The following issues were found
keras/saving/save_test.py
847 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras model saving code."""
import tensorflow.compat.v2 as tf
import collections
import os
import pathlib
import shutil
Reported by Pylint.
Line: 26
Column: 1
import tempfile
import warnings
from absl.testing import parameterized
import numpy as np
import keras
from keras import combinations
from keras import keras_parameterized
Reported by Pylint.
Line: 47
Column: 1
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
class TestSaveModel(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
Line: 738
Column: 32
keras.layers.Dense(
2,
input_shape=(3,),
kernel_initializer=keras.initializers.Constant(np.ones((3, 2)))))
model.add(keras.layers.Dense(3))
model.compile(loss='mse', optimizer='sgd', metrics=['acc'])
keras.models.save_model(model, saved_model_dir, save_format=save_format)
model = keras.models.load_model(saved_model_dir)
Reported by Pylint.
Line: 184
Column: 3
}
fc_layer, _ = ksfc.SequenceFeatures(cols)(input_layers)
# TODO(tibell): Figure out the right dtype and apply masking.
# sequence_length_mask = array_ops.sequence_mask(sequence_length)
# x = keras.layers.GRU(32)(fc_layer, mask=sequence_length_mask)
x = keras.layers.GRU(32)(fc_layer)
output = keras.layers.Dense(10)(x)
Reported by Pylint.
Line: 250
Column: 5
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_saving_optimizer_weights(self):
class MyModel(keras.Model):
def __init__(self):
super(MyModel, self).__init__()
self.layer = keras.layers.Dense(1)
Reported by Pylint.
Line: 256
Column: 7
super(MyModel, self).__init__()
self.layer = keras.layers.Dense(1)
def call(self, x):
return self.layer(x)
path = os.path.join(self.get_temp_dir(), 'weights_path')
x, y = np.ones((10, 10)), np.ones((10, 1))
Reported by Pylint.
Line: 342
Column: 3
if loaded_model.optimizer:
if testing_utils.get_save_format() == 'tf':
# TODO(b/153110928): Keras TF format doesn't restore optimizer weights
# currently.
return
self.assertAllClose(model.optimizer.weights,
loaded_model.optimizer.weights)
Reported by Pylint.
Line: 536
Column: 9
model.add(keras.layers.Dense(3))
model.compile(loss='mse', optimizer='sgd', metrics=['acc'])
if not tf.compat.v1.executing_eagerly_outside_functions():
model._make_train_function()
keras.models.save_model(model, saved_model_dir, save_format=save_format)
model = keras.models.load_model(saved_model_dir)
def test_saving_lambda_numpy_array_arguments(self):
saved_model_dir = self._save_model_dir()
Reported by Pylint.
Line: 865
Column: 7
def test_custom_functional_registered(self):
def _get_cls_definition():
class CustomModel(keras.Model):
def c(self):
return 'c'
return CustomModel
Reported by Pylint.
keras/optimizer_v2/adam_test.py
844 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Adam."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras import optimizer_v1
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras import optimizer_v1
from keras.optimizer_v2 import adam
from keras.optimizer_v2 import learning_rate_schedule
Reported by Pylint.
Line: 21
Column: 1
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras import optimizer_v1
from keras.optimizer_v2 import adam
from keras.optimizer_v2 import learning_rate_schedule
Reported by Pylint.
Line: 22
Column: 1
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras import optimizer_v1
from keras.optimizer_v2 import adam
from keras.optimizer_v2 import learning_rate_schedule
def adam_update_numpy(param,
Reported by Pylint.
Line: 23
Column: 1
import numpy as np
from keras import combinations
from keras import optimizer_v1
from keras.optimizer_v2 import adam
from keras.optimizer_v2 import learning_rate_schedule
def adam_update_numpy(param,
g_t,
Reported by Pylint.
Line: 24
Column: 1
from keras import combinations
from keras import optimizer_v1
from keras.optimizer_v2 import adam
from keras.optimizer_v2 import learning_rate_schedule
def adam_update_numpy(param,
g_t,
t,
Reported by Pylint.
