() # The default strategy
Reported by Pylint.
Line: 25
Column: 3
def _get_strategy(num_gpus):
if num_gpus > 1:
return tf.distribute.MirroredStrategy(
['/GPU:%d' % i for i in range(num_gpus)])
else:
return tf.distribute.get_strategy() # The default strategy
Reported by Pylint.
Line: 26
Column: 1
def _get_strategy(num_gpus):
if num_gpus > 1:
return tf.distribute.MirroredStrategy(
['/GPU:%d' % i for i in range(num_gpus)])
else:
return tf.distribute.get_strategy() # The default strategy
Reported by Pylint.
Line: 28
Column: 1
if num_gpus > 1:
return tf.distribute.MirroredStrategy(
['/GPU:%d' % i for i in range(num_gpus)])
else:
return tf.distribute.get_strategy() # The default strategy
class LossScaleBenchmark(tf.test.Benchmark):
"""Benchmark for loss scaling."""
Reported by Pylint.
Line: 29
Column: 1
return tf.distribute.MirroredStrategy(
['/GPU:%d' % i for i in range(num_gpus)])
else:
return tf.distribute.get_strategy() # The default strategy
class LossScaleBenchmark(tf.test.Benchmark):
"""Benchmark for loss scaling."""
Reported by Pylint.
Line: 33
Column: 1
class LossScaleBenchmark(tf.test.Benchmark):
"""Benchmark for loss scaling."""
def _benchmark(self, gradient_type, num_gpus, mode, loss_scaling):
"""Benchmarks loss scaling.
We run a simple model with several scalar variables. The loss is the sum of
Reported by Pylint.
Line: 35
Column: 3
class LossScaleBenchmark(tf.test.Benchmark):
"""Benchmark for loss scaling."""
def _benchmark(self, gradient_type, num_gpus, mode, loss_scaling):
"""Benchmarks loss scaling.
We run a simple model with several scalar variables. The loss is the sum of
all variables. The model is simple because we want to measure only the
performance of loss scaling, not the performance of the model itself.
Reported by Pylint.
Line: 35
Column: 1
class LossScaleBenchmark(tf.test.Benchmark):
"""Benchmark for loss scaling."""
def _benchmark(self, gradient_type, num_gpus, mode, loss_scaling):
"""Benchmarks loss scaling.
We run a simple model with several scalar variables. The loss is the sum of
all variables. The model is simple because we want to measure only the
performance of loss scaling, not the performance of the model itself.
Reported by Pylint.
keras/metrics_functional_test.py
87 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras metrics functions."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from keras import backend
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from keras import backend
from keras import combinations
from keras import metrics
Reported by Pylint.
Line: 27
Column: 1
from keras import metrics
class KerasFunctionalMetricsTest(tf.test.TestCase, parameterized.TestCase):
def test_metrics(self):
with self.cached_session():
y_a = backend.variable(np.random.random((6, 7)))
y_b = backend.variable(np.random.random((6, 7)))
Reported by Pylint.
Line: 29
Column: 1
class KerasFunctionalMetricsTest(tf.test.TestCase, parameterized.TestCase):
def test_metrics(self):
with self.cached_session():
y_a = backend.variable(np.random.random((6, 7)))
y_b = backend.variable(np.random.random((6, 7)))
for metric in [metrics.binary_accuracy, metrics.categorical_accuracy]:
output = metric(y_a, y_b)
Reported by Pylint.
Line: 29
Column: 3
class KerasFunctionalMetricsTest(tf.test.TestCase, parameterized.TestCase):
def test_metrics(self):
with self.cached_session():
y_a = backend.variable(np.random.random((6, 7)))
y_b = backend.variable(np.random.random((6, 7)))
for metric in [metrics.binary_accuracy, metrics.categorical_accuracy]:
output = metric(y_a, y_b)
Reported by Pylint.
Line: 30
Column: 1
class KerasFunctionalMetricsTest(tf.test.TestCase, parameterized.TestCase):
def test_metrics(self):
with self.cached_session():
y_a = backend.variable(np.random.random((6, 7)))
y_b = backend.variable(np.random.random((6, 7)))
for metric in [metrics.binary_accuracy, metrics.categorical_accuracy]:
output = metric(y_a, y_b)
self.assertEqual(backend.eval(output).shape, (6,))
Reported by Pylint.
