The following issues were found
keras/datasets/cifar100.py
17 issues
Line: 24
Column: 1
from keras import backend
from keras.datasets.cifar import load_batch
from keras.utils.data_utils import get_file
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.datasets.cifar100.load_data')
def load_data(label_mode='fine'):
"""Loads the CIFAR100 dataset.
Reported by Pylint.
Line: 29
Column: 1
@keras_export('keras.datasets.cifar100.load_data')
def load_data(label_mode='fine'):
"""Loads the CIFAR100 dataset.
This is a dataset of 50,000 32x32 color training images and
10,000 test images, labeled over 100 fine-grained classes that are
grouped into 20 coarse-grained classes. See more info at the
[CIFAR homepage](https://www.cs.toronto.edu/~kriz/cifar.html).
Reported by Pylint.
Line: 68
Column: 1
assert y_test.shape == (10000, 1)
```
"""
if label_mode not in ['fine', 'coarse']:
raise ValueError('`label_mode` must be one of `"fine"`, `"coarse"`. '
f'Received: label_mode={label_mode}.')
dirname = 'cifar-100-python'
origin = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
Reported by Pylint.
Line: 69
Column: 1
```
"""
if label_mode not in ['fine', 'coarse']:
raise ValueError('`label_mode` must be one of `"fine"`, `"coarse"`. '
f'Received: label_mode={label_mode}.')
dirname = 'cifar-100-python'
origin = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
path = get_file(
Reported by Pylint.
Line: 72
Column: 1
raise ValueError('`label_mode` must be one of `"fine"`, `"coarse"`. '
f'Received: label_mode={label_mode}.')
dirname = 'cifar-100-python'
origin = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
path = get_file(
dirname,
origin=origin,
untar=True,
Reported by Pylint.
Line: 73
Column: 1
f'Received: label_mode={label_mode}.')
dirname = 'cifar-100-python'
origin = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
path = get_file(
dirname,
origin=origin,
untar=True,
file_hash=
Reported by Pylint.
Line: 74
Column: 1
dirname = 'cifar-100-python'
origin = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
path = get_file(
dirname,
origin=origin,
untar=True,
file_hash=
'85cd44d02ba6437773c5bbd22e183051d648de2e7d6b014e1ef29b855ba677a7')
Reported by Pylint.
Line: 81
Column: 1
file_hash=
'85cd44d02ba6437773c5bbd22e183051d648de2e7d6b014e1ef29b855ba677a7')
fpath = os.path.join(path, 'train')
x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels')
fpath = os.path.join(path, 'test')
x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels')
Reported by Pylint.
Line: 82
Column: 1
'85cd44d02ba6437773c5bbd22e183051d648de2e7d6b014e1ef29b855ba677a7')
fpath = os.path.join(path, 'train')
x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels')
fpath = os.path.join(path, 'test')
x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels')
y_train = np.reshape(y_train, (len(y_train), 1))
Reported by Pylint.
Line: 84
Column: 1
fpath = os.path.join(path, 'train')
x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels')
fpath = os.path.join(path, 'test')
x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels')
y_train = np.reshape(y_train, (len(y_train), 1))
y_test = np.reshape(y_test, (len(y_test), 1))
Reported by Pylint.
keras/benchmarks/benchmark_util_test.py
17 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for benchmark utitilies."""
import tensorflow as tf
from keras.benchmarks import benchmark_util
class BenchmarkUtilTest(tf.test.TestCase):
Reported by Pylint.
Line: 22
Column: 1
from keras.benchmarks import benchmark_util
class BenchmarkUtilTest(tf.test.TestCase):
def test_get_benchmark_name(self):
name = "benchmark_layer_call__Conv2D_small_shape"
expected = ["Conv2D", "small", "shape"]
out = benchmark_util.get_benchmark_name(name)
Reported by Pylint.
Line: 24
Column: 1
class BenchmarkUtilTest(tf.test.TestCase):
def test_get_benchmark_name(self):
name = "benchmark_layer_call__Conv2D_small_shape"
expected = ["Conv2D", "small", "shape"]
out = benchmark_util.get_benchmark_name(name)
self.assertAllEqual(out, expected)
Reported by Pylint.
