The following issues were found
keras/applications/vgg19.py
68 issues
Line: 23
Column: 1
https://arxiv.org/abs/1409.1556) (ICLR 2015)
"""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.applications import imagenet_utils
from keras.engine import training
from keras.layers import VersionAwareLayers
Reported by Pylint.
Line: 31
Column: 1
from keras.layers import VersionAwareLayers
from keras.utils import data_utils
from keras.utils import layer_utils
from tensorflow.python.util.tf_export import keras_export
WEIGHTS_PATH = ('https://storage.googleapis.com/tensorflow/keras-applications/'
'vgg19/vgg19_weights_tf_dim_ordering_tf_kernels.h5')
WEIGHTS_PATH_NO_TOP = ('https://storage.googleapis.com/tensorflow/'
Reported by Pylint.
Line: 44
Column: 1
@keras_export('keras.applications.vgg19.VGG19', 'keras.applications.VGG19')
def VGG19(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
Reported by Pylint.
Line: 44
Column: 1
@keras_export('keras.applications.vgg19.VGG19', 'keras.applications.VGG19')
def VGG19(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
Reported by Pylint.
Line: 44
Column: 1
@keras_export('keras.applications.vgg19.VGG19', 'keras.applications.VGG19')
def VGG19(
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
Reported by Pylint.
Line: 52
Column: 1
pooling=None,
classes=1000,
classifier_activation='softmax'):
"""Instantiates the VGG19 architecture.
Reference:
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
https://arxiv.org/abs/1409.1556) (ICLR 2015)
Reported by Pylint.
Line: 115
Column: 1
Returns:
A `keras.Model` instance.
"""
if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded. '
f'Received: `weights={weights}.`')
Reported by Pylint.
Line: 116
Column: 1
A `keras.Model` instance.
"""
if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded. '
f'Received: `weights={weights}.`')
Reported by Pylint.
Line: 122
Column: 1
'or the path to the weights file to be loaded. '
f'Received: `weights={weights}.`')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top` '
'as true, `classes` should be 1000. '
f'Received: `classes={classes}.`')
# Determine proper input shape
input_shape = imagenet_utils.obtain_input_shape(
Reported by Pylint.
Line: 123
Column: 1
f'Received: `weights={weights}.`')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top` '
'as true, `classes` should be 1000. '
f'Received: `classes={classes}.`')
# Determine proper input shape
input_shape = imagenet_utils.obtain_input_shape(
input_shape,
Reported by Pylint.
keras/integration_test/parameter_server_custom_training_loop_test.py
68 issues
Line: 20
Column: 1
from __future__ import division
from __future__ import print_function
import multiprocessing
from absl import logging
import portpicker
import tensorflow as tf
NUM_EPOCHS = 10
NUM_STEPS = 100
Reported by Pylint.
Line: 21
Column: 1
from __future__ import print_function
import multiprocessing
from absl import logging
import portpicker
import tensorflow as tf
NUM_EPOCHS = 10
NUM_STEPS = 100
STEPS_PER_EXECUTION = 10
Reported by Pylint.
Line: 22
Column: 1
import multiprocessing
from absl import logging
import portpicker
import tensorflow as tf
NUM_EPOCHS = 10
NUM_STEPS = 100
STEPS_PER_EXECUTION = 10
Reported by Pylint.
Line: 30
Column: 1
class ParameterServerCustomTrainingLoopTest(tf.test.TestCase):
"""Test to demonstrate custom training loop with ParameterServerStrategy."""
def create_in_process_cluster(self, num_workers, num_ps):
"""Creates and starts local servers and returns the cluster_resolver."""
worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)]
ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)]
Reported by Pylint.
Line: 32
Column: 3
class ParameterServerCustomTrainingLoopTest(tf.test.TestCase):
"""Test to demonstrate custom training loop with ParameterServerStrategy."""
def create_in_process_cluster(self, num_workers, num_ps):
"""Creates and starts local servers and returns the cluster_resolver."""
worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)]
ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)]
cluster_dict = {}
Reported by Pylint.
Line: 32
Column: 1
class ParameterServerCustomTrainingLoopTest(tf.test.TestCase):
"""Test to demonstrate custom training loop with ParameterServerStrategy."""
def create_in_process_cluster(self, num_workers, num_ps):
"""Creates and starts local servers and returns the cluster_resolver."""
worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)]
ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)]
cluster_dict = {}
Reported by Pylint.
