The following issues were found
keras/preprocessing/sequence.py
13 issues
Line: 18
Column: 1
"""Utilities for preprocessing sequence data."""
# pylint: disable=invalid-name
from keras_preprocessing import sequence
from keras.utils import data_utils
from tensorflow.python.util.tf_export import keras_export
make_sampling_table = sequence.make_sampling_table
Reported by Pylint.
Line: 21
Column: 1
from keras_preprocessing import sequence
from keras.utils import data_utils
from tensorflow.python.util.tf_export import keras_export
make_sampling_table = sequence.make_sampling_table
skipgrams = sequence.skipgrams
# TODO(fchollet): consider making `_remove_long_seq` public.
_remove_long_seq = sequence._remove_long_seq # pylint: disable=protected-access
Reported by Pylint.
Line: 25
Column: 3
make_sampling_table = sequence.make_sampling_table
skipgrams = sequence.skipgrams
# TODO(fchollet): consider making `_remove_long_seq` public.
_remove_long_seq = sequence._remove_long_seq # pylint: disable=protected-access
@keras_export('keras.preprocessing.sequence.TimeseriesGenerator')
class TimeseriesGenerator(sequence.TimeseriesGenerator, data_utils.Sequence):
Reported by Pylint.
Line: 30
Column: 1
@keras_export('keras.preprocessing.sequence.TimeseriesGenerator')
class TimeseriesGenerator(sequence.TimeseriesGenerator, data_utils.Sequence):
"""Utility class for generating batches of temporal data.
This class takes in a sequence of data-points gathered at
equal intervals, along with time series parameters such as
stride, length of history, etc., to produce batches for
Reported by Pylint.
Line: 30
Column: 1
@keras_export('keras.preprocessing.sequence.TimeseriesGenerator')
class TimeseriesGenerator(sequence.TimeseriesGenerator, data_utils.Sequence):
"""Utility class for generating batches of temporal data.
This class takes in a sequence of data-points gathered at
equal intervals, along with time series parameters such as
stride, length of history, etc., to produce batches for
Reported by Pylint.
Line: 85
Column: 3
np.array([[10], [11]]))
```
"""
pass
@keras_export('keras.preprocessing.sequence.pad_sequences')
def pad_sequences(sequences, maxlen=None, dtype='int32',
padding='pre', truncating='pre', value=0.):
Reported by Pylint.
Line: 30
Column: 1
@keras_export('keras.preprocessing.sequence.TimeseriesGenerator')
class TimeseriesGenerator(sequence.TimeseriesGenerator, data_utils.Sequence):
"""Utility class for generating batches of temporal data.
This class takes in a sequence of data-points gathered at
equal intervals, along with time series parameters such as
stride, length of history, etc., to produce batches for
Reported by Pylint.
Line: 31
Column: 1
@keras_export('keras.preprocessing.sequence.TimeseriesGenerator')
class TimeseriesGenerator(sequence.TimeseriesGenerator, data_utils.Sequence):
"""Utility class for generating batches of temporal data.
This class takes in a sequence of data-points gathered at
equal intervals, along with time series parameters such as
stride, length of history, etc., to produce batches for
training/validation.
Reported by Pylint.
Line: 85
Column: 1
np.array([[10], [11]]))
```
"""
pass
@keras_export('keras.preprocessing.sequence.pad_sequences')
def pad_sequences(sequences, maxlen=None, dtype='int32',
padding='pre', truncating='pre', value=0.):
Reported by Pylint.
Line: 89
Column: 1
@keras_export('keras.preprocessing.sequence.pad_sequences')
def pad_sequences(sequences, maxlen=None, dtype='int32',
padding='pre', truncating='pre', value=0.):
"""Pads sequences to the same length.
This function transforms a list (of length `num_samples`)
of sequences (lists of integers)
Reported by Pylint.
keras/distribute/distributed_training_utils_test.py
12 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for distributed training utility functions."""
import tensorflow.compat.v2 as tf
from keras import callbacks
from keras.distribute import distributed_training_utils_v1
from keras.optimizer_v2 import adam
Reported by Pylint.
