The following issues were found
keras/applications/vgg16.py
65 issues
Line: 23
Column: 1
(https://arxiv.org/abs/1409.1556) (ICLR 2015)
"""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.applications import imagenet_utils
from keras.engine import training
from keras.layers import VersionAwareLayers
Reported by Pylint.
Line: 31
Column: 1
from keras.layers import VersionAwareLayers
from keras.utils import data_utils
from keras.utils import layer_utils
from tensorflow.python.util.tf_export import keras_export
WEIGHTS_PATH = ('https://storage.googleapis.com/tensorflow/keras-applications/'
'vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5')
WEIGHTS_PATH_NO_TOP = ('https://storage.googleapis.com/tensorflow/'
Reported by Pylint.
Line: 44
Column: 1
@keras_export('keras.applications.vgg16.VGG16', 'keras.applications.VGG16')
def VGG16(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
Reported by Pylint.
Line: 44
Column: 1
@keras_export('keras.applications.vgg16.VGG16', 'keras.applications.VGG16')
def VGG16(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
Reported by Pylint.
Line: 44
Column: 1
@keras_export('keras.applications.vgg16.VGG16', 'keras.applications.VGG16')
def VGG16(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
Reported by Pylint.
Line: 52
Column: 1
pooling=None,
classes=1000,
classifier_activation='softmax'):
"""Instantiates the VGG16 model.
Reference:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
https://arxiv.org/abs/1409.1556) (ICLR 2015)
Reported by Pylint.
Line: 115
Column: 1
Returns:
A `keras.Model` instance.
"""
if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
raise ValueError(
'The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded. Received: '
Reported by Pylint.
Line: 116
Column: 1
A `keras.Model` instance.
"""
if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
raise ValueError(
'The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded. Received: '
f'weights={weights}')
Reported by Pylint.
Line: 123
Column: 1
'or the path to the weights file to be loaded. Received: '
f'weights={weights}')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top` '
'as true, `classes` should be 1000. '
f'Received `classes={classes}`')
# Determine proper input shape
input_shape = imagenet_utils.obtain_input_shape(
Reported by Pylint.
Line: 124
Column: 1
f'weights={weights}')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top` '
'as true, `classes` should be 1000. '
f'Received `classes={classes}`')
# Determine proper input shape
input_shape = imagenet_utils.obtain_input_shape(
input_shape,
Reported by Pylint.
keras/preprocessing/image_dataset.py
65 issues
Line: 17
Column: 1
# ==============================================================================
"""Keras image dataset loading utilities."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import numpy as np
from keras.layers.preprocessing import image_preprocessing
from keras.preprocessing import dataset_utils
Reported by Pylint.
Line: 18
Column: 1
"""Keras image dataset loading utilities."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import numpy as np
from keras.layers.preprocessing import image_preprocessing
from keras.preprocessing import dataset_utils
from keras.preprocessing import image as keras_image_ops
Reported by Pylint.
Line: 24
Column: 1
from keras.layers.preprocessing import image_preprocessing
from keras.preprocessing import dataset_utils
from keras.preprocessing import image as keras_image_ops
from tensorflow.python.util.tf_export import keras_export
ALLOWLIST_FORMATS = ('.bmp', '.gif', '.jpeg', '.jpg', '.png')
Reported by Pylint.
Line: 239
Column: 3
interpolation,
crop_to_aspect_ratio=False):
"""Constructs a dataset of images and labels."""
# TODO(fchollet): consider making num_parallel_calls settable
path_ds = tf.data.Dataset.from_tensor_slices(image_paths)
args = (image_size, num_channels, interpolation, crop_to_aspect_ratio)
img_ds = path_ds.map(
lambda x: load_image(x, *args))
if label_mode:
Reported by Pylint.
Line: 33
Column: 1
@keras_export('keras.utils.image_dataset_from_directory',
'keras.preprocessing.image_dataset_from_directory',
v1=[])
def image_dataset_from_directory(directory,
labels='inferred',
label_mode='int',
class_names=None,
color_mode='rgb',
batch_size=32,
Reported by Pylint.
Line: 33
Column: 1
@keras_export('keras.utils.image_dataset_from_directory',
'keras.preprocessing.image_dataset_from_directory',
v1=[])
def image_dataset_from_directory(directory,
labels='inferred',
label_mode='int',
class_names=None,
color_mode='rgb',
batch_size=32,
Reported by Pylint.