Line: 33
Column: 1
"""Test to demonstrate custom training loop with ParameterServerStrategy."""
def create_in_process_cluster(self, num_workers, num_ps):
"""Creates and starts local servers and returns the cluster_resolver."""
worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)]
ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)]
cluster_dict = {}
cluster_dict["worker"] = ["localhost:%s" % port for port in worker_ports]
Reported by Pylint.
Line: 34
Column: 1
def create_in_process_cluster(self, num_workers, num_ps):
"""Creates and starts local servers and returns the cluster_resolver."""
worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)]
ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)]
cluster_dict = {}
cluster_dict["worker"] = ["localhost:%s" % port for port in worker_ports]
if num_ps > 0:
Reported by Pylint.
Line: 35
Column: 1
def create_in_process_cluster(self, num_workers, num_ps):
"""Creates and starts local servers and returns the cluster_resolver."""
worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)]
ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)]
cluster_dict = {}
cluster_dict["worker"] = ["localhost:%s" % port for port in worker_ports]
if num_ps > 0:
cluster_dict["ps"] = ["localhost:%s" % port for port in ps_ports]
Reported by Pylint.
Line: 37
Column: 1
worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)]
ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)]
cluster_dict = {}
cluster_dict["worker"] = ["localhost:%s" % port for port in worker_ports]
if num_ps > 0:
cluster_dict["ps"] = ["localhost:%s" % port for port in ps_ports]
cluster_spec = tf.train.ClusterSpec(cluster_dict)
Reported by Pylint.
keras/applications/applications_test.py
68 issues
Line: 17
Column: 1
# ==============================================================================
"""Integration tests for Keras applications."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
from keras import backend
from keras.applications import densenet
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
from keras import backend
from keras.applications import densenet
from keras.applications import efficientnet
from keras.applications import inception_resnet_v2
Reported by Pylint.
Line: 74
Column: 1
MODEL_LIST = MODEL_LIST_NO_NASNET + NASNET_LIST
class ApplicationsTest(tf.test.TestCase, parameterized.TestCase):
def assertShapeEqual(self, shape1, shape2):
if len(shape1) != len(shape2):
raise AssertionError(
'Shapes are different rank: %s vs %s' % (shape1, shape2))
Reported by Pylint.
Line: 76
Column: 1
class ApplicationsTest(tf.test.TestCase, parameterized.TestCase):
def assertShapeEqual(self, shape1, shape2):
if len(shape1) != len(shape2):
raise AssertionError(
'Shapes are different rank: %s vs %s' % (shape1, shape2))
for v1, v2 in zip(shape1, shape2):
if v1 != v2:
Reported by Pylint.
Line: 76
Column: 3
class ApplicationsTest(tf.test.TestCase, parameterized.TestCase):
def assertShapeEqual(self, shape1, shape2):
if len(shape1) != len(shape2):
raise AssertionError(
'Shapes are different rank: %s vs %s' % (shape1, shape2))
for v1, v2 in zip(shape1, shape2):
if v1 != v2:
Reported by Pylint.
Line: 76
Column: 3
class ApplicationsTest(tf.test.TestCase, parameterized.TestCase):
def assertShapeEqual(self, shape1, shape2):
if len(shape1) != len(shape2):
raise AssertionError(
'Shapes are different rank: %s vs %s' % (shape1, shape2))
for v1, v2 in zip(shape1, shape2):
if v1 != v2:
Reported by Pylint.
Line: 76
Column: 3
class ApplicationsTest(tf.test.TestCase, parameterized.TestCase):
def assertShapeEqual(self, shape1, shape2):
if len(shape1) != len(shape2):
raise AssertionError(
'Shapes are different rank: %s vs %s' % (shape1, shape2))
for v1, v2 in zip(shape1, shape2):
if v1 != v2:
Reported by Pylint.
Line: 77
Column: 1
class ApplicationsTest(tf.test.TestCase, parameterized.TestCase):
def assertShapeEqual(self, shape1, shape2):
if len(shape1) != len(shape2):
raise AssertionError(
'Shapes are different rank: %s vs %s' % (shape1, shape2))
for v1, v2 in zip(shape1, shape2):
if v1 != v2:
raise AssertionError('Shapes differ: %s vs %s' % (shape1, shape2))
Reported by Pylint.