Line: 31
Column: 1
def test_metrics(self):
with self.cached_session():
y_a = backend.variable(np.random.random((6, 7)))
y_b = backend.variable(np.random.random((6, 7)))
for metric in [metrics.binary_accuracy, metrics.categorical_accuracy]:
output = metric(y_a, y_b)
self.assertEqual(backend.eval(output).shape, (6,))
Reported by Pylint.
Line: 32
Column: 1
def test_metrics(self):
with self.cached_session():
y_a = backend.variable(np.random.random((6, 7)))
y_b = backend.variable(np.random.random((6, 7)))
for metric in [metrics.binary_accuracy, metrics.categorical_accuracy]:
output = metric(y_a, y_b)
self.assertEqual(backend.eval(output).shape, (6,))
def test_sparse_categorical_accuracy_int(self):
Reported by Pylint.
Line: 33
Column: 1
with self.cached_session():
y_a = backend.variable(np.random.random((6, 7)))
y_b = backend.variable(np.random.random((6, 7)))
for metric in [metrics.binary_accuracy, metrics.categorical_accuracy]:
output = metric(y_a, y_b)
self.assertEqual(backend.eval(output).shape, (6,))
def test_sparse_categorical_accuracy_int(self):
with self.cached_session():
Reported by Pylint.
Line: 34
Column: 1
y_a = backend.variable(np.random.random((6, 7)))
y_b = backend.variable(np.random.random((6, 7)))
for metric in [metrics.binary_accuracy, metrics.categorical_accuracy]:
output = metric(y_a, y_b)
self.assertEqual(backend.eval(output).shape, (6,))
def test_sparse_categorical_accuracy_int(self):
with self.cached_session():
metric = metrics.sparse_categorical_accuracy
Reported by Pylint.
keras/feature_column/base_feature_layer.py
85 issues
Line: 24
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
import collections
import re
from keras.engine.base_layer import Layer
from keras.utils import generic_utils
Reported by Pylint.
Line: 131
Column: 3
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config, custom_objects=None):
config_cp = config.copy()
columns_by_name = {}
config_cp['feature_columns'] = [tf.__internal__.feature_column.deserialize_feature_column(
c, custom_objects, columns_by_name) for c in config['feature_columns']]
config_cp['partitioner'] = generic_utils.deserialize_keras_object(
Reported by Pylint.
Line: 26
Column: 1
import tensorflow.compat.v2 as tf
import collections
import re
from keras.engine.base_layer import Layer
from keras.utils import generic_utils
Reported by Pylint.
Line: 27
Column: 1
import tensorflow.compat.v2 as tf
import collections
import re
from keras.engine.base_layer import Layer
from keras.utils import generic_utils
class _BaseFeaturesLayer(Layer):
Reported by Pylint.
Line: 33
Column: 1
class _BaseFeaturesLayer(Layer):
"""Base class for DenseFeatures and SequenceFeatures.
Defines common methods and helpers.
Args:
feature_columns: An iterable containing the FeatureColumns to use as
Reported by Pylint.
Line: 51
Column: 1
`expected_column_type`.
"""
def __init__(self,
feature_columns,
expected_column_type,
trainable,
name,
partitioner=None,
Reported by Pylint.
Line: 51
Column: 3
`expected_column_type`.
"""
def __init__(self,
feature_columns,
expected_column_type,
trainable,
name,
partitioner=None,
Reported by Pylint.
Line: 58
Column: 5
name,
partitioner=None,
**kwargs):
super(_BaseFeaturesLayer, self).__init__(
name=name, trainable=trainable, **kwargs)
self._feature_columns = _normalize_feature_columns(
feature_columns)
self._state_manager = tf.__internal__.feature_column.StateManager( # pylint: disable=protected-access
self, self.trainable)
Reported by Pylint.
Line: 58
Column: 1
name,
partitioner=None,
**kwargs):
super(_BaseFeaturesLayer, self).__init__(
name=name, trainable=trainable, **kwargs)
self._feature_columns = _normalize_feature_columns(
feature_columns)
self._state_manager = tf.__internal__.feature_column.StateManager( # pylint: disable=protected-access
self, self.trainable)
Reported by Pylint.
