The following issues were found
keras/distribute/checkpointing_test.py
77 issues
Line: 18
Column: 1
import os
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
from keras.optimizer_v2 import adam
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
from keras.optimizer_v2 import adam
class TrainingCheckpointTests(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
Line: 75
Column: 46
checkpoint.restore(save_path)
step()
slot = opt.get_slot(v, "m")
self.assertEqual(v._distribute_strategy, slot._distribute_strategy)
v, opt, step = state()
checkpoint = tf.train.Checkpoint(v=v, opt=opt)
# Restore from the checkpoint outside a distribution.scope().
with self.test_session():
Reported by Pylint.
Line: 75
Column: 22
checkpoint.restore(save_path)
step()
slot = opt.get_slot(v, "m")
self.assertEqual(v._distribute_strategy, slot._distribute_strategy)
v, opt, step = state()
checkpoint = tf.train.Checkpoint(v=v, opt=opt)
# Restore from the checkpoint outside a distribution.scope().
with self.test_session():
Reported by Pylint.
Line: 1
Column: 1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
Reported by Pylint.
Line: 24
Column: 1
from keras.optimizer_v2 import adam
class TrainingCheckpointTests(tf.test.TestCase, parameterized.TestCase):
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
distribution=[
tf.__internal__.distribute.combinations.mirrored_strategy_with_one_cpu,
Reported by Pylint.
Line: 26
Column: 1
class TrainingCheckpointTests(tf.test.TestCase, parameterized.TestCase):
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
distribution=[
tf.__internal__.distribute.combinations.mirrored_strategy_with_one_cpu,
tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu,
tf.__internal__.distribute.combinations.tpu_strategy,
Reported by Pylint.
Line: 36
Column: 1
tf.__internal__.distribute.combinations.central_storage_strategy_with_two_gpus,
],
mode=["eager"]))
def testCheckpointRestoreOptimizerSlots(self, distribution):
def state():
with distribution.scope():
v = tf.Variable(tf.random.normal([]))
opt = adam.Adam(0.001)
Reported by Pylint.
Line: 36
Column: 3
tf.__internal__.distribute.combinations.central_storage_strategy_with_two_gpus,
],
mode=["eager"]))
def testCheckpointRestoreOptimizerSlots(self, distribution):
def state():
with distribution.scope():
v = tf.Variable(tf.random.normal([]))
opt = adam.Adam(0.001)
Reported by Pylint.
Line: 36
Column: 3
tf.__internal__.distribute.combinations.central_storage_strategy_with_two_gpus,
],
mode=["eager"]))
def testCheckpointRestoreOptimizerSlots(self, distribution):
def state():
with distribution.scope():
v = tf.Variable(tf.random.normal([]))
opt = adam.Adam(0.001)
Reported by Pylint.
keras/distribute/mirrored_strategy_test.py
77 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for MirroredStrategy."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
from tensorflow.python.eager import backprop
from keras.engine import training as keras_training
Reported by Pylint.
Line: 23
Column: 1
import numpy as np
import keras
from tensorflow.python.eager import backprop
from keras.engine import training as keras_training
from keras.layers import core as keras_core
from keras.optimizer_v2 import rmsprop
from keras.utils import kpl_test_utils
from tensorflow.python.training import optimizer as optimizer_lib
Reported by Pylint.
Line: 28
Column: 1
from keras.layers import core as keras_core
from keras.optimizer_v2 import rmsprop
from keras.utils import kpl_test_utils
from tensorflow.python.training import optimizer as optimizer_lib
class MiniModel(keras_training.Model):
"""Minimal model for mnist.
Reported by Pylint.
Line: 31
Column: 1
from tensorflow.python.training import optimizer as optimizer_lib
class MiniModel(keras_training.Model):
"""Minimal model for mnist.
Useful for testing and debugging on slow TPU simulators.
"""
Reported by Pylint.
Line: 42
Column: 3
self.fc = keras_core.Dense(1, name="fc", kernel_initializer="ones",
bias_initializer="ones")
def call(self, inputs, training=True):
inputs = tf.ones([1, 10])
return self.fc(inputs)
@tf.__internal__.distribute.combinations.generate(
Reported by Pylint.
