The following issues were found
keras/layers/legacy_rnn/rnn_cell_impl.py
624 issues
Line: 15
Column: 1
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-classes-have-attributes
"""Module implementing RNN Cells.
This module provides a number of basic commonly used RNN cells, such as LSTM
(Long Short Term Memory) or GRU (Gated Recurrent Unit), and a number of
operators that allow adding dropouts, projections, or embeddings for inputs.
Reported by Pylint.
Line: 28
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
import collections
import warnings
from keras import activations
from keras import backend
Reported by Pylint.
Line: 32
Column: 1
import collections
import warnings
from keras import activations
from keras import backend
from keras import initializers
from keras.engine import base_layer_utils
from keras.engine import input_spec
from keras.layers.legacy_rnn import rnn_cell_wrapper_impl
Reported by Pylint.
Line: 33
Column: 1
import collections
import warnings
from keras import activations
from keras import backend
from keras import initializers
from keras.engine import base_layer_utils
from keras.engine import input_spec
from keras.layers.legacy_rnn import rnn_cell_wrapper_impl
from keras.legacy_tf_layers import base as base_layer
Reported by Pylint.
Line: 34
Column: 1
import warnings
from keras import activations
from keras import backend
from keras import initializers
from keras.engine import base_layer_utils
from keras.engine import input_spec
from keras.layers.legacy_rnn import rnn_cell_wrapper_impl
from keras.legacy_tf_layers import base as base_layer
from keras.utils import tf_utils
Reported by Pylint.
Line: 35
Column: 1
from keras import activations
from keras import backend
from keras import initializers
from keras.engine import base_layer_utils
from keras.engine import input_spec
from keras.layers.legacy_rnn import rnn_cell_wrapper_impl
from keras.legacy_tf_layers import base as base_layer
from keras.utils import tf_utils
from tensorflow.python.platform import tf_logging as logging
Reported by Pylint.
Line: 36
Column: 1
from keras import backend
from keras import initializers
from keras.engine import base_layer_utils
from keras.engine import input_spec
from keras.layers.legacy_rnn import rnn_cell_wrapper_impl
from keras.legacy_tf_layers import base as base_layer
from keras.utils import tf_utils
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 37
Column: 1
from keras import initializers
from keras.engine import base_layer_utils
from keras.engine import input_spec
from keras.layers.legacy_rnn import rnn_cell_wrapper_impl
from keras.legacy_tf_layers import base as base_layer
from keras.utils import tf_utils
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
Reported by Pylint.
Line: 38
Column: 1
from keras.engine import base_layer_utils
from keras.engine import input_spec
from keras.layers.legacy_rnn import rnn_cell_wrapper_impl
from keras.legacy_tf_layers import base as base_layer
from keras.utils import tf_utils
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
Reported by Pylint.
Line: 39
Column: 1
from keras.engine import input_spec
from keras.layers.legacy_rnn import rnn_cell_wrapper_impl
from keras.legacy_tf_layers import base as base_layer
from keras.utils import tf_utils
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
from tensorflow.python.util.tf_export import tf_export
_BIAS_VARIABLE_NAME = "bias"
Reported by Pylint.
keras/utils/generic_utils.py
585 issues
Line: 17
Column: 1
# ==============================================================================
"""Python utilities required by Keras."""
import tensorflow.compat.v2 as tf
import binascii
import codecs
import importlib
import marshal
Reported by Pylint.
Line: 36
Column: 1
from keras.utils import tf_contextlib
from keras.utils import tf_inspect
from tensorflow.python.util.tf_export import keras_export
# Flag that determines whether to skip the NotImplementedError when calling
# get_config in custom models and layers. This is only enabled when saving to
# SavedModel, when the config isn't required.
_SKIP_FAILED_SERIALIZATION = False
Reported by Pylint.
Line: 58
Column: 1
GLOBAL_CUSTOM_OBJECTS = CustomObjectsContext()
@keras_export('keras.utils.custom_object_scope', # pylint: disable=g-classes-have-attributes
'keras.utils.CustomObjectScope')
class CustomObjectScope:
"""Exposes custom classes/functions to Keras deserialization internals.
Under a scope `with custom_object_scope(objects_dict)`, Keras methods such
Reported by Pylint.