Line: 60
Column: 1
**kwargs):
super(_BaseFeaturesLayer, self).__init__(
name=name, trainable=trainable, **kwargs)
self._feature_columns = _normalize_feature_columns(
feature_columns)
self._state_manager = tf.__internal__.feature_column.StateManager( # pylint: disable=protected-access
self, self.trainable)
self._partitioner = partitioner
for column in self._feature_columns:
Reported by Pylint.
keras/layers/preprocessing/category_crossing.py
83 issues
Line: 17
Column: 1
# ==============================================================================
"""Keras category crossing preprocessing layers."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import itertools
import numpy as np
from keras.engine import base_layer
Reported by Pylint.
Line: 18
Column: 1
"""Keras category crossing preprocessing layers."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import itertools
import numpy as np
from keras.engine import base_layer
from keras.engine import base_preprocessing_layer
Reported by Pylint.
Line: 25
Column: 1
from keras.engine import base_layer
from keras.engine import base_preprocessing_layer
from keras.utils import tf_utils
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.experimental.preprocessing.CategoryCrossing')
class CategoryCrossing(base_layer.Layer):
"""Category crossing layer.
Reported by Pylint.
Line: 122
Column: 3
"""Gets the crossed output from a partial list/tuple of inputs."""
# If ragged_out=True, convert output from sparse to ragged.
if ragged_out:
# TODO(momernick): Support separator with ragged_cross.
if self.separator != '_X_':
raise ValueError(
f'Non-default separator with ragged input is not implemented. '
f'Received separator: {self.separator}.')
return tf.ragged.cross(partial_inputs)
Reported by Pylint.
Line: 141
Column: 3
inp = tf.expand_dims(inp, axis=-1)
return inp
def call(self, inputs):
inputs = [self._preprocess_input(inp) for inp in inputs]
depth_tuple = self._depth_tuple if self.depth else (len(inputs),)
ragged_out = sparse_out = False
if any(tf_utils.is_ragged(inp) for inp in inputs):
ragged_out = True
Reported by Pylint.
Line: 182
Column: 3
output_shape = [batch_size, None]
return tf.TensorShape(output_shape)
def compute_output_signature(self, input_spec):
input_shapes = [x.shape for x in input_spec]
output_shape = self.compute_output_shape(input_shapes)
if any(
isinstance(inp_spec, tf.RaggedTensorSpec)
for inp_spec in input_spec):
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import itertools
import numpy as np
from keras.engine import base_layer
from keras.engine import base_preprocessing_layer
from keras.utils import tf_utils
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 30
Column: 1
@keras_export('keras.layers.experimental.preprocessing.CategoryCrossing')
class CategoryCrossing(base_layer.Layer):
"""Category crossing layer.
This layer concatenates multiple categorical inputs into a single categorical
output (similar to Cartesian product). The output dtype is string.
Usage:
Reported by Pylint.
Line: 107
Column: 1
`[[b'1_X_2_X_3'], [b'4_X_5_X_6']]`
"""
def __init__(self, depth=None, name=None, separator='_X_', **kwargs):
super(CategoryCrossing, self).__init__(name=name, **kwargs)
base_preprocessing_layer.keras_kpl_gauge.get_cell(
'CategoryCrossing').set(True)
self.depth = depth
self.separator = separator
Reported by Pylint.
Line: 108
Column: 5
"""
def __init__(self, depth=None, name=None, separator='_X_', **kwargs):
super(CategoryCrossing, self).__init__(name=name, **kwargs)
base_preprocessing_layer.keras_kpl_gauge.get_cell(
'CategoryCrossing').set(True)
self.depth = depth
self.separator = separator
if isinstance(depth, (tuple, list)):
Reported by Pylint.
keras/engine/control_flow_test.py
83 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for dynamic control flow behavior with Keras."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
from keras import keras_parameterized
from keras import testing_utils
Reported by Pylint.
Line: 32
Column: 3
class ControlFlowLayer1(base_layer.Layer):
"""Layer with an `if` condition in call."""
def call(self, inputs):
if tf.reduce_sum(inputs) > 0:
return tf.sqrt(inputs)
else:
return tf.square(inputs)
Reported by Pylint.
Line: 42
Column: 3
class ControlFlowLayer2(base_layer.Layer):
"""Layer with a `for` loop in call."""
def call(self, inputs):
samples = tf.TensorArray(
dtype=tf.float32, size=tf.shape(inputs)[0])
i = 0
for sample in inputs:
samples = samples.write(i, tf.square(sample))
Reported by Pylint.