Line: 33
Column: 1
@keras_export('keras.utils.image_dataset_from_directory',
'keras.preprocessing.image_dataset_from_directory',
v1=[])
def image_dataset_from_directory(directory,
labels='inferred',
label_mode='int',
class_names=None,
color_mode='rgb',
batch_size=32,
Reported by Pylint.
Line: 48
Column: 1
follow_links=False,
crop_to_aspect_ratio=False,
**kwargs):
"""Generates a `tf.data.Dataset` from image files in a directory.
If your directory structure is:
```
main_directory/
Reported by Pylint.
Line: 150
Column: 1
- if `color_mode` is `rgba`,
there are 4 channel in the image tensors.
"""
if 'smart_resize' in kwargs:
crop_to_aspect_ratio = kwargs.pop('smart_resize')
if kwargs:
raise TypeError(f'Unknown keywords argument(s): {tuple(kwargs.keys())}')
if labels not in ('inferred', None):
if not isinstance(labels, (list, tuple)):
Reported by Pylint.
Line: 151
Column: 1
there are 4 channel in the image tensors.
"""
if 'smart_resize' in kwargs:
crop_to_aspect_ratio = kwargs.pop('smart_resize')
if kwargs:
raise TypeError(f'Unknown keywords argument(s): {tuple(kwargs.keys())}')
if labels not in ('inferred', None):
if not isinstance(labels, (list, tuple)):
raise ValueError(
Reported by Pylint.
keras/engine/partial_batch_padding_handler.py
64 issues
Line: 17
Column: 1
# ==============================================================================
"""Utility object to handler partial batches for TPUStrategy."""
import tensorflow.compat.v2 as tf
# pylint: disable=protected-access
import numpy as np
from keras import backend
Reported by Pylint.
Line: 25
Column: 1
class PartialBatchPaddingHandler:
"""A container that holds info about partial batches for `predict()`."""
def __init__(self, output_shape):
self.padded_batch_size = 0
self.padding_mask = tf.zeros(0)
self.output_shape = output_shape
Reported by Pylint.
Line: 27
Column: 1
class PartialBatchPaddingHandler:
"""A container that holds info about partial batches for `predict()`."""
def __init__(self, output_shape):
self.padded_batch_size = 0
self.padding_mask = tf.zeros(0)
self.output_shape = output_shape
def get_real_batch_size(self, dataset_batch):
Reported by Pylint.
Line: 28
Column: 1
"""A container that holds info about partial batches for `predict()`."""
def __init__(self, output_shape):
self.padded_batch_size = 0
self.padding_mask = tf.zeros(0)
self.output_shape = output_shape
def get_real_batch_size(self, dataset_batch):
"""Returns the number of elements in a potentially partial batch."""
Reported by Pylint.
Line: 29
Column: 1
def __init__(self, output_shape):
self.padded_batch_size = 0
self.padding_mask = tf.zeros(0)
self.output_shape = output_shape
def get_real_batch_size(self, dataset_batch):
"""Returns the number of elements in a potentially partial batch."""
if isinstance(dataset_batch, (tuple, list)):
Reported by Pylint.
Line: 30
Column: 1
def __init__(self, output_shape):
self.padded_batch_size = 0
self.padding_mask = tf.zeros(0)
self.output_shape = output_shape
def get_real_batch_size(self, dataset_batch):
"""Returns the number of elements in a potentially partial batch."""
if isinstance(dataset_batch, (tuple, list)):
dataset_batch = dataset_batch[0]
Reported by Pylint.
Line: 32
Column: 3
self.padding_mask = tf.zeros(0)
self.output_shape = output_shape
def get_real_batch_size(self, dataset_batch):
"""Returns the number of elements in a potentially partial batch."""
if isinstance(dataset_batch, (tuple, list)):
dataset_batch = dataset_batch[0]
assert tf.nest.flatten(dataset_batch)
Reported by Pylint.
Line: 32
Column: 1
self.padding_mask = tf.zeros(0)
self.output_shape = output_shape
def get_real_batch_size(self, dataset_batch):
"""Returns the number of elements in a potentially partial batch."""
if isinstance(dataset_batch, (tuple, list)):
dataset_batch = dataset_batch[0]
assert tf.nest.flatten(dataset_batch)
Reported by Pylint.