Line: 93
Column: 22
def get_beta_accumulators(opt, dtype):
local_step = tf.cast(opt.iterations + 1, dtype)
beta_1_t = tf.cast(opt._get_hyper("beta_1"), dtype)
beta_1_power = tf.pow(beta_1_t, local_step)
beta_2_t = tf.cast(opt._get_hyper("beta_2"), dtype)
beta_2_power = tf.pow(beta_2_t, local_step)
return (beta_1_power, beta_2_power)
Reported by Pylint.
Line: 95
Column: 22
local_step = tf.cast(opt.iterations + 1, dtype)
beta_1_t = tf.cast(opt._get_hyper("beta_1"), dtype)
beta_1_power = tf.pow(beta_1_t, local_step)
beta_2_t = tf.cast(opt._get_hyper("beta_2"), dtype)
beta_2_power = tf.pow(beta_2_t, local_step)
return (beta_1_power, beta_2_power)
class AdamOptimizerTest(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
Line: 103
Column: 3
class AdamOptimizerTest(tf.test.TestCase, parameterized.TestCase):
def testSparse(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for dtype in [tf.half, tf.float32, tf.float64]:
with tf.Graph().as_default(), self.cached_session():
# Initialize variables for numpy implementation.
m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
var0_np = np.array([1.0, 1.0, 2.0], dtype=dtype.as_numpy_dtype)
Reported by Pylint.
Line: 148
Column: 3
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testSparseDevicePlacement(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for index_dtype in [tf.int32, tf.int64]:
with tf.Graph().as_default(), self.cached_session(
force_gpu=tf.test.is_gpu_available()):
# If a GPU is available, tests that all optimizer ops can be placed on
# it (i.e. they have GPU kernels).
Reported by Pylint.
keras/engine/data_adapter_test.py
815 issues
Line: 17
Column: 1
# ==============================================================================
"""DataAdapter tests."""
import tensorflow.compat.v2 as tf
import math
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 21
Column: 1
import math
from absl.testing import parameterized
import numpy as np
import keras
from keras import keras_parameterized
from keras import testing_utils
Reported by Pylint.
Line: 155
Column: 1
def test_can_handle_pandas(self):
try:
import pandas as pd # pylint: disable=g-import-not-at-top
except ImportError:
self.skipTest('Skipping test because pandas is not installed.')
self.assertTrue(self.adapter_cls.can_handle(pd.DataFrame(self.numpy_input)))
self.assertTrue(
self.adapter_cls.can_handle(pd.DataFrame(self.numpy_input)[0]))
Reported by Pylint.
Line: 169
Column: 1
@keras_parameterized.run_all_keras_modes(always_skip_v1=True)
def test_training_pandas(self):
try:
import pandas as pd # pylint: disable=g-import-not-at-top
except ImportError:
self.skipTest('Skipping test because pandas is not installed.')
input_a = keras.Input(shape=(3,), name='input_a')
input_b = keras.Input(shape=(3,), name='input_b')
input_c = keras.Input(shape=(1,), name='input_b')
Reported by Pylint.
Line: 730
Column: 5
def test_model_without_forward_pass(self):
class MyModel(keras.Model):
def train_step(self, data):
return {'loss': 0.}
def test_step(self, data):
Reported by Pylint.
Line: 730
Column: 5
def test_model_without_forward_pass(self):
class MyModel(keras.Model):
def train_step(self, data):
return {'loss': 0.}
def test_step(self, data):
Reported by Pylint.
Line: 811
Column: 22
data_handler = data_adapter.DataHandler(
data, initial_epoch=0, epochs=2, steps_per_epoch=2)
self.assertEqual(data_handler.inferred_steps, 2)
self.assertFalse(data_handler._adapter.should_recreate_iterator())
returned_data = []
for _, iterator in data_handler.enumerate_epochs():
epoch_data = []
for _ in data_handler.steps():
epoch_data.append(next(iterator).numpy())
Reported by Pylint.
Line: 838
Column: 21
# create a new iterator each epoch.
data_handler = data_adapter.DataHandler(
data, initial_epoch=0, epochs=2, steps_per_epoch=4)
self.assertTrue(data_handler._adapter.should_recreate_iterator())
returned_data = []
for _, iterator in data_handler.enumerate_epochs():
epoch_data = []
for _ in data_handler.steps():
epoch_data.append(next(iterator).numpy())
Reported by Pylint.