Line: 28
Column: 1
from keras.layers import core as keras_core
from keras.optimizer_v2 import rmsprop
from keras.utils import kpl_test_utils
from tensorflow.python.training import optimizer as optimizer_lib
class MiniModel(keras_training.Model):
"""Minimal model for mnist.
Reported by Pylint.
Line: 32
Column: 1
class MiniModel(keras_training.Model):
"""Minimal model for mnist.
Useful for testing and debugging on slow TPU simulators.
"""
def __init__(self):
Reported by Pylint.
Line: 37
Column: 1
Useful for testing and debugging on slow TPU simulators.
"""
def __init__(self):
super(MiniModel, self).__init__(name="")
self.fc = keras_core.Dense(1, name="fc", kernel_initializer="ones",
bias_initializer="ones")
def call(self, inputs, training=True):
Reported by Pylint.
Line: 38
Column: 5
"""
def __init__(self):
super(MiniModel, self).__init__(name="")
self.fc = keras_core.Dense(1, name="fc", kernel_initializer="ones",
bias_initializer="ones")
def call(self, inputs, training=True):
inputs = tf.ones([1, 10])
Reported by Pylint.
keras/distribute/keras_embedding_model_correctness_test.py
77 issues
Line: 17
Column: 1
# ==============================================================================
"""Correctness test for tf.keras Embedding models using DistributionStrategy."""
import tensorflow.compat.v2 as tf
import numpy as np
import keras
from keras.distribute import keras_correctness_test_base
Reported by Pylint.
Line: 99
Column: 34
input_dim=20,
output_dim=10,
input_length=max_words,
embeddings_initializer=keras.initializers.RandomUniform(0, 1))
a_rep = submodel(word_embed, word_ids_a).outputs[0]
b_rep = submodel(word_embed, word_ids_b).outputs[0]
sim = keras.layers.Dot(axes=1, normalize=True)([a_rep, b_rep])
Reported by Pylint.
Line: 101
Column: 15
input_length=max_words,
embeddings_initializer=keras.initializers.RandomUniform(0, 1))
a_rep = submodel(word_embed, word_ids_a).outputs[0]
b_rep = submodel(word_embed, word_ids_b).outputs[0]
sim = keras.layers.Dot(axes=1, normalize=True)([a_rep, b_rep])
model = keras.Model(inputs=[word_ids_a, word_ids_b], outputs=[sim])
Reported by Pylint.
Line: 102
Column: 15
embeddings_initializer=keras.initializers.RandomUniform(0, 1))
a_rep = submodel(word_embed, word_ids_a).outputs[0]
b_rep = submodel(word_embed, word_ids_b).outputs[0]
sim = keras.layers.Dot(axes=1, normalize=True)([a_rep, b_rep])
model = keras.Model(inputs=[word_ids_a, word_ids_b], outputs=[sim])
if initial_weights:
Reported by Pylint.
Line: 26
Column: 1
from keras.optimizer_v2 import gradient_descent as gradient_descent_keras
class DistributionStrategyEmbeddingModelCorrectnessTest(
keras_correctness_test_base
.TestDistributionStrategyEmbeddingModelCorrectnessBase):
def get_model(self,
max_words=10,
Reported by Pylint.
Line: 26
Column: 1
from keras.optimizer_v2 import gradient_descent as gradient_descent_keras
class DistributionStrategyEmbeddingModelCorrectnessTest(
keras_correctness_test_base
.TestDistributionStrategyEmbeddingModelCorrectnessBase):
def get_model(self,
max_words=10,
Reported by Pylint.
Line: 30
Column: 3
keras_correctness_test_base
.TestDistributionStrategyEmbeddingModelCorrectnessBase):
def get_model(self,
max_words=10,
initial_weights=None,
distribution=None,
input_shapes=None):
del input_shapes
Reported by Pylint.
Line: 62
Column: 5
def test_embedding_model_correctness(self, distribution, use_numpy,
use_validation_data):
self.use_distributed_dense = False
self.run_correctness_test(distribution, use_numpy, use_validation_data)
@tf.__internal__.distribute.combinations.generate(
keras_correctness_test_base.test_combinations_for_embedding_model() +
keras_correctness_test_base.multi_worker_mirrored_eager())
Reported by Pylint.