Line: 33
Column: 1
self.output_shape = output_shape
def get_real_batch_size(self, dataset_batch):
"""Returns the number of elements in a potentially partial batch."""
if isinstance(dataset_batch, (tuple, list)):
dataset_batch = dataset_batch[0]
assert tf.nest.flatten(dataset_batch)
Reported by Pylint.
Line: 34
Column: 1
def get_real_batch_size(self, dataset_batch):
"""Returns the number of elements in a potentially partial batch."""
if isinstance(dataset_batch, (tuple, list)):
dataset_batch = dataset_batch[0]
assert tf.nest.flatten(dataset_batch)
def _find_any_tensor(batch_features):
Reported by Pylint.
keras/optimizer_v2/adamax.py
64 issues
Line: 17
Column: 1
# ==============================================================================
"""Adamax optimizer implementation."""
import tensorflow.compat.v2 as tf
from keras import backend_config
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 18
Column: 1
"""Adamax optimizer implementation."""
import tensorflow.compat.v2 as tf
from keras import backend_config
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.optimizers.Adamax')
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from keras import backend_config
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.optimizers.Adamax')
class Adamax(optimizer_v2.OptimizerV2):
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
from keras import backend_config
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.optimizers.Adamax')
class Adamax(optimizer_v2.OptimizerV2):
"""Optimizer that implements the Adamax algorithm.
Reported by Pylint.
Line: 24
Column: 1
@keras_export('keras.optimizers.Adamax')
class Adamax(optimizer_v2.OptimizerV2):
"""Optimizer that implements the Adamax algorithm.
It is a variant of Adam based on the infinity norm.
Default parameters follow those provided in the paper.
Adamax is sometimes superior to adam, specially in models with embeddings.
Reported by Pylint.
Line: 25
Column: 1
@keras_export('keras.optimizers.Adamax')
class Adamax(optimizer_v2.OptimizerV2):
"""Optimizer that implements the Adamax algorithm.
It is a variant of Adam based on the infinity norm.
Default parameters follow those provided in the paper.
Adamax is sometimes superior to adam, specially in models with embeddings.
Reported by Pylint.
Line: 81
Column: 1
- [Kingma et al., 2014](http://arxiv.org/abs/1412.6980)
"""
_HAS_AGGREGATE_GRAD = True
def __init__(self,
learning_rate=0.001,
beta_1=0.9,
beta_2=0.999,
Reported by Pylint.
Line: 83
Column: 3
_HAS_AGGREGATE_GRAD = True
def __init__(self,
learning_rate=0.001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-7,
name='Adamax',
Reported by Pylint.
Line: 83
Column: 1
_HAS_AGGREGATE_GRAD = True
def __init__(self,
learning_rate=0.001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-7,
name='Adamax',
Reported by Pylint.
Line: 90
Column: 5
epsilon=1e-7,
name='Adamax',
**kwargs):
super(Adamax, self).__init__(name, **kwargs)
self._set_hyper('learning_rate', kwargs.get('lr', learning_rate))
self._set_hyper('decay', self._initial_decay)
self._set_hyper('beta_1', beta_1)
self._set_hyper('beta_2', beta_2)
self.epsilon = epsilon or backend_config.epsilon()
Reported by Pylint.
keras/benchmarks/distribution_util.py
64 issues
Line: 21
Column: 1
https://github.com/tensorflow/models/blob/master/official/utils/misc/distribution_utils.py.
"""
import tensorflow as tf
import json
import os
Reported by Pylint.
Line: 23
Column: 1
import tensorflow as tf
import json
import os
def _collective_communication(all_reduce_alg):
"""Return a CollectiveCommunication based on all_reduce_alg.
Reported by Pylint.
Line: 24
Column: 1
import tensorflow as tf
import json
import os
def _collective_communication(all_reduce_alg):
"""Return a CollectiveCommunication based on all_reduce_alg.
Reported by Pylint.
Line: 28
Column: 1
def _collective_communication(all_reduce_alg):
"""Return a CollectiveCommunication based on all_reduce_alg.
Args:
all_reduce_alg: a string specifying which collective communication to pick,
or None.
Reported by Pylint.
Line: 40
Column: 1
Raises:
ValueError: if `all_reduce_alg` not in [None, "ring", "nccl"]
"""
collective_communication_options = {
None: tf.distribute.experimental.CollectiveCommunication.AUTO,
"ring": tf.distribute.experimental.CollectiveCommunication.RING,
"nccl": tf.distribute.experimental.CollectiveCommunication.NCCL
}
if all_reduce_alg not in collective_communication_options:
Reported by Pylint.