Line: 868
Column: 22
# User can choose to only partially consume `Dataset`.
data_handler = data_adapter.DataHandler(
filtered_ds, initial_epoch=0, epochs=2, steps_per_epoch=2)
self.assertFalse(data_handler._adapter.should_recreate_iterator())
returned_data = []
for _, iterator in data_handler.enumerate_epochs():
epoch_data = []
for _ in data_handler.steps():
epoch_data.append(next(iterator))
Reported by Pylint.
Line: 888
Column: 21
data_handler = data_adapter.DataHandler(
filtered_ds, initial_epoch=0, epochs=2)
self.assertEqual(data_handler.inferred_steps, None)
self.assertTrue(data_handler._adapter.should_recreate_iterator())
returned_data = []
for _, iterator in data_handler.enumerate_epochs():
epoch_data = []
with data_handler.catch_stop_iteration():
for _ in data_handler.steps():
Reported by Pylint.
keras/engine/functional.py
766 issues
Line: 18
Column: 1
# pylint: disable=protected-access
"""A `Network` is way to compose layers: the topological form of a `Model`."""
import tensorflow.compat.v2 as tf
import collections
import copy
import itertools
import warnings
Reported by Pylint.
Line: 37
Column: 1
from keras.utils import generic_utils
from keras.utils import tf_inspect
from keras.utils import tf_utils
from tensorflow.python.platform import tf_logging as logging
from tensorflow.tools.docs import doc_controls
# pylint: disable=g-classes-have-attributes
class Functional(training_lib.Model):
Reported by Pylint.
Line: 38
Column: 1
from keras.utils import tf_inspect
from keras.utils import tf_utils
from tensorflow.python.platform import tf_logging as logging
from tensorflow.tools.docs import doc_controls
# pylint: disable=g-classes-have-attributes
class Functional(training_lib.Model):
"""A `Functional` model is a `Model` defined as a directed graph of layers.
Reported by Pylint.
Line: 41
Column: 1
from tensorflow.tools.docs import doc_controls
# pylint: disable=g-classes-have-attributes
class Functional(training_lib.Model):
"""A `Functional` model is a `Model` defined as a directed graph of layers.
Three types of `Model` exist: subclassed `Model`, `Functional` model,
and `Sequential` (a special case of `Functional`).
Reported by Pylint.
Line: 1254
Column: 1
layer = created_layers[layer_name]
else:
# Instantiate layer.
from keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top
layer = deserialize_layer(layer_data, custom_objects=custom_objects)
created_layers[layer_name] = layer
node_count_by_layer[layer] = int(_should_skip_first_node(layer))
Reported by Pylint.
Line: 396
Column: 3
def _should_compute_mask(self):
return True
def compute_mask(self, inputs, mask):
# TODO(omalleyt): b/123540974 This function is not really safe to call
# by itself because it will duplicate any updates and losses in graph
# mode by `call`ing the Layers again.
output_tensors = self._run_internal_graph(inputs, mask=mask)
return tf.nest.map_structure(lambda t: getattr(t, '_keras_mask', None),
Reported by Pylint.
Line: 397
Column: 3
return True
def compute_mask(self, inputs, mask):
# TODO(omalleyt): b/123540974 This function is not really safe to call
# by itself because it will duplicate any updates and losses in graph
# mode by `call`ing the Layers again.
output_tensors = self._run_internal_graph(inputs, mask=mask)
return tf.nest.map_structure(lambda t: getattr(t, '_keras_mask', None),
output_tensors)
Reported by Pylint.
Line: 517
Column: 41
else:
self._name = name
def _run_internal_graph(self, inputs, training=None, mask=None):
"""Computes output tensors for new inputs.
# Note:
- Can be run on non-Keras tensors.
Reported by Pylint.
Line: 603
Column: 3
# Flatten in the order `Input`s were passed during Model construction.
return [tensors[n] for n in ref_input_names]
except KeyError:
# TODO(b/151582614)
return tf.nest.flatten(tensors)
# Otherwise both self.inputs and tensors will already be in same order.
return tf.nest.flatten(tensors)
Reported by Pylint.