Line: 70
Column: 5
keras_correctness_test_base.multi_worker_mirrored_eager())
def test_embedding_time_distributed_model_correctness(
self, distribution, use_numpy, use_validation_data):
self.use_distributed_dense = True
self.run_correctness_test(distribution, use_numpy, use_validation_data)
class DistributionStrategySiameseEmbeddingModelCorrectnessTest(
keras_correctness_test_base
Reported by Pylint.
Line: 74
Column: 1
self.run_correctness_test(distribution, use_numpy, use_validation_data)
class DistributionStrategySiameseEmbeddingModelCorrectnessTest(
keras_correctness_test_base
.TestDistributionStrategyEmbeddingModelCorrectnessBase):
def get_model(self,
max_words=10,
Reported by Pylint.
keras/engine/training_integration_test.py
76 issues
Line: 17
Column: 1
# ==============================================================================
"""End-to-end tests for a variety of small models."""
import tensorflow.compat.v2 as tf
import collections
import itertools
from absl.testing import parameterized
Reported by Pylint.
Line: 22
Column: 1
import collections
import itertools
from absl.testing import parameterized
import numpy as np
import keras
from keras import keras_parameterized
from keras import testing_utils
Reported by Pylint.
Line: 100
Column: 1
def _gather_test_cases():
cases = []
for layer_type, inp_shape, fuzz_dims, arg_dict, filter_fn in _LAYERS_TO_TEST:
arg_combinations = [[(k, i) for i in v] for k, v in arg_dict.items()] # pylint: disable=g-complex-comprehension
for arguments in itertools.product(*arg_combinations):
layer_kwargs = {k: v for k, v in arguments}
if filter_fn is not None and not filter_fn(**layer_kwargs):
continue
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import collections
import itertools
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import collections
import itertools
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 31
Column: 1
def _conv2d_filter(**kwargs):
"""Convolution with non-default strides and dilation rate is not supported."""
return kwargs['strides'] <= 1 or kwargs['dilation_rate'] <= 1
# Scheme: (layer_class, data_shape, fuzz_dims, constructor_args, filter_fn)
# layer_class:
Reported by Pylint.
Line: 32
Column: 1
def _conv2d_filter(**kwargs):
"""Convolution with non-default strides and dilation rate is not supported."""
return kwargs['strides'] <= 1 or kwargs['dilation_rate'] <= 1
# Scheme: (layer_class, data_shape, fuzz_dims, constructor_args, filter_fn)
# layer_class:
# A keras Layer class to be tested.
Reported by Pylint.
Line: 98
Column: 1
def _gather_test_cases():
cases = []
for layer_type, inp_shape, fuzz_dims, arg_dict, filter_fn in _LAYERS_TO_TEST:
arg_combinations = [[(k, i) for i in v] for k, v in arg_dict.items()] # pylint: disable=g-complex-comprehension
for arguments in itertools.product(*arg_combinations):
layer_kwargs = {k: v for k, v in arguments}
if filter_fn is not None and not filter_fn(**layer_kwargs):
Reported by Pylint.
Line: 99
Column: 1
def _gather_test_cases():
cases = []
for layer_type, inp_shape, fuzz_dims, arg_dict, filter_fn in _LAYERS_TO_TEST:
arg_combinations = [[(k, i) for i in v] for k, v in arg_dict.items()] # pylint: disable=g-complex-comprehension
for arguments in itertools.product(*arg_combinations):
layer_kwargs = {k: v for k, v in arguments}
if filter_fn is not None and not filter_fn(**layer_kwargs):
continue
Reported by Pylint.
Line: 100
Column: 1
def _gather_test_cases():
cases = []
for layer_type, inp_shape, fuzz_dims, arg_dict, filter_fn in _LAYERS_TO_TEST:
arg_combinations = [[(k, i) for i in v] for k, v in arg_dict.items()] # pylint: disable=g-complex-comprehension
for arguments in itertools.product(*arg_combinations):
layer_kwargs = {k: v for k, v in arguments}
if filter_fn is not None and not filter_fn(**layer_kwargs):
continue
Reported by Pylint.
keras/layers/kernelized.py
76 issues
Line: 15
Column: 1
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-classes-have-attributes
"""Keras layers that implement explicit (approximate) kernel feature maps."""
import tensorflow.compat.v2 as tf
import numpy as np
Reported by Pylint.