Line: 469
Column: 1
return None
# pylint: disable=g-bad-exception-name
class CustomMaskWarning(Warning):
pass
# pylint: enable=g-bad-exception-name
Reported by Pylint.
Line: 472
Column: 1
# pylint: disable=g-bad-exception-name
class CustomMaskWarning(Warning):
pass
# pylint: enable=g-bad-exception-name
@keras_export('keras.utils.serialize_keras_object')
def serialize_keras_object(instance):
"""Serialize a Keras object into a JSON-compatible representation.
Reported by Pylint.
Line: 164
Column: 5
def __enter__(self):
SHARED_OBJECT_DISABLED.disabled = True
self._orig_loading_scope = _shared_object_loading_scope()
self._orig_saving_scope = _shared_object_saving_scope()
def __exit__(self, *args, **kwargs):
SHARED_OBJECT_DISABLED.disabled = False
SHARED_OBJECT_LOADING.scope = self._orig_loading_scope
Reported by Pylint.
Line: 165
Column: 5
def __enter__(self):
SHARED_OBJECT_DISABLED.disabled = True
self._orig_loading_scope = _shared_object_loading_scope()
self._orig_saving_scope = _shared_object_saving_scope()
def __exit__(self, *args, **kwargs):
SHARED_OBJECT_DISABLED.disabled = False
SHARED_OBJECT_LOADING.scope = self._orig_loading_scope
SHARED_OBJECT_SAVING.scope = self._orig_saving_scope
Reported by Pylint.
Line: 200
Column: 5
if _shared_object_disabled():
return NoopLoadingScope()
global SHARED_OBJECT_LOADING
SHARED_OBJECT_LOADING.scope = self
self._obj_ids_to_obj = {}
return self
def get(self, object_id):
Reported by Pylint.
Line: 202
Column: 5
global SHARED_OBJECT_LOADING
SHARED_OBJECT_LOADING.scope = self
self._obj_ids_to_obj = {}
return self
def get(self, object_id):
"""Given a shared object ID, returns a previously instantiated object.
Reported by Pylint.
Line: 228
Column: 5
self._obj_ids_to_obj[object_id] = obj
def __exit__(self, *args, **kwargs):
global SHARED_OBJECT_LOADING
SHARED_OBJECT_LOADING.scope = NoopLoadingScope()
class SharedObjectConfig(dict):
"""A configuration container that keeps track of references.
Reported by Pylint.
keras/tests/tracking_test.py
582 issues
Line: 18
Column: 1
import os
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy
from keras import combinations
from keras import keras_parameterized
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy
from keras import combinations
from keras import keras_parameterized
from keras.engine import sequential
from keras.engine import training
Reported by Pylint.
Line: 22
Column: 1
from absl.testing import parameterized
import numpy
from keras import combinations
from keras import keras_parameterized
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.layers.normalization import batch_normalization_v1
Reported by Pylint.
Line: 23
Column: 1
from absl.testing import parameterized
import numpy
from keras import combinations
from keras import keras_parameterized
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.layers.normalization import batch_normalization_v1
from tensorflow.python.training.tracking import data_structures
Reported by Pylint.
Line: 24
Column: 1
import numpy
from keras import combinations
from keras import keras_parameterized
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.layers.normalization import batch_normalization_v1
from tensorflow.python.training.tracking import data_structures
from tensorflow.python.training.tracking import util
Reported by Pylint.
Line: 25
Column: 1
from keras import combinations
from keras import keras_parameterized
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.layers.normalization import batch_normalization_v1
from tensorflow.python.training.tracking import data_structures
from tensorflow.python.training.tracking import util
Reported by Pylint.
Line: 26
Column: 1
from keras import keras_parameterized
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.layers.normalization import batch_normalization_v1
from tensorflow.python.training.tracking import data_structures
from tensorflow.python.training.tracking import util
Reported by Pylint.
Line: 27
Column: 1
from keras.engine import sequential
from keras.engine import training
from keras.layers import core
from keras.layers.normalization import batch_normalization_v1
from tensorflow.python.training.tracking import data_structures
from tensorflow.python.training.tracking import util
class HasList(training.Model):
Reported by Pylint.