Line: 45
Column: 1
"ring": tf.distribute.experimental.CollectiveCommunication.RING,
"nccl": tf.distribute.experimental.CollectiveCommunication.NCCL
}
if all_reduce_alg not in collective_communication_options:
raise ValueError(
"When used with `multi_worker_mirrored`, valid values for "
"all_reduce_alg are [`ring`, `nccl`]. Supplied value: {}".format(
all_reduce_alg))
return collective_communication_options[all_reduce_alg]
Reported by Pylint.
Line: 46
Column: 1
"nccl": tf.distribute.experimental.CollectiveCommunication.NCCL
}
if all_reduce_alg not in collective_communication_options:
raise ValueError(
"When used with `multi_worker_mirrored`, valid values for "
"all_reduce_alg are [`ring`, `nccl`]. Supplied value: {}".format(
all_reduce_alg))
return collective_communication_options[all_reduce_alg]
Reported by Pylint.
Line: 50
Column: 1
"When used with `multi_worker_mirrored`, valid values for "
"all_reduce_alg are [`ring`, `nccl`]. Supplied value: {}".format(
all_reduce_alg))
return collective_communication_options[all_reduce_alg]
def _mirrored_cross_device_ops(all_reduce_alg, num_packs):
"""Return a CrossDeviceOps based on all_reduce_alg and num_packs.
Reported by Pylint.
Line: 54
Column: 1
def _mirrored_cross_device_ops(all_reduce_alg, num_packs):
"""Return a CrossDeviceOps based on all_reduce_alg and num_packs.
Args:
all_reduce_alg: a string specifying which cross device op to pick, or None.
num_packs: an integer specifying number of packs for the cross device op.
Reported by Pylint.
Line: 66
Column: 1
Raises:
ValueError: if `all_reduce_alg` not in [None, "nccl", "hierarchical_copy"].
"""
if all_reduce_alg is None:
return None
mirrored_all_reduce_options = {
"nccl": tf.distribute.NcclAllReduce,
"hierarchical_copy": tf.distribute.HierarchicalCopyAllReduce
}
Reported by Pylint.
keras/distribute/keras_optimizer_v2_test.py
64 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests that show that DistributionStrategy works with optimizer v2."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
from keras.optimizer_v2 import adam
from keras.optimizer_v2 import gradient_descent
Reported by Pylint.
Line: 27
Column: 1
from keras.optimizer_v2 import gradient_descent
def get_model():
x = keras.layers.Input(shape=(3,), name='input')
y = keras.layers.Dense(4, name='dense')(x)
model = keras.Model(x, y)
return model
Reported by Pylint.
Line: 28
Column: 1
def get_model():
x = keras.layers.Input(shape=(3,), name='input')
y = keras.layers.Dense(4, name='dense')(x)
model = keras.Model(x, y)
return model
Reported by Pylint.
Line: 28
Column: 3
def get_model():
x = keras.layers.Input(shape=(3,), name='input')
y = keras.layers.Dense(4, name='dense')(x)
model = keras.Model(x, y)
return model
Reported by Pylint.
Line: 29
Column: 1
def get_model():
x = keras.layers.Input(shape=(3,), name='input')
y = keras.layers.Dense(4, name='dense')(x)
model = keras.Model(x, y)
return model
class MirroredStrategyOptimizerV2Test(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
Line: 29
Column: 3
def get_model():
x = keras.layers.Input(shape=(3,), name='input')
y = keras.layers.Dense(4, name='dense')(x)
model = keras.Model(x, y)
return model
class MirroredStrategyOptimizerV2Test(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
Line: 30
Column: 1
def get_model():
x = keras.layers.Input(shape=(3,), name='input')
y = keras.layers.Dense(4, name='dense')(x)
model = keras.Model(x, y)
return model
class MirroredStrategyOptimizerV2Test(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
Line: 31
Column: 1
x = keras.layers.Input(shape=(3,), name='input')
y = keras.layers.Dense(4, name='dense')(x)
model = keras.Model(x, y)
return model
class MirroredStrategyOptimizerV2Test(tf.test.TestCase, parameterized.TestCase):
@tf.__internal__.distribute.combinations.generate(
Reported by Pylint.