Line: 18
Column: 1
# pylint: disable=g-classes-have-attributes
"""Keras layers that implement explicit (approximate) kernel feature maps."""
import tensorflow.compat.v2 as tf
import numpy as np
from keras import initializers
from keras.engine import base_layer
from keras.engine import input_spec
Reported by Pylint.
Line: 24
Column: 1
from keras import initializers
from keras.engine import base_layer
from keras.engine import input_spec
from tensorflow.python.util.tf_export import keras_export
_SUPPORTED_RBF_KERNEL_TYPES = ['gaussian', 'laplacian']
@keras_export('keras.layers.experimental.RandomFourierFeatures')
Reported by Pylint.
Line: 166
Column: 3
def build(self, input_shape):
input_shape = tf.TensorShape(input_shape)
# TODO(pmol): Allow higher dimension inputs. Currently the input is expected
# to have shape [batch_size, dimension].
if input_shape.rank != 2:
raise ValueError(
'The rank of the input tensor should be 2. '
f'Received input with rank {input_shape.ndims} instead. '
Reported by Pylint.
Line: 184
Column: 5
kernel_initializer = _get_random_features_initializer(
self.kernel_initializer, shape=(input_dim, self.output_dim))
self.unscaled_kernel = self.add_weight(
name='unscaled_kernel',
shape=(input_dim, self.output_dim),
dtype=tf.float32,
initializer=kernel_initializer,
trainable=False)
Reported by Pylint.
Line: 191
Column: 5
initializer=kernel_initializer,
trainable=False)
self.bias = self.add_weight(
name='bias',
shape=(self.output_dim,),
dtype=tf.float32,
initializer=tf.compat.v1.random_uniform_initializer(
minval=0.0, maxval=2 * np.pi, dtype=tf.float32),
Reported by Pylint.
Line: 201
Column: 5
if self.scale is None:
self.scale = _get_default_scale(self.kernel_initializer, input_dim)
self.kernel_scale = self.add_weight(
name='kernel_scale',
shape=(1,),
dtype=tf.float32,
initializer=tf.compat.v1.constant_initializer(self.scale),
trainable=True,
Reported by Pylint.
Line: 210
Column: 3
constraint='NonNeg')
super(RandomFourierFeatures, self).build(input_shape)
def call(self, inputs):
inputs = tf.convert_to_tensor(inputs, dtype=self.dtype)
inputs = tf.cast(inputs, tf.float32)
kernel = (1.0 / self.kernel_scale) * self.unscaled_kernel
outputs = tf.raw_ops.MatMul(a=inputs, b=kernel)
outputs = tf.nn.bias_add(outputs, self.bias)
Reported by Pylint.
Line: 31
Column: 1
@keras_export('keras.layers.experimental.RandomFourierFeatures')
class RandomFourierFeatures(base_layer.Layer):
r"""Layer that projects its inputs into a random feature space.
This layer implements a mapping from input space to a space with `output_dim`
dimensions, which approximates shift-invariant kernels. A kernel function
`K(x, y)` is shift-invariant if `K(x, y) == k(x - y)` for some function `k`.
Many popular Radial Basis Functions (RBF), including Gaussian and
Reported by Pylint.
Line: 140
Column: 3
name: String, name to use for this layer.
"""
def __init__(self,
output_dim,
kernel_initializer='gaussian',
scale=None,
trainable=False,
name=None,
Reported by Pylint.
keras/layers/preprocessing/preprocessing_test_utils.py
76 issues
Line: 19
Column: 1
import collections
import numpy as np
import tensorflow.compat.v2 as tf
class PreprocessingLayerTest(tf.test.TestCase):
"""Base test class for preprocessing layer API validation."""
# TODO(b/137303934): Consider incorporating something like this Close vs All
Reported by Pylint.