Line: 24
Column: 3
class BenchmarkUtilTest(tf.test.TestCase):
def test_get_benchmark_name(self):
name = "benchmark_layer_call__Conv2D_small_shape"
expected = ["Conv2D", "small", "shape"]
out = benchmark_util.get_benchmark_name(name)
self.assertAllEqual(out, expected)
Reported by Pylint.
Line: 25
Column: 1
class BenchmarkUtilTest(tf.test.TestCase):
def test_get_benchmark_name(self):
name = "benchmark_layer_call__Conv2D_small_shape"
expected = ["Conv2D", "small", "shape"]
out = benchmark_util.get_benchmark_name(name)
self.assertAllEqual(out, expected)
def test_generate_benchmark_params_cpu_gpu(self):
Reported by Pylint.
Line: 26
Column: 1
def test_get_benchmark_name(self):
name = "benchmark_layer_call__Conv2D_small_shape"
expected = ["Conv2D", "small", "shape"]
out = benchmark_util.get_benchmark_name(name)
self.assertAllEqual(out, expected)
def test_generate_benchmark_params_cpu_gpu(self):
adam_opt = tf.keras.optimizers.Adam()
Reported by Pylint.
Line: 27
Column: 1
def test_get_benchmark_name(self):
name = "benchmark_layer_call__Conv2D_small_shape"
expected = ["Conv2D", "small", "shape"]
out = benchmark_util.get_benchmark_name(name)
self.assertAllEqual(out, expected)
def test_generate_benchmark_params_cpu_gpu(self):
adam_opt = tf.keras.optimizers.Adam()
sgd_opt = tf.keras.optimizers.SGD()
Reported by Pylint.
Line: 28
Column: 1
name = "benchmark_layer_call__Conv2D_small_shape"
expected = ["Conv2D", "small", "shape"]
out = benchmark_util.get_benchmark_name(name)
self.assertAllEqual(out, expected)
def test_generate_benchmark_params_cpu_gpu(self):
adam_opt = tf.keras.optimizers.Adam()
sgd_opt = tf.keras.optimizers.SGD()
params = [
Reported by Pylint.
Line: 30
Column: 3
out = benchmark_util.get_benchmark_name(name)
self.assertAllEqual(out, expected)
def test_generate_benchmark_params_cpu_gpu(self):
adam_opt = tf.keras.optimizers.Adam()
sgd_opt = tf.keras.optimizers.SGD()
params = [
("Adam", adam_opt, 10),
("SGD", sgd_opt, 10),
Reported by Pylint.
Line: 30
Column: 1
out = benchmark_util.get_benchmark_name(name)
self.assertAllEqual(out, expected)
def test_generate_benchmark_params_cpu_gpu(self):
adam_opt = tf.keras.optimizers.Adam()
sgd_opt = tf.keras.optimizers.SGD()
params = [
("Adam", adam_opt, 10),
("SGD", sgd_opt, 10),
Reported by Pylint.
keras/saving/model_config.py
16 issues
Line: 19
Column: 1
"""Functions that save the model's config into different formats."""
from keras.saving.saved_model import json_utils
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.models.model_from_config')
def model_from_config(config, custom_objects=None):
"""Instantiates a Keras model from its config.
Reported by Pylint.
Line: 51
Column: 1
raise TypeError('`model_from_config` expects a dictionary, not a list. '
f'Received: config={config}. Did you meant to use '
'`Sequential.from_config(config)`?')
from keras.layers import deserialize # pylint: disable=g-import-not-at-top
return deserialize(config, custom_objects=custom_objects)
@keras_export('keras.models.model_from_yaml')
def model_from_yaml(yaml_string, custom_objects=None):
Reported by Pylint.
Line: 103
Column: 1
A Keras model instance (uncompiled).
"""
config = json_utils.decode(json_string)
from keras.layers import deserialize # pylint: disable=g-import-not-at-top
return deserialize(config, custom_objects=custom_objects)
Reported by Pylint.
Line: 24
Column: 1
@keras_export('keras.models.model_from_config')
def model_from_config(config, custom_objects=None):
"""Instantiates a Keras model from its config.
Usage:
```
# for a Functional API model
tf.keras.Model().from_config(model.get_config())
Reported by Pylint.
Line: 47
Column: 1
Raises:
TypeError: if `config` is not a dictionary.