Line: 34
Column: 1
return model
class MirroredStrategyOptimizerV2Test(tf.test.TestCase, parameterized.TestCase):
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
distribution=[
tf.__internal__.distribute.combinations.central_storage_strategy_with_two_gpus,
Reported by Pylint.
keras/distribute/keras_rnn_model_correctness_test.py
63 issues
Line: 17
Column: 1
# ==============================================================================
"""Correctness tests for tf.keras RNN models using DistributionStrategy."""
import tensorflow.compat.v2 as tf
import numpy as np
import keras
from keras import testing_utils
Reported by Pylint.
Line: 37
Column: 3
def _get_layer_class(self):
raise NotImplementedError
def get_model(self,
max_words=10,
initial_weights=None,
distribution=None,
input_shapes=None):
del input_shapes
Reported by Pylint.
Line: 69
Column: 1
@testing_utils.run_all_without_tensor_float_32(
'Uses Dense layers, which call matmul')
class DistributionStrategyGruModelCorrectnessTest(
_DistributionStrategyRnnModelCorrectnessTest):
def _get_layer_class(self):
if tf.__internal__.tf2.enabled():
if not tf.executing_eagerly():
Reported by Pylint.
Line: 69
Column: 1
@testing_utils.run_all_without_tensor_float_32(
'Uses Dense layers, which call matmul')
class DistributionStrategyGruModelCorrectnessTest(
_DistributionStrategyRnnModelCorrectnessTest):
def _get_layer_class(self):
if tf.__internal__.tf2.enabled():
if not tf.executing_eagerly():
Reported by Pylint.
Line: 90
Column: 1
@testing_utils.run_all_without_tensor_float_32(
'Uses Dense layers, which call matmul')
class DistributionStrategyLstmModelCorrectnessTest(
_DistributionStrategyRnnModelCorrectnessTest):
def _get_layer_class(self):
if tf.__internal__.tf2.enabled():
if not tf.executing_eagerly():
Reported by Pylint.
Line: 90
Column: 1
@testing_utils.run_all_without_tensor_float_32(
'Uses Dense layers, which call matmul')
class DistributionStrategyLstmModelCorrectnessTest(
_DistributionStrategyRnnModelCorrectnessTest):
def _get_layer_class(self):
if tf.__internal__.tf2.enabled():
if not tf.executing_eagerly():
Reported by Pylint.
Line: 34
Column: 1
keras_correctness_test_base
.TestDistributionStrategyEmbeddingModelCorrectnessBase):
def _get_layer_class(self):
raise NotImplementedError
def get_model(self,
max_words=10,
initial_weights=None,
Reported by Pylint.
Line: 35
Column: 1
.TestDistributionStrategyEmbeddingModelCorrectnessBase):
def _get_layer_class(self):
raise NotImplementedError
def get_model(self,
max_words=10,
initial_weights=None,
distribution=None,
Reported by Pylint.
Line: 37
Column: 1
def _get_layer_class(self):
raise NotImplementedError
def get_model(self,
max_words=10,
initial_weights=None,
distribution=None,
input_shapes=None):
del input_shapes
Reported by Pylint.
Line: 42
Column: 1
initial_weights=None,
distribution=None,
input_shapes=None):
del input_shapes
rnn_cls = self._get_layer_class()
with keras_correctness_test_base.MaybeDistributionScope(distribution):
word_ids = keras.layers.Input(
shape=(max_words,), dtype=np.int32, name='words')
Reported by Pylint.
keras/preprocessing/timeseries.py
63 issues
Line: 17
Column: 1
# ==============================================================================
"""Keras timeseries dataset utilities."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import numpy as np
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 18
Column: 1
"""Keras timeseries dataset utilities."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import numpy as np
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 21
Column: 1
# pylint: disable=g-classes-have-attributes
import numpy as np
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.utils.timeseries_dataset_from_array',
'keras.preprocessing.timeseries_dataset_from_array',
v1=[])
Reported by Pylint.
Line: 201
Column: 11
if shuffle:
if seed is None:
seed = np.random.randint(1e6)
rng = np.random.RandomState(seed)
rng.shuffle(start_positions)
sequence_length = tf.cast(sequence_length, dtype=index_dtype)
sampling_rate = tf.cast(sampling_rate, dtype=index_dtype)
Reported by Pylint.