Line: 24
Column: 1
from keras.optimizer_v2 import adam
class DistributedTrainingUtilsTest(tf.test.TestCase):
def test_validate_callbacks_predefined_callbacks(self):
supported_predefined_callbacks = [
callbacks.TensorBoard(),
callbacks.CSVLogger(filename='./log.csv'),
Reported by Pylint.
Line: 24
Column: 1
from keras.optimizer_v2 import adam
class DistributedTrainingUtilsTest(tf.test.TestCase):
def test_validate_callbacks_predefined_callbacks(self):
supported_predefined_callbacks = [
callbacks.TensorBoard(),
callbacks.CSVLogger(filename='./log.csv'),
Reported by Pylint.
Line: 26
Column: 3
class DistributedTrainingUtilsTest(tf.test.TestCase):
def test_validate_callbacks_predefined_callbacks(self):
supported_predefined_callbacks = [
callbacks.TensorBoard(),
callbacks.CSVLogger(filename='./log.csv'),
callbacks.EarlyStopping(),
callbacks.ModelCheckpoint(filepath='./checkpoint'),
Reported by Pylint.
Line: 26
Column: 1
class DistributedTrainingUtilsTest(tf.test.TestCase):
def test_validate_callbacks_predefined_callbacks(self):
supported_predefined_callbacks = [
callbacks.TensorBoard(),
callbacks.CSVLogger(filename='./log.csv'),
callbacks.EarlyStopping(),
callbacks.ModelCheckpoint(filepath='./checkpoint'),
Reported by Pylint.
Line: 27
Column: 1
class DistributedTrainingUtilsTest(tf.test.TestCase):
def test_validate_callbacks_predefined_callbacks(self):
supported_predefined_callbacks = [
callbacks.TensorBoard(),
callbacks.CSVLogger(filename='./log.csv'),
callbacks.EarlyStopping(),
callbacks.ModelCheckpoint(filepath='./checkpoint'),
callbacks.TerminateOnNaN(),
Reported by Pylint.
Line: 38
Column: 1
callbacks.RemoteMonitor()
]
distributed_training_utils_v1.validate_callbacks(
supported_predefined_callbacks, adam.Adam())
unsupported_predefined_callbacks = [
callbacks.ReduceLROnPlateau(),
callbacks.LearningRateScheduler(schedule=lambda epoch: 0.001)
Reported by Pylint.
Line: 41
Column: 1
distributed_training_utils_v1.validate_callbacks(
supported_predefined_callbacks, adam.Adam())
unsupported_predefined_callbacks = [
callbacks.ReduceLROnPlateau(),
callbacks.LearningRateScheduler(schedule=lambda epoch: 0.001)
]
for callback in unsupported_predefined_callbacks:
Reported by Pylint.
Line: 46
Column: 1
callbacks.LearningRateScheduler(schedule=lambda epoch: 0.001)
]
for callback in unsupported_predefined_callbacks:
with self.assertRaisesRegex(ValueError,
'You must specify a Keras Optimizer V2'):
distributed_training_utils_v1.validate_callbacks(
[callback], tf.compat.v1.train.AdamOptimizer())
Reported by Pylint.
Line: 47
Column: 1
]
for callback in unsupported_predefined_callbacks:
with self.assertRaisesRegex(ValueError,
'You must specify a Keras Optimizer V2'):
distributed_training_utils_v1.validate_callbacks(
[callback], tf.compat.v1.train.AdamOptimizer())
Reported by Pylint.
keras/benchmarks/saved_model_benchmarks/nasnet_large_benchmark_test.py
11 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
Reported by Pylint.
Line: 22
Column: 1
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_nasnet_large(self):
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_nasnet_large(self):
app = tf.keras.applications.NASNetLarge
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_nasnet_large(self):
app = tf.keras.applications.NASNetLarge
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 27
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_nasnet_large(self):
app = tf.keras.applications.NASNetLarge
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 27
Column: 3
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_nasnet_large(self):
app = tf.keras.applications.NASNetLarge
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 28
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_nasnet_large(self):
app = tf.keras.applications.NASNetLarge
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
Reported by Pylint.