Line: 28
Column: 1
from keras.engine import training
from keras.layers import core
from keras.layers.normalization import batch_normalization_v1
from tensorflow.python.training.tracking import data_structures
from tensorflow.python.training.tracking import util
class HasList(training.Model):
Reported by Pylint.
Line: 29
Column: 1
from keras.layers import core
from keras.layers.normalization import batch_normalization_v1
from tensorflow.python.training.tracking import data_structures
from tensorflow.python.training.tracking import util
class HasList(training.Model):
def __init__(self):
Reported by Pylint.
keras/legacy_tf_layers/base_test.py
574 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
import copy
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 25
Column: 1
import copy
from absl.testing import parameterized
import numpy as np
from keras import backend
from keras import combinations
from keras.engine import base_layer as keras_base_layer
from keras.engine import input_spec
Reported by Pylint.
Line: 80
Column: 5
'my_var', [2, 2], initializer=tf.compat.v1.zeros_initializer())
self.assertEqual(variable.name, 'my_layer/my_var:0')
with base_layers.keras_style_scope():
layer = base_layers.Layer(name='my_layer')
# Assert that the layer was not instrumented as a Keras layer
self.assertFalse(layer._instrumented_keras_api)
# Test basic variable creation.
with backend.name_scope('bar'):
Reported by Pylint.
Line: 52
Column: 22
self.assertEqual(layer.trainable, False)
# Assert that the layer was not instrumented as a Keras layer
self.assertFalse(layer._instrumented_keras_api)
# Assert this was instrumented as a legacy layer
self.assertTrue(
keras_base_layer.keras_api_gauge.get_cell('legacy_layer').value())
keras_base_layer.keras_api_gauge.get_cell('legacy_layer').set(False)
Reported by Pylint.
Line: 83
Column: 22
with base_layers.keras_style_scope():
layer = base_layers.Layer(name='my_layer')
# Assert that the layer was not instrumented as a Keras layer
self.assertFalse(layer._instrumented_keras_api)
# Test basic variable creation.
with backend.name_scope('bar'):
variable = layer.add_variable(
'my_var', [2, 2], initializer=tf.compat.v1.zeros_initializer())
self.assertEqual(variable.name, 'bar/my_var:0')
Reported by Pylint.
Line: 185
Column: 7
class MyLayer(base_layers.Layer):
def call(self, inputs):
return tf.square(inputs)
layer = MyLayer(name='my_layer')
inputs = tf.random.uniform((5,), seed=1)
outputs = layer.apply(inputs)
Reported by Pylint.
Line: 201
Column: 7
class MyLayer(base_layers.Layer):
def call(self, inputs):
return tf.square(inputs)
layer = MyLayer(name='my_layer')
layer._private_tensor = tf.random.uniform(())
inputs = tf.random.uniform((5,), seed=1)
Reported by Pylint.
Line: 205
Column: 5
return tf.square(inputs)
layer = MyLayer(name='my_layer')
layer._private_tensor = tf.random.uniform(())
inputs = tf.random.uniform((5,), seed=1)
outputs = layer.apply(inputs)
self.assertEqual(layer.built, True)
if not tf.executing_eagerly():
# op only supported in GRAPH mode.
Reported by Pylint.
Line: 205
Column: 5
return tf.square(inputs)
layer = MyLayer(name='my_layer')
layer._private_tensor = tf.random.uniform(())
inputs = tf.random.uniform((5,), seed=1)
outputs = layer.apply(inputs)
self.assertEqual(layer.built, True)
if not tf.executing_eagerly():
# op only supported in GRAPH mode.
Reported by Pylint.
Line: 215
Column: 22
layer_copy = copy.deepcopy(layer)
self.assertEqual(layer_copy.name, layer.name)
self.assertEqual(layer_copy._scope.name, layer._scope.name)
self.assertEqual(layer_copy._private_tensor, layer._private_tensor)
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def testScopeNaming(self):
Reported by Pylint.
keras/optimizer_v2/optimizer_v2.py
570 issues
Line: 17
Column: 1
# ==============================================================================
"""Version 2 of class Optimizer."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-bad-name
import abc
import contextlib
import functools
Reported by Pylint.