Line: 212
Column: 1
# For each initial window position, generates indices of the window elements
indices = tf.data.Dataset.zip(
(tf.data.Dataset.range(len(start_positions)), positions_ds)).map(
lambda i, positions: tf.range( # pylint: disable=g-long-lambda
positions[i],
positions[i] + sequence_length * sampling_rate,
sampling_rate),
num_parallel_calls=tf.data.AUTOTUNE)
Reported by Pylint.
Line: 27
Column: 1
@keras_export('keras.utils.timeseries_dataset_from_array',
'keras.preprocessing.timeseries_dataset_from_array',
v1=[])
def timeseries_dataset_from_array(
data,
targets,
sequence_length,
sequence_stride=1,
sampling_rate=1,
Reported by Pylint.
Line: 27
Column: 1
@keras_export('keras.utils.timeseries_dataset_from_array',
'keras.preprocessing.timeseries_dataset_from_array',
v1=[])
def timeseries_dataset_from_array(
data,
targets,
sequence_length,
sequence_stride=1,
sampling_rate=1,
Reported by Pylint.
Line: 27
Column: 1
@keras_export('keras.utils.timeseries_dataset_from_array',
'keras.preprocessing.timeseries_dataset_from_array',
v1=[])
def timeseries_dataset_from_array(
data,
targets,
sequence_length,
sequence_stride=1,
sampling_rate=1,
Reported by Pylint.
Line: 38
Column: 1
seed=None,
start_index=None,
end_index=None):
"""Creates a dataset of sliding windows over a timeseries provided as array.
This function takes in a sequence of data-points gathered at
equal intervals, along with time series parameters such as
length of the sequences/windows, spacing between two sequence/windows, etc.,
to produce batches of timeseries inputs and targets.
Reported by Pylint.
Line: 145
Column: 1
break
```
"""
if start_index:
if start_index < 0:
raise ValueError(f'`start_index` must be 0 or greater. Received: '
f'start_index={start_index}')
if start_index >= len(data):
raise ValueError(f'`start_index` must be lower than the length of the '
Reported by Pylint.
keras/layers/preprocessing/benchmarks/discretization_adapt_benchmark.py
63 issues
Line: 17
Column: 1
# ==============================================================================
"""Benchmark for Keras discretization preprocessing layer's adapt method."""
import tensorflow as tf
import time
import numpy as np
Reported by Pylint.
Line: 23
Column: 1
import numpy as np
import keras
from keras.layers.preprocessing import discretization
EPSILON = 0.1
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 24
Column: 1
import numpy as np
import keras
from keras.layers.preprocessing import discretization
EPSILON = 0.1
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 19
Column: 1
import tensorflow as tf
import time
import numpy as np
import keras
from keras.layers.preprocessing import discretization
Reported by Pylint.
Line: 32
Column: 1
def reduce_fn(state, values, epsilon=EPSILON):
"""tf.data.Dataset-friendly implementation of mean and variance."""
state_, = state
summary = discretization.summarize(values, epsilon)
if np.sum(state_[:, 0]) == 0:
return (summary,)
Reported by Pylint.
Line: 34
Column: 1
def reduce_fn(state, values, epsilon=EPSILON):
"""tf.data.Dataset-friendly implementation of mean and variance."""
state_, = state
summary = discretization.summarize(values, epsilon)
if np.sum(state_[:, 0]) == 0:
return (summary,)
return (discretization.merge_summaries(state_, summary, epsilon),)
Reported by Pylint.
Line: 35
Column: 1
"""tf.data.Dataset-friendly implementation of mean and variance."""
state_, = state
summary = discretization.summarize(values, epsilon)
if np.sum(state_[:, 0]) == 0:
return (summary,)
return (discretization.merge_summaries(state_, summary, epsilon),)
Reported by Pylint.
Line: 36
Column: 1
state_, = state
summary = discretization.summarize(values, epsilon)
if np.sum(state_[:, 0]) == 0:
return (summary,)
return (discretization.merge_summaries(state_, summary, epsilon),)
class BenchmarkAdapt(tf.test.Benchmark):
Reported by Pylint.
Line: 37
Column: 1
state_, = state
summary = discretization.summarize(values, epsilon)
if np.sum(state_[:, 0]) == 0:
return (summary,)
return (discretization.merge_summaries(state_, summary, epsilon),)
class BenchmarkAdapt(tf.test.Benchmark):
"""Benchmark adapt."""
Reported by Pylint.