Line: 24
Column: 3
class PreprocessingLayerTest(tf.test.TestCase):
"""Base test class for preprocessing layer API validation."""
# TODO(b/137303934): Consider incorporating something like this Close vs All
# behavior into core tf.test.TestCase.
def assertAllCloseOrEqual(self, a, b, msg=None):
"""Asserts that elements are close (if numeric) or equal (if string)."""
if a is None or b is None:
Reported by Pylint.
Line: 23
Column: 1
class PreprocessingLayerTest(tf.test.TestCase):
"""Base test class for preprocessing layer API validation."""
# TODO(b/137303934): Consider incorporating something like this Close vs All
# behavior into core tf.test.TestCase.
def assertAllCloseOrEqual(self, a, b, msg=None):
"""Asserts that elements are close (if numeric) or equal (if string)."""
Reported by Pylint.
Line: 27
Column: 3
# TODO(b/137303934): Consider incorporating something like this Close vs All
# behavior into core tf.test.TestCase.
def assertAllCloseOrEqual(self, a, b, msg=None):
"""Asserts that elements are close (if numeric) or equal (if string)."""
if a is None or b is None:
self.assertAllEqual(a, b, msg=msg)
elif isinstance(a, (list, tuple)):
self.assertEqual(len(a), len(b))
Reported by Pylint.
Line: 27
Column: 1
# TODO(b/137303934): Consider incorporating something like this Close vs All
# behavior into core tf.test.TestCase.
def assertAllCloseOrEqual(self, a, b, msg=None):
"""Asserts that elements are close (if numeric) or equal (if string)."""
if a is None or b is None:
self.assertAllEqual(a, b, msg=msg)
elif isinstance(a, (list, tuple)):
self.assertEqual(len(a), len(b))
Reported by Pylint.
Line: 27
Column: 3
# TODO(b/137303934): Consider incorporating something like this Close vs All
# behavior into core tf.test.TestCase.
def assertAllCloseOrEqual(self, a, b, msg=None):
"""Asserts that elements are close (if numeric) or equal (if string)."""
if a is None or b is None:
self.assertAllEqual(a, b, msg=msg)
elif isinstance(a, (list, tuple)):
self.assertEqual(len(a), len(b))
Reported by Pylint.
Line: 27
Column: 3
# TODO(b/137303934): Consider incorporating something like this Close vs All
# behavior into core tf.test.TestCase.
def assertAllCloseOrEqual(self, a, b, msg=None):
"""Asserts that elements are close (if numeric) or equal (if string)."""
if a is None or b is None:
self.assertAllEqual(a, b, msg=msg)
elif isinstance(a, (list, tuple)):
self.assertEqual(len(a), len(b))
Reported by Pylint.
Line: 28
Column: 1
# behavior into core tf.test.TestCase.
def assertAllCloseOrEqual(self, a, b, msg=None):
"""Asserts that elements are close (if numeric) or equal (if string)."""
if a is None or b is None:
self.assertAllEqual(a, b, msg=msg)
elif isinstance(a, (list, tuple)):
self.assertEqual(len(a), len(b))
for a_value, b_value in zip(a, b):
Reported by Pylint.
Line: 29
Column: 1
def assertAllCloseOrEqual(self, a, b, msg=None):
"""Asserts that elements are close (if numeric) or equal (if string)."""
if a is None or b is None:
self.assertAllEqual(a, b, msg=msg)
elif isinstance(a, (list, tuple)):
self.assertEqual(len(a), len(b))
for a_value, b_value in zip(a, b):
self.assertAllCloseOrEqual(a_value, b_value, msg=msg)
Reported by Pylint.
Line: 30
Column: 1
def assertAllCloseOrEqual(self, a, b, msg=None):
"""Asserts that elements are close (if numeric) or equal (if string)."""
if a is None or b is None:
self.assertAllEqual(a, b, msg=msg)
elif isinstance(a, (list, tuple)):
self.assertEqual(len(a), len(b))
for a_value, b_value in zip(a, b):
self.assertAllCloseOrEqual(a_value, b_value, msg=msg)
elif isinstance(a, collections.abc.Mapping):
Reported by Pylint.
keras/layers/advanced_activations_test.py
76 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for advanced activation layers."""
import tensorflow.compat.v2 as tf
import numpy as np
import keras
from keras import keras_parameterized
Reported by Pylint.