Line: 59
Column: 3
super(NestedControlFlowLayer, self).__init__(**kwargs)
self.layer = ControlFlowLayer1()
def call(self, inputs):
return self.layer(inputs)
class ControlFlowModel(keras.Model):
"""Model with an `if` condition in call."""
Reported by Pylint.
Line: 63
Column: 1
return self.layer(inputs)
class ControlFlowModel(keras.Model):
"""Model with an `if` condition in call."""
def call(self, inputs):
if tf.reduce_sum(inputs) > 0:
return tf.sqrt(inputs)
Reported by Pylint.
Line: 66
Column: 3
class ControlFlowModel(keras.Model):
"""Model with an `if` condition in call."""
def call(self, inputs):
if tf.reduce_sum(inputs) > 0:
return tf.sqrt(inputs)
else:
return tf.square(inputs)
Reported by Pylint.
Line: 73
Column: 1
return tf.square(inputs)
class NestedControlFlowModel(keras.Model):
"""Model with an `if` condition in call using a control flow layer."""
def __init__(self, **kwargs):
super(NestedControlFlowModel, self).__init__(**kwargs)
self.layer = NestedControlFlowLayer()
Reported by Pylint.
Line: 80
Column: 3
super(NestedControlFlowModel, self).__init__(**kwargs)
self.layer = NestedControlFlowLayer()
def call(self, inputs):
inputs = self.layer(inputs)
if tf.reduce_sum(inputs) > 0:
return tf.sqrt(inputs)
else:
return tf.square(inputs)
Reported by Pylint.
Line: 88
Column: 1
return tf.square(inputs)
class FunctionControlFlowModel(keras.Model):
"""Model with control flow where `call` is wrapped in function already."""
@tf.function
def call(self, inputs):
if tf.reduce_sum(inputs) > 0:
Reported by Pylint.
keras/layers/preprocessing/benchmarks/index_lookup_forward_benchmark.py
82 issues
Line: 17
Column: 1
# ==============================================================================
"""Benchmark for Keras text vectorization preprocessing layer's adapt method."""
import tensorflow as tf
import os
import random
import string
import time
Reported by Pylint.
Line: 26
Column: 1
import numpy as np
import keras
from keras.layers.preprocessing import index_lookup
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 27
Column: 1
import numpy as np
import keras
from keras.layers.preprocessing import index_lookup
tf.compat.v1.enable_v2_behavior()
# word_gen creates random sequences of ASCII letters (both lowercase and upper).
Reported by Pylint.
Line: 48
Column: 1
def get_vocab():
vocab = list(
set([a + b for a in string.ascii_letters for b in string.ascii_letters])) # pylint:disable=g-complex-comprehension
vocab.sort()
return vocab
# This class uses TestCase for get_temp_dir().
Reported by Pylint.
Line: 19
Column: 1
import tensorflow as tf
import os
import random
import string
import time
import numpy as np
Reported by Pylint.
Line: 20
Column: 1
import tensorflow as tf
import os
import random
import string
import time
import numpy as np
Reported by Pylint.
Line: 21
Column: 1
import os
import random
import string
import time
import numpy as np
import keras
Reported by Pylint.
Line: 22
Column: 1
import os
import random
import string
import time
import numpy as np
import keras
from keras.layers.preprocessing import index_lookup
Reported by Pylint.
Line: 34
Column: 1
# word_gen creates random sequences of ASCII letters (both lowercase and upper).
# The number of unique strings is ~2,700.
def tensor_gen(batch, num_elements):
data = []
for _ in range(batch):
batch_element = []
for _ in range(num_elements - 1):
tok = "".join(random.choice(string.ascii_letters) for i in range(2))
Reported by Pylint.
Line: 35
Column: 1
# word_gen creates random sequences of ASCII letters (both lowercase and upper).
# The number of unique strings is ~2,700.
def tensor_gen(batch, num_elements):
data = []
for _ in range(batch):
batch_element = []
for _ in range(num_elements - 1):
tok = "".join(random.choice(string.ascii_letters) for i in range(2))
batch_element.append(tok)
Reported by Pylint.
keras/regularizers.py
82 issues
Line: 17
Column: 1
# ==============================================================================
"""Built-in regularizers."""
import tensorflow.compat.v2 as tf
# pylint: disable=invalid-name
import math
from keras import backend
Reported by Pylint.