Line: 840
Column: 5
for tensor in self.outputs:
tensor_usage_count[str(id(tensor))] += 1
self._tensor_usage_count = tensor_usage_count
def _assert_weights_created(self):
# Override the implementation in Model.
# The Functional model should always have weight created already.
return
Reported by Pylint.
keras/layers/lstm_v2_test.py
756 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for V2 LSTM layer."""
import tensorflow.compat.v2 as tf
import copy
import os
import shutil
import time
Reported by Pylint.
Line: 24
Column: 1
import shutil
import time
from absl.testing import parameterized
import numpy as np
from tensorflow.core.protobuf import rewriter_config_pb2
import keras
from tensorflow.python.framework import test_util as tf_test_util
from keras import keras_parameterized
Reported by Pylint.
Line: 26
Column: 1
from absl.testing import parameterized
import numpy as np
from tensorflow.core.protobuf import rewriter_config_pb2
import keras
from tensorflow.python.framework import test_util as tf_test_util
from keras import keras_parameterized
from keras import testing_utils
from keras.layers import recurrent as rnn_v1
Reported by Pylint.
Line: 28
Column: 1
import numpy as np
from tensorflow.core.protobuf import rewriter_config_pb2
import keras
from tensorflow.python.framework import test_util as tf_test_util
from keras import keras_parameterized
from keras import testing_utils
from keras.layers import recurrent as rnn_v1
from keras.layers import recurrent_v2 as rnn
from keras.utils import np_utils
Reported by Pylint.
Line: 34
Column: 1
from keras.layers import recurrent as rnn_v1
from keras.layers import recurrent_v2 as rnn
from keras.utils import np_utils
from tensorflow.python.platform import tf_logging as logging
# Global config for grappler setting that is used for graph mode test.
_rewrites = rewriter_config_pb2.RewriterConfig()
_rewrites.implementation_selector = rewriter_config_pb2.RewriterConfig.ON
Reported by Pylint.
Line: 64
Column: 22
recurrent_dropout=recurrent_dropout,
unroll=unroll,
use_bias=use_bias)
self.assertFalse(layer._could_use_gpu_kernel)
@testing_utils.run_v2_only
def test_use_on_default_activation_with_gpu_kernel(self):
layer = rnn.LSTM(1, activation=tf.tanh)
self.assertTrue(layer._could_use_gpu_kernel)
Reported by Pylint.
Line: 69
Column: 21
@testing_utils.run_v2_only
def test_use_on_default_activation_with_gpu_kernel(self):
layer = rnn.LSTM(1, activation=tf.tanh)
self.assertTrue(layer._could_use_gpu_kernel)
layer = rnn.LSTM(1, recurrent_activation=tf.sigmoid)
self.assertTrue(layer._could_use_gpu_kernel)
def test_static_shape_inference_LSTM(self):
Reported by Pylint.
Line: 72
Column: 21
self.assertTrue(layer._could_use_gpu_kernel)
layer = rnn.LSTM(1, recurrent_activation=tf.sigmoid)
self.assertTrue(layer._could_use_gpu_kernel)
def test_static_shape_inference_LSTM(self):
# Github issue: 15165
timesteps = 3
embedding_dim = 4
Reported by Pylint.
Line: 138
Column: 22
output = layer(inputs, initial_state=initial_state)
self.assertTrue(
any(initial_state[0] is t
for t in layer._inbound_nodes[0].input_tensors))
model = keras.models.Model([inputs] + initial_state, output)
model.compile(
loss='categorical_crossentropy',
optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01))
Reported by Pylint.
Line: 295
Column: 22
output = layer(inputs)
self.assertTrue(
any(initial_state[0] is t
for t in layer._inbound_nodes[0].input_tensors))
model = keras.models.Model(inputs, output)
model.compile(
loss='categorical_crossentropy',
optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01))
Reported by Pylint.
keras/mixed_precision/loss_scale_optimizer_test.py
753 issues
Line: 19
Column: 1
import os
from absl.testing import parameterized
from keras import combinations
from keras import optimizers
from keras.mixed_precision import loss_scale_optimizer
from keras.mixed_precision import test_util as mp_test_util
Reported by Pylint.
Line: 30
Column: 1
from keras.optimizer_v2 import optimizer_v2
import numpy as np
import tensorflow.compat.v2 as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.python.framework import test_util
from tensorflow.python.keras.optimizer_v2 import gradient_descent as legacy_sgd
# Disable not-callable lint error, as the linter is unable to detect that
Reported by Pylint.