Line: 27
Column: 1
@keras_parameterized.run_all_keras_modes
class AdvancedActivationsTest(keras_parameterized.TestCase):
def test_leaky_relu(self):
for alpha in [0., .5]:
testing_utils.layer_test(keras.layers.LeakyReLU,
kwargs={'alpha': alpha},
Reported by Pylint.
Line: 29
Column: 1
@keras_parameterized.run_all_keras_modes
class AdvancedActivationsTest(keras_parameterized.TestCase):
def test_leaky_relu(self):
for alpha in [0., .5]:
testing_utils.layer_test(keras.layers.LeakyReLU,
kwargs={'alpha': alpha},
input_shape=(2, 3, 4),
supports_masking=True)
Reported by Pylint.
Line: 29
Column: 3
@keras_parameterized.run_all_keras_modes
class AdvancedActivationsTest(keras_parameterized.TestCase):
def test_leaky_relu(self):
for alpha in [0., .5]:
testing_utils.layer_test(keras.layers.LeakyReLU,
kwargs={'alpha': alpha},
input_shape=(2, 3, 4),
supports_masking=True)
Reported by Pylint.
Line: 29
Column: 3
@keras_parameterized.run_all_keras_modes
class AdvancedActivationsTest(keras_parameterized.TestCase):
def test_leaky_relu(self):
for alpha in [0., .5]:
testing_utils.layer_test(keras.layers.LeakyReLU,
kwargs={'alpha': alpha},
input_shape=(2, 3, 4),
supports_masking=True)
Reported by Pylint.
Line: 30
Column: 1
class AdvancedActivationsTest(keras_parameterized.TestCase):
def test_leaky_relu(self):
for alpha in [0., .5]:
testing_utils.layer_test(keras.layers.LeakyReLU,
kwargs={'alpha': alpha},
input_shape=(2, 3, 4),
supports_masking=True)
Reported by Pylint.
Line: 31
Column: 1
def test_leaky_relu(self):
for alpha in [0., .5]:
testing_utils.layer_test(keras.layers.LeakyReLU,
kwargs={'alpha': alpha},
input_shape=(2, 3, 4),
supports_masking=True)
def test_prelu(self):
Reported by Pylint.
Line: 36
Column: 3
input_shape=(2, 3, 4),
supports_masking=True)
def test_prelu(self):
testing_utils.layer_test(keras.layers.PReLU, kwargs={},
input_shape=(2, 3, 4),
supports_masking=True)
def test_prelu_share(self):
Reported by Pylint.
Line: 36
Column: 3
input_shape=(2, 3, 4),
supports_masking=True)
def test_prelu(self):
testing_utils.layer_test(keras.layers.PReLU, kwargs={},
input_shape=(2, 3, 4),
supports_masking=True)
def test_prelu_share(self):
Reported by Pylint.
Line: 36
Column: 1
input_shape=(2, 3, 4),
supports_masking=True)
def test_prelu(self):
testing_utils.layer_test(keras.layers.PReLU, kwargs={},
input_shape=(2, 3, 4),
supports_masking=True)
def test_prelu_share(self):
Reported by Pylint.
keras/layers/preprocessing/index_lookup_distribution_test.py
75 issues
Line: 17
Column: 1
# ==============================================================================
"""Distribution tests for keras.layers.preprocessing.index_lookup."""
import tensorflow.compat.v2 as tf
import os
import numpy as np
import keras
Reported by Pylint.
Line: 49
Column: 3
return vocab_path
def test_strategy(self, strategy):
# TODO(b/180614455): remove this check when MLIR bridge is always enabled.
if backend.is_tpu_strategy(strategy):
self.skipTest("This test needs MLIR bridge on TPU.")
vocab_data = [[
"earth", "earth", "earth", "earth", "wind", "wind", "wind", "and",
Reported by Pylint.