Line: 25
Column: 1
from keras import backend
from keras.utils.generic_utils import deserialize_keras_object
from keras.utils.generic_utils import serialize_keras_object
from tensorflow.python.util.tf_export import keras_export
def _check_penalty_number(x):
"""check penalty number availability, raise ValueError if failed."""
if not isinstance(x, (float, int)):
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
# pylint: disable=invalid-name
import math
from keras import backend
from keras.utils.generic_utils import deserialize_keras_object
from keras.utils.generic_utils import serialize_keras_object
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 25
Column: 1
from keras import backend
from keras.utils.generic_utils import deserialize_keras_object
from keras.utils.generic_utils import serialize_keras_object
from tensorflow.python.util.tf_export import keras_export
def _check_penalty_number(x):
"""check penalty number availability, raise ValueError if failed."""
if not isinstance(x, (float, int)):
Reported by Pylint.
Line: 29
Column: 1
def _check_penalty_number(x):
"""check penalty number availability, raise ValueError if failed."""
if not isinstance(x, (float, int)):
raise ValueError(
f'Value: {x} is not a valid regularization penalty number, '
'expected an int or float value')
Reported by Pylint.
Line: 30
Column: 1
def _check_penalty_number(x):
"""check penalty number availability, raise ValueError if failed."""
if not isinstance(x, (float, int)):
raise ValueError(
f'Value: {x} is not a valid regularization penalty number, '
'expected an int or float value')
if math.isinf(x) or math.isnan(x):
Reported by Pylint.
Line: 31
Column: 1
def _check_penalty_number(x):
"""check penalty number availability, raise ValueError if failed."""
if not isinstance(x, (float, int)):
raise ValueError(
f'Value: {x} is not a valid regularization penalty number, '
'expected an int or float value')
if math.isinf(x) or math.isnan(x):
raise ValueError(
Reported by Pylint.
Line: 35
Column: 1
f'Value: {x} is not a valid regularization penalty number, '
'expected an int or float value')
if math.isinf(x) or math.isnan(x):
raise ValueError(
f'Value: {x} is not a valid regularization penalty number, '
'an infinity nubmer or NaN are not valid value')
Reported by Pylint.
Line: 36
Column: 1
'expected an int or float value')
if math.isinf(x) or math.isnan(x):
raise ValueError(
f'Value: {x} is not a valid regularization penalty number, '
'an infinity nubmer or NaN are not valid value')
def _none_to_default(inputs, default):
Reported by Pylint.
Line: 42
Column: 1
def _none_to_default(inputs, default):
return default if inputs is None else default
@keras_export('keras.regularizers.Regularizer')
class Regularizer:
"""Regularizer base class.
Reported by Pylint.
keras/saving/metrics_serialization_test.py
82 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras metrics serialization."""
import tensorflow.compat.v2 as tf
import os
import shutil
from absl.testing import parameterized
Reported by Pylint.
Line: 22
Column: 1
import os
import shutil
from absl.testing import parameterized
import numpy as np
import keras
from keras import keras_parameterized
from keras import layers
Reported by Pylint.
Line: 34
Column: 1
from keras.utils import generic_utils
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
# Custom metric
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import os
import shutil
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import os
import shutil
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 34
Column: 1
from keras.utils import generic_utils
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
# Custom metric
Reported by Pylint.
Line: 36
Column: 1
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
# Custom metric
class MyMeanAbsoluteError(metrics.MeanMetricWrapper):
Reported by Pylint.
Line: 40
Column: 1
# Custom metric
class MyMeanAbsoluteError(metrics.MeanMetricWrapper):
def __init__(self, name='my_mae', dtype=None):
super(MyMeanAbsoluteError, self).__init__(_my_mae, name, dtype=dtype)
Reported by Pylint.
Line: 42
Column: 1
# Custom metric
class MyMeanAbsoluteError(metrics.MeanMetricWrapper):
def __init__(self, name='my_mae', dtype=None):
super(MyMeanAbsoluteError, self).__init__(_my_mae, name, dtype=dtype)
# Custom metric function
def _my_mae(y_true, y_pred):
Reported by Pylint.
Line: 43
Column: 1
class MyMeanAbsoluteError(metrics.MeanMetricWrapper):
def __init__(self, name='my_mae', dtype=None):
super(MyMeanAbsoluteError, self).__init__(_my_mae, name, dtype=dtype)
# Custom metric function
def _my_mae(y_true, y_pred):
return keras.backend.mean(tf.abs(y_pred - y_true), axis=-1)
Reported by Pylint.