"""
if isinstance(config, list):
raise TypeError('`model_from_config` expects a dictionary, not a list. '
f'Received: config={config}. Did you meant to use '
'`Sequential.from_config(config)`?')
from keras.layers import deserialize # pylint: disable=g-import-not-at-top
return deserialize(config, custom_objects=custom_objects)
Reported by Pylint.
Line: 48
Column: 1
TypeError: if `config` is not a dictionary.
"""
if isinstance(config, list):
raise TypeError('`model_from_config` expects a dictionary, not a list. '
f'Received: config={config}. Did you meant to use '
'`Sequential.from_config(config)`?')
from keras.layers import deserialize # pylint: disable=g-import-not-at-top
return deserialize(config, custom_objects=custom_objects)
Reported by Pylint.
Line: 51
Column: 3
raise TypeError('`model_from_config` expects a dictionary, not a list. '
f'Received: config={config}. Did you meant to use '
'`Sequential.from_config(config)`?')
from keras.layers import deserialize # pylint: disable=g-import-not-at-top
return deserialize(config, custom_objects=custom_objects)
@keras_export('keras.models.model_from_yaml')
def model_from_yaml(yaml_string, custom_objects=None):
Reported by Pylint.
Line: 51
Column: 1
raise TypeError('`model_from_config` expects a dictionary, not a list. '
f'Received: config={config}. Did you meant to use '
'`Sequential.from_config(config)`?')
from keras.layers import deserialize # pylint: disable=g-import-not-at-top
return deserialize(config, custom_objects=custom_objects)
@keras_export('keras.models.model_from_yaml')
def model_from_yaml(yaml_string, custom_objects=None):
Reported by Pylint.
Line: 52
Column: 1
f'Received: config={config}. Did you meant to use '
'`Sequential.from_config(config)`?')
from keras.layers import deserialize # pylint: disable=g-import-not-at-top
return deserialize(config, custom_objects=custom_objects)
@keras_export('keras.models.model_from_yaml')
def model_from_yaml(yaml_string, custom_objects=None):
"""Parses a yaml model configuration file and returns a model instance.
Reported by Pylint.
Line: 57
Column: 1
@keras_export('keras.models.model_from_yaml')
def model_from_yaml(yaml_string, custom_objects=None):
"""Parses a yaml model configuration file and returns a model instance.
Note: Since TF 2.6, this method is no longer supported and will raise a
RuntimeError.
Args:
Reported by Pylint.
keras/saving/utils_v1/signature_def_utils.py
16 issues
Line: 17
Column: 1
# ==============================================================================
"""SignatureDef utility functions implementation."""
import tensorflow.compat.v2 as tf
from keras.saving.utils_v1 import unexported_constants
# LINT.IfChange
Reported by Pylint.
Line: 23
Column: 1
# LINT.IfChange
def supervised_train_signature_def(
inputs, loss, predictions=None, metrics=None):
return _supervised_signature_def(
unexported_constants.SUPERVISED_TRAIN_METHOD_NAME, inputs, loss=loss,
predictions=predictions, metrics=metrics)
Reported by Pylint.
Line: 25
Column: 1
# LINT.IfChange
def supervised_train_signature_def(
inputs, loss, predictions=None, metrics=None):
return _supervised_signature_def(
unexported_constants.SUPERVISED_TRAIN_METHOD_NAME, inputs, loss=loss,
predictions=predictions, metrics=metrics)
def supervised_eval_signature_def(
Reported by Pylint.
Line: 30
Column: 1
predictions=predictions, metrics=metrics)
def supervised_eval_signature_def(
inputs, loss, predictions=None, metrics=None):
return _supervised_signature_def(
unexported_constants.SUPERVISED_EVAL_METHOD_NAME, inputs, loss=loss,
predictions=predictions, metrics=metrics)
Reported by Pylint.
Line: 32
Column: 1
def supervised_eval_signature_def(
inputs, loss, predictions=None, metrics=None):
return _supervised_signature_def(
unexported_constants.SUPERVISED_EVAL_METHOD_NAME, inputs, loss=loss,
predictions=predictions, metrics=metrics)
def _supervised_signature_def(
Reported by Pylint.
Line: 40
Column: 1
def _supervised_signature_def(
method_name, inputs, loss=None, predictions=None,
metrics=None):
"""Creates a signature for training and eval data.
This function produces signatures that describe the inputs and outputs
of a supervised process, such as training or evaluation, that
results in loss, metrics, and the like. Note that this function only requires
inputs to be not None.