Line: 31
Column: 1
import numpy as np
import tensorflow.compat.v2 as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.python.framework import test_util
from tensorflow.python.keras.optimizer_v2 import gradient_descent as legacy_sgd
# Disable not-callable lint error, as the linter is unable to detect that
# LossScale instances are callable.
Reported by Pylint.
Line: 32
Column: 1
import numpy as np
import tensorflow.compat.v2 as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.python.framework import test_util
from tensorflow.python.keras.optimizer_v2 import gradient_descent as legacy_sgd
# Disable not-callable lint error, as the linter is unable to detect that
# LossScale instances are callable.
# pylint: disable=not-callable
Reported by Pylint.
Line: 33
Column: 1
import tensorflow.compat.v2 as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.python.framework import test_util
from tensorflow.python.keras.optimizer_v2 import gradient_descent as legacy_sgd
# Disable not-callable lint error, as the linter is unable to detect that
# LossScale instances are callable.
# pylint: disable=not-callable
Reported by Pylint.
Line: 602
Column: 7
opt = gradient_descent.SGD(learning_rate)
loss_scale = tf.mixed_precision.experimental.DynamicLossScale(
initial_loss_scale=4, increment_period=1, multiplier=2)
loss_scale._current_loss_scale.assign(2)
opt = loss_scale_optimizer.LossScaleOptimizerV1(opt, loss_scale)
self.assertEqual(opt.initial_scale, 4)
self.assertEqual(opt.dynamic_growth_steps, 1)
self.evaluate(tf.compat.v1.global_variables_initializer())
# Current loss scale is not copied so loss scale is reinitialized to 4
Reported by Pylint.
Line: 633
Column: 24
def __call__(self):
return 1.
def update(self, grads):
return None, True
def get_config(self):
return {}
Reported by Pylint.
Line: 648
Column: 5
# Test learning_rate is exposed when LossScaleOptimizer wraps another
# wrapper.
class MyOptimizer(optimizer_v2.OptimizerV2):
def __init__(self):
super().__init__('MyOptimizer')
self.inner_optimizer = adam.Adam(learning_rate=1.0)
Reported by Pylint.
Line: 648
Column: 5
# Test learning_rate is exposed when LossScaleOptimizer wraps another
# wrapper.
class MyOptimizer(optimizer_v2.OptimizerV2):
def __init__(self):
super().__init__('MyOptimizer')
self.inner_optimizer = adam.Adam(learning_rate=1.0)
Reported by Pylint.
Line: 726
Column: 3
replicas = strategy.num_replicas_in_sync
if (isinstance(strategy, tf.distribute.MirroredStrategy) and
not tf.executing_eagerly()):
# TODO(b/121381184): Enable running the test in this case.
return
with self.test_session(), strategy.scope():
# Build and run a simple model.
var = tf.Variable([2.0])
Reported by Pylint.
keras/tests/tracking_util_test.py
724 issues
Line: 18
Column: 1
import functools
import tensorflow.compat.v2 as tf
import os
import weakref
from tensorflow.python.eager import context
from tensorflow.python.framework import test_util
from keras import combinations
Reported by Pylint.
Line: 21
Column: 1
import tensorflow.compat.v2 as tf
import os
import weakref
from tensorflow.python.eager import context
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.engine import input_layer
Reported by Pylint.
Line: 22
Column: 1
import os
import weakref
from tensorflow.python.eager import context
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.engine import input_layer
from keras.engine import sequential
Reported by Pylint.
Line: 23
Column: 1
import weakref
from tensorflow.python.eager import context
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
Reported by Pylint.
Line: 24
Column: 1
from tensorflow.python.eager import context
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
Reported by Pylint.
Line: 25
Column: 1
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.optimizer_v2 import adam
Reported by Pylint.
Line: 26
Column: 1
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.optimizer_v2 import adam
from tensorflow.python.platform import tf_logging as logging
Reported by Pylint.
Line: 27
Column: 1
from keras import keras_parameterized
from keras import testing_utils
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.optimizer_v2 import adam
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training.tracking import util as trackable_utils
Reported by Pylint.