Line: 78
Column: 1
def assertShapeEqual(self, shape1, shape2):
if len(shape1) != len(shape2):
raise AssertionError(
'Shapes are different rank: %s vs %s' % (shape1, shape2))
for v1, v2 in zip(shape1, shape2):
if v1 != v2:
raise AssertionError('Shapes differ: %s vs %s' % (shape1, shape2))
Reported by Pylint.
Line: 80
Column: 13
if len(shape1) != len(shape2):
raise AssertionError(
'Shapes are different rank: %s vs %s' % (shape1, shape2))
for v1, v2 in zip(shape1, shape2):
if v1 != v2:
raise AssertionError('Shapes differ: %s vs %s' % (shape1, shape2))
@parameterized.parameters(*MODEL_LIST)
def test_application_base(self, app, _):
Reported by Pylint.
keras/benchmarks/keras_examples_benchmarks/antirectifier_benchmark_test.py
67 issues
Line: 20
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks import benchmark_util
class AntirectifierBenchmark(tf.test.Benchmark):
Reported by Pylint.
Line: 22
Column: 1
import tensorflow as tf
from keras.benchmarks import benchmark_util
class AntirectifierBenchmark(tf.test.Benchmark):
"""Benchmarks for Antirectifier using `tf.test.Benchmark`."""
Reported by Pylint.
Line: 139
Column: 5
def build(self, input_shape):
output_dim = input_shape[-1]
self.kernel = self.add_weight(
shape=(output_dim * 2, output_dim),
initializer=self.initializer,
name="kernel",
trainable=True,
)
Reported by Pylint.
Line: 26
Column: 1
class AntirectifierBenchmark(tf.test.Benchmark):
"""Benchmarks for Antirectifier using `tf.test.Benchmark`."""
def __init__(self):
super(AntirectifierBenchmark, self).__init__()
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.reshape(-1, 784)
Reported by Pylint.
Line: 28
Column: 1
class AntirectifierBenchmark(tf.test.Benchmark):
"""Benchmarks for Antirectifier using `tf.test.Benchmark`."""
def __init__(self):
super(AntirectifierBenchmark, self).__init__()
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.reshape(-1, 784)
self.x_train = self.x_train.astype("float32") / 255
Reported by Pylint.
Line: 29
Column: 1
"""Benchmarks for Antirectifier using `tf.test.Benchmark`."""
def __init__(self):
super(AntirectifierBenchmark, self).__init__()
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.reshape(-1, 784)
self.x_train = self.x_train.astype("float32") / 255
def _build_model(self):
Reported by Pylint.
Line: 29
Column: 5
"""Benchmarks for Antirectifier using `tf.test.Benchmark`."""
def __init__(self):
super(AntirectifierBenchmark, self).__init__()
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.reshape(-1, 784)
self.x_train = self.x_train.astype("float32") / 255
def _build_model(self):
Reported by Pylint.
Line: 30
Column: 1
def __init__(self):
super(AntirectifierBenchmark, self).__init__()
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.reshape(-1, 784)
self.x_train = self.x_train.astype("float32") / 255
def _build_model(self):
"""Model from https://keras.io/examples/keras_recipes/antirectifier/."""
Reported by Pylint.
Line: 31
Column: 1
def __init__(self):
super(AntirectifierBenchmark, self).__init__()
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.reshape(-1, 784)
self.x_train = self.x_train.astype("float32") / 255
def _build_model(self):
"""Model from https://keras.io/examples/keras_recipes/antirectifier/."""
model = tf.keras.Sequential([
Reported by Pylint.
Line: 32
Column: 1
super(AntirectifierBenchmark, self).__init__()
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.reshape(-1, 784)
self.x_train = self.x_train.astype("float32") / 255
def _build_model(self):
"""Model from https://keras.io/examples/keras_recipes/antirectifier/."""
model = tf.keras.Sequential([
tf.keras.Input(shape=(784,)),
Reported by Pylint.
keras/layers/embeddings_test.py
66 issues
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Tests for embedding layers."""
# pylint: disable=g-classes-have-attributes,g-direct-tensorflow-import
import keras
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
Reported by Pylint.
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Tests for embedding layers."""
# pylint: disable=g-classes-have-attributes,g-direct-tensorflow-import
import keras
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
Reported by Pylint.
Line: 24
Column: 1
from keras import testing_utils
from keras.mixed_precision import policy
import numpy as np
import tensorflow.compat.v2 as tf
class EmbeddingTest(keras_parameterized.TestCase):
@keras_parameterized.run_all_keras_modes
Reported by Pylint.