Line: 29
Column: 1
def benchmark_save_and_load_nasnet_large(self):
app = tf.keras.applications.NASNetLarge
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
Reported by Pylint.
Line: 32
Column: 1
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
Reported by Pylint.
Line: 37
Column: 1
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
iters=load_result['iters'],
wall_time=load_result['wall_time'],
name=load_result['name'])
if __name__ == '__main__':
Reported by Pylint.
keras/benchmarks/saved_model_benchmarks/resnet152_v2_benchmark_test.py
11 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
Reported by Pylint.
Line: 22
Column: 1
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_resnet152_v2(self):
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_resnet152_v2(self):
app = tf.keras.applications.ResNet152V2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_resnet152_v2(self):
app = tf.keras.applications.ResNet152V2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 27
Column: 3
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_resnet152_v2(self):
app = tf.keras.applications.ResNet152V2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 27
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_resnet152_v2(self):
app = tf.keras.applications.ResNet152V2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 28
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_resnet152_v2(self):
app = tf.keras.applications.ResNet152V2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
Reported by Pylint.
Line: 29
Column: 1
def benchmark_save_and_load_resnet152_v2(self):
app = tf.keras.applications.ResNet152V2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
Reported by Pylint.
Line: 32
Column: 1
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
Reported by Pylint.
Line: 37
Column: 1
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
iters=load_result['iters'],
wall_time=load_result['wall_time'],
name=load_result['name'])
Reported by Pylint.
keras/benchmarks/saved_model_benchmarks/inception_resnet_v2_benchmark_test.py
11 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
Reported by Pylint.
Line: 22
Column: 1
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_inception_resnet_v2(self):
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_inception_resnet_v2(self):
app = tf.keras.applications.InceptionResNetV2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_inception_resnet_v2(self):
app = tf.keras.applications.InceptionResNetV2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 27
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_inception_resnet_v2(self):
app = tf.keras.applications.InceptionResNetV2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 27
Column: 3
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_inception_resnet_v2(self):
app = tf.keras.applications.InceptionResNetV2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 28
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_inception_resnet_v2(self):
app = tf.keras.applications.InceptionResNetV2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
Reported by Pylint.
Line: 29
Column: 1
def benchmark_save_and_load_inception_resnet_v2(self):
app = tf.keras.applications.InceptionResNetV2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
Reported by Pylint.
Line: 32
Column: 1
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
Reported by Pylint.
Line: 37
Column: 1
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
iters=load_result['iters'],
wall_time=load_result['wall_time'],
name=load_result['name'])
Reported by Pylint.
keras/benchmarks/saved_model_benchmarks/efficientnet_benchmark_test.py
11 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
Reported by Pylint.
Line: 22
Column: 1
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_efficient_net_b7(self):
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_efficient_net_b7(self):
app = tf.keras.applications.EfficientNetB7
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_efficient_net_b7(self):
app = tf.keras.applications.EfficientNetB7
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 27
Column: 3
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_efficient_net_b7(self):
app = tf.keras.applications.EfficientNetB7
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 27
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_efficient_net_b7(self):
app = tf.keras.applications.EfficientNetB7
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 28
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_efficient_net_b7(self):
app = tf.keras.applications.EfficientNetB7
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
Reported by Pylint.
Line: 29
Column: 1
def benchmark_save_and_load_efficient_net_b7(self):
app = tf.keras.applications.EfficientNetB7
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
Reported by Pylint.
Line: 32
Column: 1
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
Reported by Pylint.
Line: 37
Column: 1
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
iters=load_result['iters'],
wall_time=load_result['wall_time'],
name=load_result['name'])
if __name__ == '__main__':
Reported by Pylint.
keras/benchmarks/saved_model_benchmarks/densenet_benchmark_test.py
11 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
Reported by Pylint.
Line: 22
Column: 1
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_densenet_201(self):
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_densenet_201(self):
app = tf.keras.applications.DenseNet201
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_densenet_201(self):
app = tf.keras.applications.DenseNet201
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 27
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_densenet_201(self):
app = tf.keras.applications.DenseNet201
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 27
Column: 3
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_densenet_201(self):
app = tf.keras.applications.DenseNet201
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 28
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_densenet_201(self):
app = tf.keras.applications.DenseNet201
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
Reported by Pylint.