Reported by Pylint.
Line: 60
Column: 1
Raises:
ValueError: If inputs or outputs is `None`.
"""
if inputs is None or not inputs:
raise ValueError('f{method_name} `inputs` cannot be None or empty.')
signature_inputs = {key: tf.compat.v1.saved_model.build_tensor_info(tensor)
for key, tensor in inputs.items()}
Reported by Pylint.
Line: 61
Column: 1
ValueError: If inputs or outputs is `None`.
"""
if inputs is None or not inputs:
raise ValueError('f{method_name} `inputs` cannot be None or empty.')
signature_inputs = {key: tf.compat.v1.saved_model.build_tensor_info(tensor)
for key, tensor in inputs.items()}
signature_outputs = {}
Reported by Pylint.
Line: 63
Column: 1
if inputs is None or not inputs:
raise ValueError('f{method_name} `inputs` cannot be None or empty.')
signature_inputs = {key: tf.compat.v1.saved_model.build_tensor_info(tensor)
for key, tensor in inputs.items()}
signature_outputs = {}
for output_set in (loss, predictions, metrics):
if output_set is not None:
Reported by Pylint.
Line: 66
Column: 1
signature_inputs = {key: tf.compat.v1.saved_model.build_tensor_info(tensor)
for key, tensor in inputs.items()}
signature_outputs = {}
for output_set in (loss, predictions, metrics):
if output_set is not None:
sig_out = {key: tf.compat.v1.saved_model.build_tensor_info(tensor)
for key, tensor in output_set.items()}
signature_outputs.update(sig_out)
Reported by Pylint.
keras/layers/preprocessing/hashing_distribution_test.py
16 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for keras.layers.preprocessing.hashing."""
import tensorflow.compat.v2 as tf
import numpy as np
import keras
from keras import keras_parameterized
Reported by Pylint.
Line: 32
Column: 1
tf.__internal__.test.combinations.combine(
distribution=all_strategies,
mode=["eager", "graph"]))
class HashingDistributionTest(keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest):
def test_distribution(self, distribution):
input_data = np.asarray([["omar"], ["stringer"], ["marlo"], ["wire"]])
input_dataset = tf.data.Dataset.from_tensor_slices(input_data).batch(
Reported by Pylint.
Line: 35
Column: 3
class HashingDistributionTest(keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest):
def test_distribution(self, distribution):
input_data = np.asarray([["omar"], ["stringer"], ["marlo"], ["wire"]])
input_dataset = tf.data.Dataset.from_tensor_slices(input_data).batch(
2, drop_remainder=True)
expected_output = [[0], [0], [1], [0]]
Reported by Pylint.
Line: 35
Column: 1
class HashingDistributionTest(keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest):
def test_distribution(self, distribution):
input_data = np.asarray([["omar"], ["stringer"], ["marlo"], ["wire"]])
input_dataset = tf.data.Dataset.from_tensor_slices(input_data).batch(
2, drop_remainder=True)
expected_output = [[0], [0], [1], [0]]
Reported by Pylint.
Line: 36
Column: 1
preprocessing_test_utils.PreprocessingLayerTest):
def test_distribution(self, distribution):
input_data = np.asarray([["omar"], ["stringer"], ["marlo"], ["wire"]])
input_dataset = tf.data.Dataset.from_tensor_slices(input_data).batch(
2, drop_remainder=True)
expected_output = [[0], [0], [1], [0]]
tf.config.set_soft_device_placement(True)
Reported by Pylint.
Line: 37
Column: 1
def test_distribution(self, distribution):
input_data = np.asarray([["omar"], ["stringer"], ["marlo"], ["wire"]])
input_dataset = tf.data.Dataset.from_tensor_slices(input_data).batch(
2, drop_remainder=True)
expected_output = [[0], [0], [1], [0]]
tf.config.set_soft_device_placement(True)
Reported by Pylint.
Line: 39
Column: 1
input_data = np.asarray([["omar"], ["stringer"], ["marlo"], ["wire"]])
input_dataset = tf.data.Dataset.from_tensor_slices(input_data).batch(
2, drop_remainder=True)
expected_output = [[0], [0], [1], [0]]
tf.config.set_soft_device_placement(True)
with distribution.scope():
input_data = keras.Input(shape=(None,), dtype=tf.string)
Reported by Pylint.