Line: 82
Column: 3
self.assertAllEqual(expected_output, output_dataset)
def test_strategy_with_file(self, strategy):
# TODO(b/180614455): remove this check when MLIR bridge is always enabled.
if backend.is_tpu_strategy(strategy):
self.skipTest("This test needs MLIR bridge on TPU.")
vocab_data = ["earth", "wind", "and", "fire"]
vocab_file = self._write_to_temp_file("temp", vocab_data)
Reported by Pylint.
Line: 113
Column: 3
self.assertAllEqual(expected_output, output_dataset)
def test_tpu_with_multiple_oov(self, strategy):
# TODO(b/180614455): remove this check when MLIR bridge is always enabled.
if backend.is_tpu_strategy(strategy):
self.skipTest("This test needs MLIR bridge on TPU.")
vocab_data = [[
"earth", "earth", "earth", "earth", "wind", "wind", "wind", "and",
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import os
import numpy as np
import keras
from keras import backend
from keras import keras_parameterized
Reported by Pylint.
Line: 35
Column: 1
strategy=strategy_combinations.all_strategies +
strategy_combinations.multi_worker_mirrored_strategies,
mode=["eager"])) # Eager-only, no graph: b/158793009
class IndexLookupDistributionTest(
keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest):
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
Reported by Pylint.
Line: 39
Column: 1
keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest):
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
with tf.io.gfile.GFile(vocab_path, "w") as writer:
for vocab in vocab_list:
writer.write(vocab + "\n")
writer.flush()
Reported by Pylint.
Line: 40
Column: 1
preprocessing_test_utils.PreprocessingLayerTest):
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
with tf.io.gfile.GFile(vocab_path, "w") as writer:
for vocab in vocab_list:
writer.write(vocab + "\n")
writer.flush()
writer.close()
Reported by Pylint.
Line: 41
Column: 1
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
with tf.io.gfile.GFile(vocab_path, "w") as writer:
for vocab in vocab_list:
writer.write(vocab + "\n")
writer.flush()
writer.close()
return vocab_path
Reported by Pylint.
Line: 42
Column: 1
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
with tf.io.gfile.GFile(vocab_path, "w") as writer:
for vocab in vocab_list:
writer.write(vocab + "\n")
writer.flush()
writer.close()
return vocab_path
Reported by Pylint.
keras/legacy_tf_layers/pooling.py
75 issues
Line: 15
Column: 1
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
# pylint: disable=g-classes-have-attributes
"""Contains the pooling layer classes and their functional aliases."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
Reported by Pylint.
Line: 25
Column: 1
from keras import layers as keras_layers
from keras.legacy_tf_layers import base
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
@keras_export(v1=['keras.__internal__.legacy.layers.AveragePooling1D'])
@tf_export(v1=['layers.AveragePooling1D'])
Reported by Pylint.
Line: 26
Column: 1
from keras import layers as keras_layers
from keras.legacy_tf_layers import base
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
@keras_export(v1=['keras.__internal__.legacy.layers.AveragePooling1D'])
@tf_export(v1=['layers.AveragePooling1D'])
class AveragePooling1D(keras_layers.AveragePooling1D, base.Layer):
Reported by Pylint.
Line: 32
Column: 1
@keras_export(v1=['keras.__internal__.legacy.layers.AveragePooling1D'])
@tf_export(v1=['layers.AveragePooling1D'])
class AveragePooling1D(keras_layers.AveragePooling1D, base.Layer):
"""Average Pooling layer for 1D inputs.
Args:
pool_size: An integer or tuple/list of a single integer,
representing the size of the pooling window.
strides: An integer or tuple/list of a single integer, specifying the
Reported by Pylint.
Line: 76
Column: 3
@end_compatibility
"""
def __init__(self, pool_size, strides,
padding='valid', data_format='channels_last',
name=None, **kwargs):
if strides is None:
raise ValueError('Argument `strides` must not be None.')
super(AveragePooling1D, self).__init__(
Reported by Pylint.
Line: 76
Column: 1
@end_compatibility
"""
def __init__(self, pool_size, strides,
padding='valid', data_format='channels_last',
name=None, **kwargs):
if strides is None:
raise ValueError('Argument `strides` must not be None.')
super(AveragePooling1D, self).__init__(
Reported by Pylint.