Line: 29
Column: 1
def benchmark_save_and_load_densenet_201(self):
app = tf.keras.applications.DenseNet201
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
Reported by Pylint.
Line: 32
Column: 1
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
Reported by Pylint.
Line: 37
Column: 1
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
iters=load_result['iters'],
wall_time=load_result['wall_time'],
name=load_result['name'])
if __name__ == '__main__':
Reported by Pylint.
keras/benchmarks/saved_model_benchmarks/vgg_benchmark_test.py
11 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
Reported by Pylint.
Line: 22
Column: 1
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_vgg19(self):
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_vgg19(self):
app = tf.keras.applications.VGG19
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_vgg19(self):
app = tf.keras.applications.VGG19
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 27
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_vgg19(self):
app = tf.keras.applications.VGG19
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 27
Column: 3
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_vgg19(self):
app = tf.keras.applications.VGG19
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 28
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_vgg19(self):
app = tf.keras.applications.VGG19
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
Reported by Pylint.
Line: 29
Column: 1
def benchmark_save_and_load_vgg19(self):
app = tf.keras.applications.VGG19
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
Reported by Pylint.
Line: 32
Column: 1
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
Reported by Pylint.
Line: 37
Column: 1
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
iters=load_result['iters'],
wall_time=load_result['wall_time'],
name=load_result['name'])
Reported by Pylint.
keras/benchmarks/saved_model_benchmarks/xception_benchmark_test.py
11 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
Reported by Pylint.
Line: 22
Column: 1
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_xception(self):
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_xception(self):
app = tf.keras.applications.Xception
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_xception(self):
app = tf.keras.applications.Xception
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 27
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_xception(self):
app = tf.keras.applications.Xception
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 27
Column: 3
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_xception(self):
app = tf.keras.applications.Xception
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 28
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_xception(self):
app = tf.keras.applications.Xception
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
Reported by Pylint.
Line: 29
Column: 1
def benchmark_save_and_load_xception(self):
app = tf.keras.applications.Xception
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
Reported by Pylint.
Line: 32
Column: 1
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
Reported by Pylint.
Line: 37
Column: 1
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
iters=load_result['iters'],
wall_time=load_result['wall_time'],
name=load_result['name'])
Reported by Pylint.
keras/benchmarks/saved_model_benchmarks/mobilenet_benchmark_test.py
11 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
Reported by Pylint.
Line: 22
Column: 1
from __future__ import print_function
import tensorflow as tf
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_mobilenet_v2(self):
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_mobilenet_v2(self):
app = tf.keras.applications.MobileNetV2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 25
Column: 1
from keras.benchmarks.saved_model_benchmarks import saved_model_benchmark_util
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_mobilenet_v2(self):
app = tf.keras.applications.MobileNetV2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
Reported by Pylint.
Line: 27
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_mobilenet_v2(self):
app = tf.keras.applications.MobileNetV2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 27
Column: 3
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_mobilenet_v2(self):
app = tf.keras.applications.MobileNetV2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
Reported by Pylint.
Line: 28
Column: 1
class BenchmarkSaveApplications(tf.test.Benchmark):
def benchmark_save_and_load_mobilenet_v2(self):
app = tf.keras.applications.MobileNetV2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
Reported by Pylint.
Line: 29
Column: 1
def benchmark_save_and_load_mobilenet_v2(self):
app = tf.keras.applications.MobileNetV2
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
Reported by Pylint.
Line: 32
Column: 1
save_result, load_result = (
saved_model_benchmark_util.save_and_load_benchmark(app))
self.report_benchmark(
iters=save_result['iters'],
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
Reported by Pylint.
Line: 37
Column: 1
wall_time=save_result['wall_time'],
name=save_result['name'])
self.report_benchmark(
iters=load_result['iters'],
wall_time=load_result['wall_time'],
name=load_result['name'])
if __name__ == '__main__':
Reported by Pylint.