Line: 28
Column: 1
from keras import testing_utils
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.optimizer_v2 import adam
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training.tracking import util as trackable_utils
Reported by Pylint.
Line: 29
Column: 1
from keras.engine import input_layer
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.optimizer_v2 import adam
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training.tracking import util as trackable_utils
Reported by Pylint.
keras/layers/convolutional_test.py
701 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for convolutional layers."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
from tensorflow.python.framework import test_util
from keras import keras_parameterized
Reported by Pylint.
Line: 23
Column: 1
import numpy as np
import keras
from tensorflow.python.framework import test_util
from keras import keras_parameterized
from keras import testing_utils
@keras_parameterized.run_all_keras_modes
Reported by Pylint.
Line: 227
Column: 3
'dilation_rate': (2, 2)
}, (None, 3, 2, 2)),
# Only runs on GPU with CUDA, channels_first is not supported on CPU.
# TODO(b/62340061): Support channels_first on CPU.
('data_format', {
'data_format': 'channels_first'
}, None, True),
# Only runs on GPU with CUDA, groups are not supported on CPU.
# https://github.com/tensorflow/tensorflow/issues/29005
Reported by Pylint.
Line: 350
Column: 3
'dilation_rate': (2, 2, 2)
}, (None, 1, 3, 2, 2)),
# Only runs on GPU with CUDA, channels_first is not supported on CPU.
# TODO(b/62340061): Support channels_first on CPU.
('data_format', {
'data_format': 'channels_first'
}, None, True),
# Only runs on GPU with CUDA, groups are not supported on CPU.
# https://github.com/tensorflow/tensorflow/issues/29005
Reported by Pylint.
Line: 506
Column: 3
# Only runs on GPU with CUDA, dilation_rate>1 is not supported on CPU.
('dilation_rate', {'dilation_rate': 2}, (None, 10, 2)),
# Only runs on GPU with CUDA, channels_first is not supported on CPU.
# TODO(b/62340061): Support channels_first on CPU.
('data_format', {'data_format': 'channels_first'}),
)
def test_conv1d_transpose(self, kwargs, expected_output_shape=None):
kwargs['filters'] = 2
kwargs['kernel_size'] = 3
Reported by Pylint.
Line: 540
Column: 3
('strides', {'strides': (2, 2, 2)}, (None, 11, 15, 13, 2)),
('dilation_rate', {'dilation_rate': (2, 2, 2)}, (None, 7, 9, 8, 2)),
# Only runs on GPU with CUDA, channels_first is not supported on CPU.
# TODO(b/62340061): Support channels_first on CPU.
('data_format', {'data_format': 'channels_first'}),
)
def test_conv3d_transpose(self, kwargs, expected_output_shape=None):
kwargs['filters'] = 2
kwargs['kernel_size'] = (3, 3, 3)
Reported by Pylint.
Line: 1163
Column: 3
'strides': 2
}),
# Only runs on GPU with CUDA, channels_first is not supported on CPU.
# TODO(b/62340061): Support channels_first on CPU.
('data_format', {
'data_format': 'channels_first'
}),
('depth_multiplier_1', {
'depth_multiplier': 1
Reported by Pylint.
Line: 1221
Column: 3
('padding_same', {'padding': 'same'}),
('strides', {'strides': (2, 2)}),
# Only runs on GPU with CUDA, channels_first is not supported on CPU.
# TODO(b/62340061): Support channels_first on CPU.
('data_format', {'data_format': 'channels_first'}),
('depth_multiplier_1', {'depth_multiplier': 1}),
('depth_multiplier_2', {'depth_multiplier': 2}),
('dilation_rate', {'dilation_rate': (2, 2)}, (None, 3, 2, 3)),
)
Reported by Pylint.
Line: 1
Column: 1
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
Reported by Pylint.
keras/tests/model_subclassing_test.py
664 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Model subclassing."""
import tensorflow.compat.v2 as tf
import copy
import os
from absl.testing import parameterized
Reported by Pylint.
Line: 22
Column: 1
import copy
import os
from absl.testing import parameterized
import numpy as np
import keras
from tensorflow.python.framework import test_util
from keras import combinations
Reported by Pylint.
Line: 25
Column: 1
from absl.testing import parameterized
import numpy as np
import keras
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.tests import model_subclassing_test_util as model_util
Reported by Pylint.