Line: 130
Column: 24
try:
policy.set_policy('mixed_float16')
layer = keras.layers.Embedding(input_dim=5, output_dim=2)
self.assertEqual(layer._dtype_policy.name, 'mixed_float16')
outputs = layer(np.array([0, 1, 2]))
self.assertEqual(outputs.dtype, 'float16')
finally:
policy.set_policy('float32')
Reported by Pylint.
Line: 27
Column: 1
import tensorflow.compat.v2 as tf
class EmbeddingTest(keras_parameterized.TestCase):
@keras_parameterized.run_all_keras_modes
def test_embedding(self):
if tf.test.is_gpu_available():
self.skipTest('Only test embedding on CPU.')
Reported by Pylint.
Line: 29
Column: 1
class EmbeddingTest(keras_parameterized.TestCase):
@keras_parameterized.run_all_keras_modes
def test_embedding(self):
if tf.test.is_gpu_available():
self.skipTest('Only test embedding on CPU.')
testing_utils.layer_test(
Reported by Pylint.
Line: 30
Column: 3
class EmbeddingTest(keras_parameterized.TestCase):
@keras_parameterized.run_all_keras_modes
def test_embedding(self):
if tf.test.is_gpu_available():
self.skipTest('Only test embedding on CPU.')
testing_utils.layer_test(
keras.layers.Embedding,
Reported by Pylint.
Line: 30
Column: 1
class EmbeddingTest(keras_parameterized.TestCase):
@keras_parameterized.run_all_keras_modes
def test_embedding(self):
if tf.test.is_gpu_available():
self.skipTest('Only test embedding on CPU.')
testing_utils.layer_test(
keras.layers.Embedding,
Reported by Pylint.
Line: 31
Column: 1
@keras_parameterized.run_all_keras_modes
def test_embedding(self):
if tf.test.is_gpu_available():
self.skipTest('Only test embedding on CPU.')
testing_utils.layer_test(
keras.layers.Embedding,
kwargs={'output_dim': 4,
Reported by Pylint.
Line: 32
Column: 1
@keras_parameterized.run_all_keras_modes
def test_embedding(self):
if tf.test.is_gpu_available():
self.skipTest('Only test embedding on CPU.')
testing_utils.layer_test(
keras.layers.Embedding,
kwargs={'output_dim': 4,
'input_dim': 10,
Reported by Pylint.
keras/optimizer_v2/ftrl.py
66 issues
Line: 17
Column: 1
# ==============================================================================
"""Ftrl-proximal optimizer implementation."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 18
Column: 1
"""Ftrl-proximal optimizer implementation."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.optimizers.Ftrl')
class Ftrl(optimizer_v2.OptimizerV2):
Reported by Pylint.
Line: 21
Column: 1
# pylint: disable=g-classes-have-attributes
from keras.optimizer_v2 import optimizer_v2
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.optimizers.Ftrl')
class Ftrl(optimizer_v2.OptimizerV2):
r"""Optimizer that implements the FTRL algorithm.
Reported by Pylint.
Line: 25
Column: 1
@keras_export('keras.optimizers.Ftrl')
class Ftrl(optimizer_v2.OptimizerV2):
r"""Optimizer that implements the FTRL algorithm.
"Follow The Regularized Leader" (FTRL) is an optimization algorithm developed
at Google for click-through rate prediction in the early 2010s. It is most
suitable for shallow models with large and sparse feature spaces.
Reported by Pylint.
Line: 26
Column: 1
@keras_export('keras.optimizers.Ftrl')
class Ftrl(optimizer_v2.OptimizerV2):
r"""Optimizer that implements the FTRL algorithm.
"Follow The Regularized Leader" (FTRL) is an optimization algorithm developed
at Google for click-through rate prediction in the early 2010s. It is most
suitable for shallow models with large and sparse feature spaces.
The algorithm is described by
Reported by Pylint.
Line: 100
Column: 1
https://research.google.com/pubs/archive/41159.pdf)
"""
def __init__(self,
learning_rate=0.001,
learning_rate_power=-0.5,
initial_accumulator_value=0.1,
l1_regularization_strength=0.0,
l2_regularization_strength=0.0,
Reported by Pylint.