Line: 41
Column: 1
2, drop_remainder=True)
expected_output = [[0], [0], [1], [0]]
tf.config.set_soft_device_placement(True)
with distribution.scope():
input_data = keras.Input(shape=(None,), dtype=tf.string)
layer = hashing.Hashing(num_bins=2)
int_data = layer(input_data)
Reported by Pylint.
Line: 43
Column: 1
tf.config.set_soft_device_placement(True)
with distribution.scope():
input_data = keras.Input(shape=(None,), dtype=tf.string)
layer = hashing.Hashing(num_bins=2)
int_data = layer(input_data)
model = keras.Model(inputs=input_data, outputs=int_data)
output_dataset = model.predict(input_dataset)
Reported by Pylint.
Line: 44
Column: 1
tf.config.set_soft_device_placement(True)
with distribution.scope():
input_data = keras.Input(shape=(None,), dtype=tf.string)
layer = hashing.Hashing(num_bins=2)
int_data = layer(input_data)
model = keras.Model(inputs=input_data, outputs=int_data)
output_dataset = model.predict(input_dataset)
self.assertAllEqual(expected_output, output_dataset)
Reported by Pylint.
keras/integration_test/preprocessing_applied_in_dataset_test.py
16 issues
Line: 20
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from keras.integration_test import preprocessing_test_utils as utils
ds_combinations = tf.__internal__.distribute.combinations
multi_process_runner = tf.__internal__.distribute.multi_process_runner
test_combinations = tf.__internal__.test.combinations
Reported by Pylint.
Line: 21
Column: 1
from __future__ import print_function
import tensorflow as tf
from keras.integration_test import preprocessing_test_utils as utils
ds_combinations = tf.__internal__.distribute.combinations
multi_process_runner = tf.__internal__.distribute.multi_process_runner
test_combinations = tf.__internal__.test.combinations
Reported by Pylint.
Line: 45
Column: 1
@ds_combinations.generate(
test_combinations.combine(strategy=STRATEGIES, mode="eager"))
class PreprocessingAppliedInDatasetTest(tf.test.TestCase):
"""Demonstrate Keras preprocessing layers applied in tf.data.Dataset.map."""
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
Reported by Pylint.
Line: 46
Column: 1
@ds_combinations.generate(
test_combinations.combine(strategy=STRATEGIES, mode="eager"))
class PreprocessingAppliedInDatasetTest(tf.test.TestCase):
"""Demonstrate Keras preprocessing layers applied in tf.data.Dataset.map."""
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
training_model = utils.make_training_model()
Reported by Pylint.
Line: 48
Column: 3
class PreprocessingAppliedInDatasetTest(tf.test.TestCase):
"""Demonstrate Keras preprocessing layers applied in tf.data.Dataset.map."""
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
training_model = utils.make_training_model()
training_model.compile(optimizer="sgd", loss="binary_crossentropy")
Reported by Pylint.
Line: 48
Column: 1
class PreprocessingAppliedInDatasetTest(tf.test.TestCase):
"""Demonstrate Keras preprocessing layers applied in tf.data.Dataset.map."""
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
training_model = utils.make_training_model()
training_model.compile(optimizer="sgd", loss="binary_crossentropy")
Reported by Pylint.
Line: 48
Column: 3
class PreprocessingAppliedInDatasetTest(tf.test.TestCase):
"""Demonstrate Keras preprocessing layers applied in tf.data.Dataset.map."""
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
training_model = utils.make_training_model()
training_model.compile(optimizer="sgd", loss="binary_crossentropy")
Reported by Pylint.
Line: 49
Column: 1
"""Demonstrate Keras preprocessing layers applied in tf.data.Dataset.map."""
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
training_model = utils.make_training_model()
training_model.compile(optimizer="sgd", loss="binary_crossentropy")
dataset = utils.make_dataset()
Reported by Pylint.
Line: 50
Column: 1
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
training_model = utils.make_training_model()
training_model.compile(optimizer="sgd", loss="binary_crossentropy")
dataset = utils.make_dataset()
dataset = dataset.batch(utils.BATCH_SIZE)
Reported by Pylint.