Line: 18
Column: 1
"""Version 2 of class Optimizer."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-bad-name
import abc
import contextlib
import functools
import warnings
Reported by Pylint.
Line: 24
Column: 1
import contextlib
import functools
import warnings
from keras import backend
from keras import initializers
from keras.engine import base_layer_utils
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import utils as optimizer_utils
from keras.utils import generic_utils
Reported by Pylint.
Line: 25
Column: 1
import functools
import warnings
from keras import backend
from keras import initializers
from keras.engine import base_layer_utils
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import utils as optimizer_utils
from keras.utils import generic_utils
from keras.utils import layer_utils
Reported by Pylint.
Line: 26
Column: 1
import warnings
from keras import backend
from keras import initializers
from keras.engine import base_layer_utils
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import utils as optimizer_utils
from keras.utils import generic_utils
from keras.utils import layer_utils
from keras.utils import tf_inspect
Reported by Pylint.
Line: 27
Column: 1
from keras import backend
from keras import initializers
from keras.engine import base_layer_utils
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import utils as optimizer_utils
from keras.utils import generic_utils
from keras.utils import layer_utils
from keras.utils import tf_inspect
from keras.utils import tf_utils
Reported by Pylint.
Line: 28
Column: 1
from keras import initializers
from keras.engine import base_layer_utils
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import utils as optimizer_utils
from keras.utils import generic_utils
from keras.utils import layer_utils
from keras.utils import tf_inspect
from keras.utils import tf_utils
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 29
Column: 1
from keras.engine import base_layer_utils
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import utils as optimizer_utils
from keras.utils import generic_utils
from keras.utils import layer_utils
from keras.utils import tf_inspect
from keras.utils import tf_utils
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 30
Column: 1
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import utils as optimizer_utils
from keras.utils import generic_utils
from keras.utils import layer_utils
from keras.utils import tf_inspect
from keras.utils import tf_utils
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 31
Column: 1
from keras.optimizer_v2 import utils as optimizer_utils
from keras.utils import generic_utils
from keras.utils import layer_utils
from keras.utils import tf_inspect
from keras.utils import tf_utils
from tensorflow.python.util.tf_export import keras_export
keras_optimizers_gauge = tf.__internal__.monitoring.BoolGauge(
Reported by Pylint.
keras/engine/compile_utils_test.py
569 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for compile utitilies."""
import tensorflow.compat.v2 as tf
from keras import backend
from keras import keras_parameterized
from keras import losses as losses_mod
from keras import metrics as metrics_mod
from keras.engine import compile_utils
Reported by Pylint.
Line: 32
Column: 21
y_t, y_p = tf.ones((10, 5)), tf.zeros((10, 5))
total_loss = loss_container(y_t, y_p)
self.assertTrue(loss_container._built)
self.assertLen(loss_container._losses, 1)
self.assertEqual(total_loss.numpy(), 1.)
self.assertLen(loss_container.metrics, 1)
loss_metric = loss_container.metrics[0]
Reported by Pylint.
Line: 33
Column: 20
total_loss = loss_container(y_t, y_p)
self.assertTrue(loss_container._built)
self.assertLen(loss_container._losses, 1)
self.assertEqual(total_loss.numpy(), 1.)
self.assertLen(loss_container.metrics, 1)
loss_metric = loss_container.metrics[0]
self.assertEqual(loss_metric.name, 'loss')
Reported by Pylint.
Line: 53
Column: 22
total_loss = loss_container(y_t, y_p, sample_weight=sw)
self.assertEqual(loss_container._output_names, ['output_1', 'output_2'])
self.assertLen(loss_container._losses, 2)
self.assertEqual(total_loss.numpy(), 0.25)
loss_metric = loss_container.metrics[0]
Reported by Pylint.
Line: 55
Column: 20
self.assertEqual(loss_container._output_names, ['output_1', 'output_2'])
self.assertLen(loss_container._losses, 2)
self.assertEqual(total_loss.numpy(), 0.25)
loss_metric = loss_container.metrics[0]
self.assertEqual(loss_metric.name, 'loss')
self.assertEqual(loss_metric.result().numpy(), 0.25)
Reported by Pylint.