Line: 100
Column: 3
https://research.google.com/pubs/archive/41159.pdf)
"""
def __init__(self,
learning_rate=0.001,
learning_rate_power=-0.5,
initial_accumulator_value=0.1,
l1_regularization_strength=0.0,
l2_regularization_strength=0.0,
Reported by Pylint.
Line: 110
Column: 1
l2_shrinkage_regularization_strength=0.0,
beta=0.0,
**kwargs):
super(Ftrl, self).__init__(name, **kwargs)
if initial_accumulator_value < 0.0:
raise ValueError(
'`initial_accumulator_value` needs to be positive or zero. Received: '
f'initial_accumulator_value={initial_accumulator_value}.')
Reported by Pylint.
Line: 110
Column: 5
l2_shrinkage_regularization_strength=0.0,
beta=0.0,
**kwargs):
super(Ftrl, self).__init__(name, **kwargs)
if initial_accumulator_value < 0.0:
raise ValueError(
'`initial_accumulator_value` needs to be positive or zero. Received: '
f'initial_accumulator_value={initial_accumulator_value}.')
Reported by Pylint.
keras/layers/preprocessing/hashing.py
66 issues
Line: 17
Column: 1
# ==============================================================================
"""Keras hashing preprocessing layer."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import functools
import numpy as np
from keras.engine import base_layer
Reported by Pylint.
Line: 18
Column: 1
"""Keras hashing preprocessing layer."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import functools
import numpy as np
from keras.engine import base_layer
from keras.engine import base_preprocessing_layer
Reported by Pylint.
Line: 24
Column: 1
import numpy as np
from keras.engine import base_layer
from keras.engine import base_preprocessing_layer
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.layers.Hashing',
'keras.layers.experimental.preprocessing.Hashing')
class Hashing(base_layer.Layer):
Reported by Pylint.
Line: 146
Column: 3
f'The `salt` argument for `Hashing` can only be a tuple of size 2 '
f'integers, or a single integer. Received: salt={salt}.')
def call(self, inputs):
if isinstance(inputs, (list, tuple, np.ndarray)):
inputs = tf.convert_to_tensor(inputs)
if isinstance(inputs, tf.SparseTensor):
return tf.SparseTensor(
indices=inputs.indices,
Reported by Pylint.
Line: 187
Column: 3
def compute_output_shape(self, input_shape):
return input_shape
def compute_output_signature(self, input_spec):
output_shape = self.compute_output_shape(input_spec.shape)
output_dtype = tf.int64
if isinstance(input_spec, tf.SparseTensorSpec):
return tf.SparseTensorSpec(
shape=output_shape, dtype=output_dtype)
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import functools
import numpy as np
from keras.engine import base_layer
from keras.engine import base_preprocessing_layer
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 30
Column: 1
@keras_export('keras.layers.Hashing',
'keras.layers.experimental.preprocessing.Hashing')
class Hashing(base_layer.Layer):
"""Implements categorical feature hashing, also known as "hashing trick".
This layer transforms single or multiple categorical inputs to hashed output.
It converts a sequence of int or string to a sequence of int. The stable hash
function uses `tensorflow::ops::Fingerprint` to produce the same output
consistently across all platforms.
Reported by Pylint.
Line: 125
Column: 1
"""
def __init__(self, num_bins, mask_value=None, salt=None, **kwargs):
if num_bins is None or num_bins <= 0:
raise ValueError(
f'The `num_bins` for `Hashing` cannot be `None` or non-positive '
f'values. Received: num_bins={num_bins}.')
super().__init__(**kwargs)
Reported by Pylint.
Line: 126
Column: 1
"""
def __init__(self, num_bins, mask_value=None, salt=None, **kwargs):
if num_bins is None or num_bins <= 0:
raise ValueError(
f'The `num_bins` for `Hashing` cannot be `None` or non-positive '
f'values. Received: num_bins={num_bins}.')
super().__init__(**kwargs)
base_preprocessing_layer.keras_kpl_gauge.get_cell('Hashing').set(True)
Reported by Pylint.
Line: 127
Column: 1
def __init__(self, num_bins, mask_value=None, salt=None, **kwargs):
if num_bins is None or num_bins <= 0:
raise ValueError(
f'The `num_bins` for `Hashing` cannot be `None` or non-positive '
f'values. Received: num_bins={num_bins}.')
super().__init__(**kwargs)
base_preprocessing_layer.keras_kpl_gauge.get_cell('Hashing').set(True)
self.num_bins = num_bins
Reported by Pylint.
keras/engine/base_layer_utils_test.py
65 issues
Line: 18
Column: 1
import numpy as np
import tensorflow.compat.v2 as tf
import keras
from keras import backend
from keras import combinations
from keras import keras_parameterized
Reported by Pylint.