Line: 51
Column: 1
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
training_model = utils.make_training_model()
training_model.compile(optimizer="sgd", loss="binary_crossentropy")
dataset = utils.make_dataset()
dataset = dataset.batch(utils.BATCH_SIZE)
dataset = dataset.map(lambda x, y: (preprocessing_model(x), y))
Reported by Pylint.
keras/layers/layers_test.py
15 issues
Line: 15
Column: 1
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-classes-have-attributes
"""Tests for layers.__init__."""
import tensorflow.compat.v2 as tf
from keras import layers
Reported by Pylint.
Line: 18
Column: 1
# pylint: disable=g-classes-have-attributes
"""Tests for layers.__init__."""
import tensorflow.compat.v2 as tf
from keras import layers
class LayersTest(tf.test.TestCase):
Reported by Pylint.
Line: 28
Column: 23
if tf.__internal__.tf2.enabled():
normalization_parent = layers.Normalization.__module__.split('.')[-1]
self.assertEqual('normalization', normalization_parent)
self.assertTrue(layers.BatchNormalization._USE_V2_BEHAVIOR)
else:
self.assertFalse(layers.BatchNormalization._USE_V2_BEHAVIOR)
if __name__ == '__main__':
Reported by Pylint.
Line: 30
Column: 24
self.assertEqual('normalization', normalization_parent)
self.assertTrue(layers.BatchNormalization._USE_V2_BEHAVIOR)
else:
self.assertFalse(layers.BatchNormalization._USE_V2_BEHAVIOR)
if __name__ == '__main__':
tf.test.main()
Reported by Pylint.
Line: 22
Column: 1
from keras import layers
class LayersTest(tf.test.TestCase):
def test_keras_private_symbol(self):
if tf.__internal__.tf2.enabled():
normalization_parent = layers.Normalization.__module__.split('.')[-1]
self.assertEqual('normalization', normalization_parent)
Reported by Pylint.
Line: 22
Column: 1
from keras import layers
class LayersTest(tf.test.TestCase):
def test_keras_private_symbol(self):
if tf.__internal__.tf2.enabled():
normalization_parent = layers.Normalization.__module__.split('.')[-1]
self.assertEqual('normalization', normalization_parent)
Reported by Pylint.
Line: 24
Column: 3
class LayersTest(tf.test.TestCase):
def test_keras_private_symbol(self):
if tf.__internal__.tf2.enabled():
normalization_parent = layers.Normalization.__module__.split('.')[-1]
self.assertEqual('normalization', normalization_parent)
self.assertTrue(layers.BatchNormalization._USE_V2_BEHAVIOR)
else:
Reported by Pylint.
Line: 24
Column: 1
class LayersTest(tf.test.TestCase):
def test_keras_private_symbol(self):
if tf.__internal__.tf2.enabled():
normalization_parent = layers.Normalization.__module__.split('.')[-1]
self.assertEqual('normalization', normalization_parent)
self.assertTrue(layers.BatchNormalization._USE_V2_BEHAVIOR)
else:
Reported by Pylint.
Line: 25
Column: 1
class LayersTest(tf.test.TestCase):
def test_keras_private_symbol(self):
if tf.__internal__.tf2.enabled():
normalization_parent = layers.Normalization.__module__.split('.')[-1]
self.assertEqual('normalization', normalization_parent)
self.assertTrue(layers.BatchNormalization._USE_V2_BEHAVIOR)
else:
self.assertFalse(layers.BatchNormalization._USE_V2_BEHAVIOR)
Reported by Pylint.
Line: 26
Column: 1
def test_keras_private_symbol(self):
if tf.__internal__.tf2.enabled():
normalization_parent = layers.Normalization.__module__.split('.')[-1]
self.assertEqual('normalization', normalization_parent)
self.assertTrue(layers.BatchNormalization._USE_V2_BEHAVIOR)
else:
self.assertFalse(layers.BatchNormalization._USE_V2_BEHAVIOR)
Reported by Pylint.
keras/datasets/cifar.py
15 issues
Line: 21
Column: 1
def load_batch(fpath, label_key='labels'):
"""Internal utility for parsing CIFAR data.
Args:
fpath: path the file to parse.
label_key: key for label data in the retrieve
dictionary.
Reported by Pylint.
Line: 31
Column: 29
Returns:
A tuple `(data, labels)`.