Line: 91
Column: 20
total_loss = loss_container(y_t, y_p, sample_weight=sw)
self.assertLen(loss_container._losses, 2)
self.assertEqual(total_loss.numpy(), 0.25)
self.assertLen(loss_container.metrics, 3)
loss_metric = loss_container.metrics[0]
self.assertEqual(loss_metric.name, 'loss')
Reported by Pylint.
Line: 301
Column: 5
loss_container = compile_utils.LossesContainer('mae')
y_p = tf.constant([[[1], [1]], [[0], [0]]], dtype=tf.float32)
y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32)
y_p._keras_mask = tf.constant([[1, 0], [1, 0]],
dtype=tf.float32)
total_loss = loss_container(y_t, y_p)
self.assertAlmostEqual(total_loss.numpy(), .25) # sum over batch size
Reported by Pylint.
Line: 332
Column: 5
y_p = tf.constant([[[1], [1]], [[0], [0]]], dtype=tf.float32)
y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32)
sw = tf.constant([[.2, .3], [.5, 0]], dtype=tf.float32)
y_p._keras_mask = tf.constant([[1, 0], [1, 0]],
dtype=tf.float32)
total_loss = loss_container(y_t, y_p, sample_weight=sw)
# (0 * .2 + 1 * .5) / 4
self.assertAlmostEqual(total_loss.numpy(), .125) # sum over batch size
Reported by Pylint.
Line: 359
Column: 22
y_t, y_p = tf.ones((10, 5)), tf.zeros((10, 5))
loss_container(y_t, y_p)
self.assertEqual(loss_container._losses[0].name, 'custom_loss_fn')
self.assertEqual(loss_container._losses[1].name, 'custom_loss_class')
def test_ragged_tensor_output(self):
"""Ensure that ragged tensors can be passed as targets and predictions."""
Reported by Pylint.
Line: 360
Column: 22
loss_container(y_t, y_p)
self.assertEqual(loss_container._losses[0].name, 'custom_loss_fn')
self.assertEqual(loss_container._losses[1].name, 'custom_loss_class')
def test_ragged_tensor_output(self):
"""Ensure that ragged tensors can be passed as targets and predictions."""
def custom_loss_fn(y_true, y_pred):
Reported by Pylint.
keras/feature_column/dense_features_test.py
563 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from tensorflow.python.eager import backprop
from tensorflow.python.framework import test_util
Reported by Pylint.
Line: 23
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from tensorflow.python.eager import backprop
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
Reported by Pylint.
Line: 25
Column: 1
from absl.testing import parameterized
import numpy as np
from tensorflow.python.eager import backprop
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
from keras.feature_column import dense_features as df
Reported by Pylint.
Line: 26
Column: 1
from absl.testing import parameterized
import numpy as np
from tensorflow.python.eager import backprop
from tensorflow.python.framework import test_util
from keras import combinations
from keras import keras_parameterized
from keras.feature_column import dense_features as df
Reported by Pylint.
Line: 104
Column: 16
embedding_dimension = 2
def _embedding_column_initializer(shape, dtype, partition_info=None):
offset = partition_info._var_offset[0]
del shape # unused
del dtype # unused
if offset == 0:
embedding_values = (
(1, 0), # id 0
Reported by Pylint.
Line: 1070
Column: 20
self.assertEqual(new_layer.name, orig_layer.name)
self.assertEqual(new_layer.trainable, trainable)
self.assertLen(new_layer._feature_columns, 3)
self.assertEqual(new_layer._feature_columns[0].name, 'a')
self.assertEqual(new_layer._feature_columns[1].initializer.mean, 0.0)
self.assertEqual(new_layer._feature_columns[1].categorical_column.name, 'b')
self.assertIsInstance(new_layer._feature_columns[0], cols[0].__class__)
self.assertIsInstance(new_layer._feature_columns[1], cols[1].__class__)
Reported by Pylint.
Line: 1071
Column: 22
self.assertEqual(new_layer.name, orig_layer.name)
self.assertEqual(new_layer.trainable, trainable)
self.assertLen(new_layer._feature_columns, 3)
self.assertEqual(new_layer._feature_columns[0].name, 'a')
self.assertEqual(new_layer._feature_columns[1].initializer.mean, 0.0)
self.assertEqual(new_layer._feature_columns[1].categorical_column.name, 'b')
self.assertIsInstance(new_layer._feature_columns[0], cols[0].__class__)
self.assertIsInstance(new_layer._feature_columns[1], cols[1].__class__)
self.assertIsInstance(new_layer._feature_columns[2], cols[2].__class__)
Reported by Pylint.