Line: 1
Column: 1
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
Reported by Pylint.
Line: 28
Column: 1
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class TrackableWeightHandlerTest(keras_parameterized.TestCase):
def get_table_handler(self):
# Note: There is some repetition in these tests' setup. However, Tensorflow
# does not play nicely with a separate setUp() call (causing errors related
# to graph building), so we have to use a called setup instead of a setUp()
Reported by Pylint.
Line: 30
Column: 1
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class TrackableWeightHandlerTest(keras_parameterized.TestCase):
def get_table_handler(self):
# Note: There is some repetition in these tests' setup. However, Tensorflow
# does not play nicely with a separate setUp() call (causing errors related
# to graph building), so we have to use a called setup instead of a setUp()
# call.
table = tf.lookup.experimental.MutableHashTable(
Reported by Pylint.
Line: 30
Column: 3
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class TrackableWeightHandlerTest(keras_parameterized.TestCase):
def get_table_handler(self):
# Note: There is some repetition in these tests' setup. However, Tensorflow
# does not play nicely with a separate setUp() call (causing errors related
# to graph building), so we have to use a called setup instead of a setUp()
# call.
table = tf.lookup.experimental.MutableHashTable(
Reported by Pylint.
Line: 30
Column: 3
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class TrackableWeightHandlerTest(keras_parameterized.TestCase):
def get_table_handler(self):
# Note: There is some repetition in these tests' setup. However, Tensorflow
# does not play nicely with a separate setUp() call (causing errors related
# to graph building), so we have to use a called setup instead of a setUp()
# call.
table = tf.lookup.experimental.MutableHashTable(
Reported by Pylint.
Line: 35
Column: 1
# does not play nicely with a separate setUp() call (causing errors related
# to graph building), so we have to use a called setup instead of a setUp()
# call.
table = tf.lookup.experimental.MutableHashTable(
key_dtype=tf.string, value_dtype=tf.int32, default_value=0)
return base_layer_utils.TrackableWeightHandler(table)
def test_get_num_tensors(self):
table_handler = self.get_table_handler()
Reported by Pylint.
Line: 37
Column: 1
# call.
table = tf.lookup.experimental.MutableHashTable(
key_dtype=tf.string, value_dtype=tf.int32, default_value=0)
return base_layer_utils.TrackableWeightHandler(table)
def test_get_num_tensors(self):
table_handler = self.get_table_handler()
self.assertEqual(2, table_handler.num_tensors)
Reported by Pylint.
Line: 39
Column: 1
key_dtype=tf.string, value_dtype=tf.int32, default_value=0)
return base_layer_utils.TrackableWeightHandler(table)
def test_get_num_tensors(self):
table_handler = self.get_table_handler()
self.assertEqual(2, table_handler.num_tensors)
def test_get_and_set_weights(self):
table_handler = self.get_table_handler()
Reported by Pylint.
Line: 39
Column: 3
key_dtype=tf.string, value_dtype=tf.int32, default_value=0)
return base_layer_utils.TrackableWeightHandler(table)
def test_get_num_tensors(self):
table_handler = self.get_table_handler()
self.assertEqual(2, table_handler.num_tensors)
def test_get_and_set_weights(self):
table_handler = self.get_table_handler()
Reported by Pylint.
keras/saving/losses_serialization_test.py
65 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras losses serialization."""
import tensorflow.compat.v2 as tf
import os
import shutil
from absl.testing import parameterized
Reported by Pylint.
Line: 22
Column: 1
import os
import shutil
from absl.testing import parameterized
import numpy as np
import keras
from keras import keras_parameterized
from keras import layers
Reported by Pylint.
Line: 35
Column: 1
from keras.utils import losses_utils
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
# Custom loss class
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import os
import shutil
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import os
import shutil
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 35
Column: 1
from keras.utils import losses_utils
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
# Custom loss class
Reported by Pylint.
Line: 37
Column: 1
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
# Custom loss class
class MyMeanAbsoluteError(losses.LossFunctionWrapper):
Reported by Pylint.