Line: 38
Column: 1
summary = discretization.summarize(values, epsilon)
if np.sum(state_[:, 0]) == 0:
return (summary,)
return (discretization.merge_summaries(state_, summary, epsilon),)
class BenchmarkAdapt(tf.test.Benchmark):
"""Benchmark adapt."""
Reported by Pylint.
keras/benchmarks/keras_examples_benchmarks/cifar10_cnn_benchmark_test.py
62 issues
Line: 20
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks import benchmark_util
class Cifar10CNNBenchmark(tf.test.Benchmark):
Reported by Pylint.
Line: 22
Column: 1
import tensorflow as tf
from keras.benchmarks import benchmark_util
class Cifar10CNNBenchmark(tf.test.Benchmark):
"""Benchmarks for CNN using `tf.test.Benchmark`."""
Reported by Pylint.
Line: 26
Column: 1
class Cifar10CNNBenchmark(tf.test.Benchmark):
"""Benchmarks for CNN using `tf.test.Benchmark`."""
def __init__(self):
super(Cifar10CNNBenchmark, self).__init__()
self.num_classes = 10
(self.x_train, self.y_train), _ = tf.keras.datasets.cifar10.load_data()
Reported by Pylint.
Line: 28
Column: 1
class Cifar10CNNBenchmark(tf.test.Benchmark):
"""Benchmarks for CNN using `tf.test.Benchmark`."""
def __init__(self):
super(Cifar10CNNBenchmark, self).__init__()
self.num_classes = 10
(self.x_train, self.y_train), _ = tf.keras.datasets.cifar10.load_data()
self.x_train = self.x_train.astype('float32') / 255
self.y_train = tf.keras.utils.to_categorical(self.y_train, self.num_classes)
Reported by Pylint.
Line: 29
Column: 1
"""Benchmarks for CNN using `tf.test.Benchmark`."""
def __init__(self):
super(Cifar10CNNBenchmark, self).__init__()
self.num_classes = 10
(self.x_train, self.y_train), _ = tf.keras.datasets.cifar10.load_data()
self.x_train = self.x_train.astype('float32') / 255
self.y_train = tf.keras.utils.to_categorical(self.y_train, self.num_classes)
self.epochs = 5
Reported by Pylint.
Line: 29
Column: 5
"""Benchmarks for CNN using `tf.test.Benchmark`."""
def __init__(self):
super(Cifar10CNNBenchmark, self).__init__()
self.num_classes = 10
(self.x_train, self.y_train), _ = tf.keras.datasets.cifar10.load_data()
self.x_train = self.x_train.astype('float32') / 255
self.y_train = tf.keras.utils.to_categorical(self.y_train, self.num_classes)
self.epochs = 5
Reported by Pylint.
Line: 30
Column: 1
def __init__(self):
super(Cifar10CNNBenchmark, self).__init__()
self.num_classes = 10
(self.x_train, self.y_train), _ = tf.keras.datasets.cifar10.load_data()
self.x_train = self.x_train.astype('float32') / 255
self.y_train = tf.keras.utils.to_categorical(self.y_train, self.num_classes)
self.epochs = 5
Reported by Pylint.
Line: 31
Column: 1
def __init__(self):
super(Cifar10CNNBenchmark, self).__init__()
self.num_classes = 10
(self.x_train, self.y_train), _ = tf.keras.datasets.cifar10.load_data()
self.x_train = self.x_train.astype('float32') / 255
self.y_train = tf.keras.utils.to_categorical(self.y_train, self.num_classes)
self.epochs = 5
def _build_model(self):
Reported by Pylint.
Line: 32
Column: 1
super(Cifar10CNNBenchmark, self).__init__()
self.num_classes = 10
(self.x_train, self.y_train), _ = tf.keras.datasets.cifar10.load_data()
self.x_train = self.x_train.astype('float32') / 255
self.y_train = tf.keras.utils.to_categorical(self.y_train, self.num_classes)
self.epochs = 5
def _build_model(self):
"""Model from https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py."""
Reported by Pylint.
Line: 33
Column: 1
self.num_classes = 10
(self.x_train, self.y_train), _ = tf.keras.datasets.cifar10.load_data()
self.x_train = self.x_train.astype('float32') / 255
self.y_train = tf.keras.utils.to_categorical(self.y_train, self.num_classes)
self.epochs = 5
def _build_model(self):
"""Model from https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py."""
model = tf.keras.Sequential()
Reported by Pylint.