Line: 1072
Column: 22
self.assertEqual(new_layer.trainable, trainable)
self.assertLen(new_layer._feature_columns, 3)
self.assertEqual(new_layer._feature_columns[0].name, 'a')
self.assertEqual(new_layer._feature_columns[1].initializer.mean, 0.0)
self.assertEqual(new_layer._feature_columns[1].categorical_column.name, 'b')
self.assertIsInstance(new_layer._feature_columns[0], cols[0].__class__)
self.assertIsInstance(new_layer._feature_columns[1], cols[1].__class__)
self.assertIsInstance(new_layer._feature_columns[2], cols[2].__class__)
Reported by Pylint.
Line: 1073
Column: 22
self.assertLen(new_layer._feature_columns, 3)
self.assertEqual(new_layer._feature_columns[0].name, 'a')
self.assertEqual(new_layer._feature_columns[1].initializer.mean, 0.0)
self.assertEqual(new_layer._feature_columns[1].categorical_column.name, 'b')
self.assertIsInstance(new_layer._feature_columns[0], cols[0].__class__)
self.assertIsInstance(new_layer._feature_columns[1], cols[1].__class__)
self.assertIsInstance(new_layer._feature_columns[2], cols[2].__class__)
def test_crossed_column(self):
Reported by Pylint.
Line: 1074
Column: 27
self.assertEqual(new_layer._feature_columns[0].name, 'a')
self.assertEqual(new_layer._feature_columns[1].initializer.mean, 0.0)
self.assertEqual(new_layer._feature_columns[1].categorical_column.name, 'b')
self.assertIsInstance(new_layer._feature_columns[0], cols[0].__class__)
self.assertIsInstance(new_layer._feature_columns[1], cols[1].__class__)
self.assertIsInstance(new_layer._feature_columns[2], cols[2].__class__)
def test_crossed_column(self):
a = tf.feature_column.categorical_column_with_vocabulary_list(
Reported by Pylint.
keras/layers/preprocessing/image_preprocessing.py
560 issues
Line: 17
Column: 1
# ==============================================================================
"""Keras image preprocessing layers."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import numpy as np
from keras import backend
from keras.engine import base_layer
Reported by Pylint.
Line: 18
Column: 1
"""Keras image preprocessing layers."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import numpy as np
from keras import backend
from keras.engine import base_layer
from keras.engine import base_preprocessing_layer
Reported by Pylint.
Line: 26
Column: 1
from keras.engine import base_preprocessing_layer
from keras.preprocessing import image as image_preprocessing
from keras.utils import control_flow_util
from tensorflow.python.ops import stateless_random_ops
from tensorflow.python.util.tf_export import keras_export
ResizeMethod = tf.image.ResizeMethod
_RESIZE_METHODS = {
Reported by Pylint.
Line: 27
Column: 1
from keras.preprocessing import image as image_preprocessing
from keras.utils import control_flow_util
from tensorflow.python.ops import stateless_random_ops
from tensorflow.python.util.tf_export import keras_export
ResizeMethod = tf.image.ResizeMethod
_RESIZE_METHODS = {
'bilinear': ResizeMethod.BILINEAR,
Reported by Pylint.
Line: 262
Column: 1
input_height_t = input_shape[H_AXIS]
input_width_t = input_shape[W_AXIS]
ratio_cond = (input_height_t / input_width_t > (self.height / self.width))
# pylint: disable=g-long-lambda
resized_height = control_flow_util.smart_cond(
ratio_cond,
lambda: tf.cast(self.width * input_height_t / input_width_t,
input_height_t.dtype), lambda: self.height)
resized_width = control_flow_util.smart_cond(
Reported by Pylint.