Line: 41
Column: 1
# Custom loss class
class MyMeanAbsoluteError(losses.LossFunctionWrapper):
def __init__(self,
reduction=losses_utils.ReductionV2.AUTO,
name='mean_absolute_error'):
super(MyMeanAbsoluteError, self).__init__(
Reported by Pylint.
Line: 43
Column: 1
# Custom loss class
class MyMeanAbsoluteError(losses.LossFunctionWrapper):
def __init__(self,
reduction=losses_utils.ReductionV2.AUTO,
name='mean_absolute_error'):
super(MyMeanAbsoluteError, self).__init__(
my_mae, name=name, reduction=reduction)
Reported by Pylint.
Line: 46
Column: 1
def __init__(self,
reduction=losses_utils.ReductionV2.AUTO,
name='mean_absolute_error'):
super(MyMeanAbsoluteError, self).__init__(
my_mae, name=name, reduction=reduction)
# Custom loss function
def my_mae(y_true, y_pred):
Reported by Pylint.
keras/distribute/keras_premade_models_test.py
65 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for keras premade models using tf.distribute.Strategy."""
from absl.testing import parameterized
from keras.engine import sequential
from keras.layers import core
from keras.optimizer_v2 import adagrad
from keras.optimizer_v2 import gradient_descent
Reported by Pylint.
Line: 27
Column: 1
from keras.premade import wide_deep
from keras.utils import dataset_creator
import numpy as np
import tensorflow.compat.v2 as tf
def strategy_combinations_eager_data_fn():
return tf.__internal__.test.combinations.combine(
distribution=[
Reported by Pylint.
Line: 30
Column: 1
import tensorflow.compat.v2 as tf
def strategy_combinations_eager_data_fn():
return tf.__internal__.test.combinations.combine(
distribution=[
tf.__internal__.distribute.combinations.default_strategy,
tf.__internal__.distribute.combinations.one_device_strategy,
tf.__internal__.distribute.combinations.one_device_strategy_gpu,
Reported by Pylint.
Line: 31
Column: 1
def strategy_combinations_eager_data_fn():
return tf.__internal__.test.combinations.combine(
distribution=[
tf.__internal__.distribute.combinations.default_strategy,
tf.__internal__.distribute.combinations.one_device_strategy,
tf.__internal__.distribute.combinations.one_device_strategy_gpu,
tf.__internal__.distribute.combinations
Reported by Pylint.
Line: 61
Column: 1
BATCH_SIZE = 10
def get_numpy():
inputs = np.random.uniform(
low=-5., high=5., size=(INPUT_SIZE, 2)).astype(np.float32)
output = .3 * inputs[:, 0] + .2 * inputs[:, 1]
return inputs, output
Reported by Pylint.
Line: 62
Column: 1
def get_numpy():
inputs = np.random.uniform(
low=-5., high=5., size=(INPUT_SIZE, 2)).astype(np.float32)
output = .3 * inputs[:, 0] + .2 * inputs[:, 1]
return inputs, output
Reported by Pylint.
Line: 64
Column: 1
def get_numpy():
inputs = np.random.uniform(
low=-5., high=5., size=(INPUT_SIZE, 2)).astype(np.float32)
output = .3 * inputs[:, 0] + .2 * inputs[:, 1]
return inputs, output
def get_dataset(input_context=None, batch_size=None):
inputs, output = get_numpy()
Reported by Pylint.
Line: 65
Column: 1
inputs = np.random.uniform(
low=-5., high=5., size=(INPUT_SIZE, 2)).astype(np.float32)
output = .3 * inputs[:, 0] + .2 * inputs[:, 1]
return inputs, output
def get_dataset(input_context=None, batch_size=None):
inputs, output = get_numpy()
dataset = tf.data.Dataset.from_tensor_slices((inputs, output))
Reported by Pylint.
Line: 68
Column: 1
return inputs, output
def get_dataset(input_context=None, batch_size=None):
inputs, output = get_numpy()
dataset = tf.data.Dataset.from_tensor_slices((inputs, output))
if input_context:
dataset = dataset.shard(input_context.num_input_pipelines,
input_context.input_pipeline_id)
Reported by Pylint.
Line: 69
Column: 1
def get_dataset(input_context=None, batch_size=None):
inputs, output = get_numpy()
dataset = tf.data.Dataset.from_tensor_slices((inputs, output))
if input_context:
dataset = dataset.shard(input_context.num_input_pipelines,
input_context.input_pipeline_id)
if batch_size is None:
Reported by Pylint.