Line: 26
Column: 1
import numpy as np
import keras
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.tests import model_subclassing_test_util as model_util
from tensorflow.python.training.tracking import data_structures
Reported by Pylint.
Line: 27
Column: 1
import keras
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.tests import model_subclassing_test_util as model_util
from tensorflow.python.training.tracking import data_structures
Reported by Pylint.
Line: 28
Column: 1
import keras
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.tests import model_subclassing_test_util as model_util
from tensorflow.python.training.tracking import data_structures
try:
Reported by Pylint.
Line: 29
Column: 1
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.tests import model_subclassing_test_util as model_util
from tensorflow.python.training.tracking import data_structures
try:
import h5py # pylint:disable=g-import-not-at-top
Reported by Pylint.
Line: 30
Column: 1
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.tests import model_subclassing_test_util as model_util
from tensorflow.python.training.tracking import data_structures
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
Reported by Pylint.
Line: 31
Column: 1
from keras import keras_parameterized
from keras import testing_utils
from keras.tests import model_subclassing_test_util as model_util
from tensorflow.python.training.tracking import data_structures
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
Reported by Pylint.
Line: 34
Column: 1
from tensorflow.python.training.tracking import data_structures
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
@keras_parameterized.run_all_keras_modes
Reported by Pylint.
keras/saving/saved_model/load.py
661 issues
Line: 21
Column: 1
import re
import types
from keras import backend
from keras import regularizers
from keras.engine import input_spec
from keras.optimizer_v2 import optimizer_v2
from keras.protobuf import saved_metadata_pb2
from keras.protobuf import versions_pb2
Reported by Pylint.
Line: 22
Column: 1
import types
from keras import backend
from keras import regularizers
from keras.engine import input_spec
from keras.optimizer_v2 import optimizer_v2
from keras.protobuf import saved_metadata_pb2
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
Reported by Pylint.
Line: 23
Column: 1
from keras import backend
from keras import regularizers
from keras.engine import input_spec
from keras.optimizer_v2 import optimizer_v2
from keras.protobuf import saved_metadata_pb2
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
from keras.saving.saved_model import constants
Reported by Pylint.
Line: 24
Column: 1
from keras import backend
from keras import regularizers
from keras.engine import input_spec
from keras.optimizer_v2 import optimizer_v2
from keras.protobuf import saved_metadata_pb2
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import json_utils
Reported by Pylint.
Line: 25
Column: 1
from keras import regularizers
from keras.engine import input_spec
from keras.optimizer_v2 import optimizer_v2
from keras.protobuf import saved_metadata_pb2
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import json_utils
from keras.saving.saved_model import utils
Reported by Pylint.
Line: 26
Column: 1
from keras.engine import input_spec
from keras.optimizer_v2 import optimizer_v2
from keras.protobuf import saved_metadata_pb2
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import json_utils
from keras.saving.saved_model import utils
from keras.saving.saved_model.serialized_attributes import CommonEndpoints
Reported by Pylint.
Line: 27
Column: 1
from keras.optimizer_v2 import optimizer_v2
from keras.protobuf import saved_metadata_pb2
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import json_utils
from keras.saving.saved_model import utils
from keras.saving.saved_model.serialized_attributes import CommonEndpoints
from keras.utils import generic_utils
Reported by Pylint.
Line: 28
Column: 1
from keras.protobuf import saved_metadata_pb2
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import json_utils
from keras.saving.saved_model import utils
from keras.saving.saved_model.serialized_attributes import CommonEndpoints
from keras.utils import generic_utils
from keras.utils import metrics_utils
Reported by Pylint.
Line: 29
Column: 1
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import json_utils
from keras.saving.saved_model import utils
from keras.saving.saved_model.serialized_attributes import CommonEndpoints
from keras.utils import generic_utils
from keras.utils import metrics_utils
from keras.utils.generic_utils import LazyLoader
Reported by Pylint.
Line: 30
Column: 1
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import json_utils
from keras.saving.saved_model import utils
from keras.saving.saved_model.serialized_attributes import CommonEndpoints
from keras.utils import generic_utils
from keras.utils import metrics_utils
from keras.utils.generic_utils import LazyLoader
import tensorflow.compat.v1.logging as logging
Reported by Pylint.