Line: 271
Column: 1
ratio_cond, lambda: self.width,
lambda: tf.cast(self.height * input_width_t / input_height_t,
input_width_t.dtype))
# pylint: enable=g-long-lambda
resized_inputs = tf.image.resize(
images=inputs, size=tf.stack([resized_height, resized_width]))
img_hd_diff = resized_height - self.height
img_wd_diff = resized_width - self.width
Reported by Pylint.
Line: 92
Column: 3
super(Resizing, self).__init__(**kwargs)
base_preprocessing_layer.keras_kpl_gauge.get_cell('Resizing').set(True)
def call(self, inputs):
if self.crop_to_aspect_ratio:
outputs = image_preprocessing.smart_resize(
inputs,
size=[self.target_height, self.target_width],
interpolation=self._interpolation_method)
Reported by Pylint.
Line: 149
Column: 3
super(CenterCrop, self).__init__(**kwargs)
base_preprocessing_layer.keras_kpl_gauge.get_cell('CenterCrop').set(True)
def call(self, inputs):
inputs = tf.convert_to_tensor(inputs)
inputs_shape = tf.shape(inputs)
unbatched = inputs.shape.rank == 3
img_hd = inputs_shape[H_AXIS]
img_wd = inputs_shape[W_AXIS]
Reported by Pylint.
Line: 229
Column: 3
super(RandomCrop, self).__init__(**kwargs)
base_preprocessing_layer.keras_kpl_gauge.get_cell('RandomCrop').set(True)
def call(self, inputs, training=True):
if training is None:
training = backend.learning_phase()
inputs = tf.convert_to_tensor(inputs)
unbatched = inputs.shape.rank == 3
Reported by Pylint.
Line: 255
Column: 3
seed=self._rng.make_seeds()[:, 0]) % limit
return tf.slice(inputs, offset, crop_size)
# TODO(b/143885775): Share logic with Resize and CenterCrop.
def resize_and_center_cropped_inputs():
"""Deterministically resize to shorter side and center crop."""
input_shape = tf.shape(inputs)
input_height_t = input_shape[H_AXIS]
input_width_t = input_shape[W_AXIS]
Reported by Pylint.
keras/layers/gru_v2_test.py
556 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for GRU V2 layer."""
import tensorflow.compat.v2 as tf
import copy
import os
import shutil
Reported by Pylint.
Line: 23
Column: 1
import os
import shutil
from absl.testing import parameterized
import numpy as np
from tensorflow.core.protobuf import rewriter_config_pb2
import keras
from tensorflow.python.framework import test_util as tf_test_util
from keras import combinations
Reported by Pylint.
Line: 25
Column: 1
from absl.testing import parameterized
import numpy as np
from tensorflow.core.protobuf import rewriter_config_pb2
import keras
from tensorflow.python.framework import test_util as tf_test_util
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
Reported by Pylint.
Line: 27
Column: 1
import numpy as np
from tensorflow.core.protobuf import rewriter_config_pb2
import keras
from tensorflow.python.framework import test_util as tf_test_util
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.layers import recurrent as rnn_v1
from keras.layers import recurrent_v2 as rnn
Reported by Pylint.
Line: 66
Column: 22
unroll=unroll,
use_bias=use_bias,
reset_after=reset_after)
self.assertFalse(layer._could_use_gpu_kernel)
@testing_utils.run_v2_only
def test_use_on_default_activation_with_gpu_kernel(self):
layer = rnn.GRU(1, activation=tf.tanh)
self.assertTrue(layer._could_use_gpu_kernel)
Reported by Pylint.
Line: 71
Column: 21
@testing_utils.run_v2_only
def test_use_on_default_activation_with_gpu_kernel(self):
layer = rnn.GRU(1, activation=tf.tanh)
self.assertTrue(layer._could_use_gpu_kernel)
layer = rnn.GRU(1, recurrent_activation=tf.sigmoid)
self.assertTrue(layer._could_use_gpu_kernel)
def test_keras_model_with_gru(self):
Reported by Pylint.
Line: 74
Column: 21
self.assertTrue(layer._could_use_gpu_kernel)
layer = rnn.GRU(1, recurrent_activation=tf.sigmoid)
self.assertTrue(layer._could_use_gpu_kernel)
def test_keras_model_with_gru(self):
input_shape = 10
rnn_state_size = 8
output_shape = 8
Reported by Pylint.