Line: 79
Column: 1
def __init__(self, pool_size, strides,
padding='valid', data_format='channels_last',
name=None, **kwargs):
if strides is None:
raise ValueError('Argument `strides` must not be None.')
super(AveragePooling1D, self).__init__(
pool_size=pool_size,
strides=strides,
padding=padding,
Reported by Pylint.
Line: 80
Column: 1
padding='valid', data_format='channels_last',
name=None, **kwargs):
if strides is None:
raise ValueError('Argument `strides` must not be None.')
super(AveragePooling1D, self).__init__(
pool_size=pool_size,
strides=strides,
padding=padding,
data_format=data_format,
Reported by Pylint.
Line: 81
Column: 5
name=None, **kwargs):
if strides is None:
raise ValueError('Argument `strides` must not be None.')
super(AveragePooling1D, self).__init__(
pool_size=pool_size,
strides=strides,
padding=padding,
data_format=data_format,
name=name,
Reported by Pylint.
Line: 81
Column: 1
name=None, **kwargs):
if strides is None:
raise ValueError('Argument `strides` must not be None.')
super(AveragePooling1D, self).__init__(
pool_size=pool_size,
strides=strides,
padding=padding,
data_format=data_format,
name=name,
Reported by Pylint.
keras/mixed_precision/layer_correctness_test.py
75 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests various Layer subclasses have correct outputs with mixed precision."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from keras import keras_parameterized
from keras import layers
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from keras import keras_parameterized
from keras import layers
from keras import models
from keras.layers import advanced_activations
Reported by Pylint.
Line: 251
Column: 36
atol=atol)
# Run fit() on models
output = np.random.normal(size=f32_model.outputs[0].shape).astype('float16')
for model in f32_model, mp_model, distributed_mp_model:
model.fit(input_data, output, batch_size=global_batch_size)
# Assert all models have close weights
f32_weights = f32_model.get_weights()
Reported by Pylint.
Line: 204
Column: 31
f32_layer = f32_layer_fn()
# Create the layers
assert f32_layer.dtype == f32_layer._compute_dtype == 'float32'
config = f32_layer.get_config()
config['dtype'] = policy.Policy('mixed_float16')
mp_layer = f32_layer.__class__.from_config(config)
distributed_mp_layer = f32_layer.__class__.from_config(config)
Reported by Pylint.
Line: 44
Column: 1
from keras.mixed_precision import policy
def create_mirrored_strategy():
# The test creates two virtual CPUs, and we use both of them to test with
# multiple devices.
return tf.distribute.MirroredStrategy(['cpu:0', 'cpu:1'])
Reported by Pylint.
Line: 47
Column: 1
def create_mirrored_strategy():
# The test creates two virtual CPUs, and we use both of them to test with
# multiple devices.
return tf.distribute.MirroredStrategy(['cpu:0', 'cpu:1'])
def _create_normalization_layer_with_adapt():
layer = normalization.Normalization()
layer.adapt(np.random.normal(size=(10, 4)))
Reported by Pylint.
Line: 51
Column: 1
def _create_normalization_layer_with_adapt():
layer = normalization.Normalization()
layer.adapt(np.random.normal(size=(10, 4)))
return layer
def _create_normalization_layer_without_adapt():
Reported by Pylint.
Line: 52
Column: 1
def _create_normalization_layer_with_adapt():
layer = normalization.Normalization()
layer.adapt(np.random.normal(size=(10, 4)))
return layer
def _create_normalization_layer_without_adapt():
return normalization.Normalization(
Reported by Pylint.
Line: 53
Column: 1
def _create_normalization_layer_with_adapt():
layer = normalization.Normalization()
layer.adapt(np.random.normal(size=(10, 4)))
return layer
def _create_normalization_layer_without_adapt():
return normalization.Normalization(
mean=np.random.normal(size=(4,)),
Reported by Pylint.
Line: 57
Column: 1
def _create_normalization_layer_without_adapt():
return normalization.Normalization(
mean=np.random.normal(size=(4,)),
variance=np.random.uniform(0.5, 2., size=(4,))
)
Reported by Pylint.