Line: 621
Column: 3
# Make sure it doesn't crash with cudnn kernel.
model.predict(inputs)
# TODO (b/169895267): test with xla_gpu is disabled.
def test_deepcopy(self):
if not tf.executing_eagerly():
self.skipTest('v2-only test')
original_layer = rnn.GRU(5)
copied_layer = copy.deepcopy(original_layer)
Reported by Pylint.
Line: 708
Column: 42
_, runtime_value = model.predict(x_train)
if tf.test.is_gpu_available():
self.assertEqual(runtime_value[0], rnn._RUNTIME_GPU)
else:
self.assertEqual(runtime_value[0], rnn._RUNTIME_CPU)
@testing_utils.run_v2_only
def test_GRU_runtime(self):
Reported by Pylint.
Line: 710
Column: 42
if tf.test.is_gpu_available():
self.assertEqual(runtime_value[0], rnn._RUNTIME_GPU)
else:
self.assertEqual(runtime_value[0], rnn._RUNTIME_CPU)
@testing_utils.run_v2_only
def test_GRU_runtime(self):
layer = rnn.GRU(self.rnn_state_size, return_runtime=True)
Reported by Pylint.
keras/testing_utils.py
554 issues
Line: 17
Column: 1
# ==============================================================================
"""Utilities for unit-testing Keras."""
import tensorflow.compat.v2 as tf
import collections
import contextlib
import functools
import itertools
Reported by Pylint.
Line: 26
Column: 1
import threading
import numpy as np
from tensorflow.python.framework import test_util
from keras import backend
from keras import layers
from keras import models
from keras.engine import base_layer_utils
from keras.optimizer_v2 import adadelta as adadelta_v2
Reported by Pylint.
Line: 434
Column: 1
return models.Model(inputs, outputs)
class SmallSubclassMLP(models.Model):
"""A subclass model based small MLP."""
def __init__(self,
num_hidden,
num_classes,
Reported by Pylint.
Line: 455
Column: 1
if self.use_bn:
self.bn = layers.BatchNormalization(axis=-1)
def call(self, inputs, **kwargs):
x = self.layer_a(inputs)
if self.use_dp:
x = self.dp(x)
if self.use_bn:
x = self.bn(x)
Reported by Pylint.
Line: 455
Column: 3
if self.use_bn:
self.bn = layers.BatchNormalization(axis=-1)
def call(self, inputs, **kwargs):
x = self.layer_a(inputs)
if self.use_dp:
x = self.dp(x)
if self.use_bn:
x = self.bn(x)
Reported by Pylint.
Line: 464
Column: 1
return self.layer_b(x)
class _SmallSubclassMLPCustomBuild(models.Model):
"""A subclass model small MLP that uses a custom build method."""
def __init__(self, num_hidden, num_classes):
super(_SmallSubclassMLPCustomBuild, self).__init__()
self.layer_a = None
Reported by Pylint.
Line: 479
Column: 1
activation = 'sigmoid' if self.num_classes == 1 else 'softmax'
self.layer_b = layers.Dense(self.num_classes, activation=activation)
def call(self, inputs, **kwargs):
x = self.layer_a(inputs)
return self.layer_b(x)
def get_small_subclass_mlp(num_hidden, num_classes):
Reported by Pylint.
Line: 479
Column: 3
activation = 'sigmoid' if self.num_classes == 1 else 'softmax'
self.layer_b = layers.Dense(self.num_classes, activation=activation)
def call(self, inputs, **kwargs):
x = self.layer_a(inputs)
return self.layer_b(x)
def get_small_subclass_mlp(num_hidden, num_classes):
Reported by Pylint.
Line: 506
Column: 1
raise ValueError('Unknown model type {}'.format(model_type))
class _SubclassModel(models.Model):
"""A Keras subclass model."""
def __init__(self, model_layers, *args, **kwargs):
"""Instantiate a model.
Reported by Pylint.
Line: 534
Column: 1
def _layer_name_for_i(self, i):
return 'layer{}'.format(i)
def call(self, inputs, **kwargs):
x = inputs
for i in range(self.num_layers):
layer = getattr(self, self._layer_name_for_i(i))
x = layer(x)
return x
Reported by Pylint.