"""
with open(fpath, 'rb') as f:
d = cPickle.load(f, encoding='bytes')
# decode utf8
d_decoded = {}
for k, v in d.items():
d_decoded[k.decode('utf8')] = v
Reported by Pylint.
Line: 31
Column: 1
Returns:
A tuple `(data, labels)`.
"""
with open(fpath, 'rb') as f:
d = cPickle.load(f, encoding='bytes')
# decode utf8
d_decoded = {}
for k, v in d.items():
d_decoded[k.decode('utf8')] = v
Reported by Pylint.
Line: 32
Column: 1
A tuple `(data, labels)`.
"""
with open(fpath, 'rb') as f:
d = cPickle.load(f, encoding='bytes')
# decode utf8
d_decoded = {}
for k, v in d.items():
d_decoded[k.decode('utf8')] = v
d = d_decoded
Reported by Pylint.
Line: 32
Column: 5
A tuple `(data, labels)`.
"""
with open(fpath, 'rb') as f:
d = cPickle.load(f, encoding='bytes')
# decode utf8
d_decoded = {}
for k, v in d.items():
d_decoded[k.decode('utf8')] = v
d = d_decoded
Reported by Pylint.
Line: 34
Column: 1
with open(fpath, 'rb') as f:
d = cPickle.load(f, encoding='bytes')
# decode utf8
d_decoded = {}
for k, v in d.items():
d_decoded[k.decode('utf8')] = v
d = d_decoded
data = d['data']
labels = d[label_key]
Reported by Pylint.
Line: 35
Column: 1
d = cPickle.load(f, encoding='bytes')
# decode utf8
d_decoded = {}
for k, v in d.items():
d_decoded[k.decode('utf8')] = v
d = d_decoded
data = d['data']
labels = d[label_key]
Reported by Pylint.
Line: 35
Column: 12
d = cPickle.load(f, encoding='bytes')
# decode utf8
d_decoded = {}
for k, v in d.items():
d_decoded[k.decode('utf8')] = v
d = d_decoded
data = d['data']
labels = d[label_key]
Reported by Pylint.
Line: 36
Column: 1
# decode utf8
d_decoded = {}
for k, v in d.items():
d_decoded[k.decode('utf8')] = v
d = d_decoded
data = d['data']
labels = d[label_key]
data = data.reshape(data.shape[0], 3, 32, 32)
Reported by Pylint.
Line: 37
Column: 1
d_decoded = {}
for k, v in d.items():
d_decoded[k.decode('utf8')] = v
d = d_decoded
data = d['data']
labels = d[label_key]
data = data.reshape(data.shape[0], 3, 32, 32)
return data, labels
Reported by Pylint.
keras/utils/np_utils_test.py
15 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for np_utils."""
import tensorflow.compat.v2 as tf
import numpy as np
from keras.utils import np_utils
Reported by Pylint.
Line: 24
Column: 1
from keras.utils import np_utils
class TestNPUtils(tf.test.TestCase):
def test_to_categorical(self):
num_classes = 5
shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)]
expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes),
Reported by Pylint.
Line: 24
Column: 1
from keras.utils import np_utils
class TestNPUtils(tf.test.TestCase):
def test_to_categorical(self):
num_classes = 5
shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)]
expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes),
Reported by Pylint.
Line: 26
Column: 1
class TestNPUtils(tf.test.TestCase):
def test_to_categorical(self):
num_classes = 5
shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)]
expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes),
(5, 4, 3, num_classes), (3, num_classes),
(3, 2, num_classes)]
Reported by Pylint.
Line: 26
Column: 3
class TestNPUtils(tf.test.TestCase):
def test_to_categorical(self):
num_classes = 5
shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)]
expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes),
(5, 4, 3, num_classes), (3, num_classes),
(3, 2, num_classes)]
Reported by Pylint.
Line: 27
Column: 1
class TestNPUtils(tf.test.TestCase):
def test_to_categorical(self):
num_classes = 5
shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)]
expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes),
(5, 4, 3, num_classes), (3, num_classes),
(3, 2, num_classes)]
labels = [np.random.randint(0, num_classes, shape) for shape in shapes]
Reported by Pylint.
Line: 28
Column: 1
def test_to_categorical(self):
num_classes = 5
shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)]
expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes),
(5, 4, 3, num_classes), (3, num_classes),
(3, 2, num_classes)]
labels = [np.random.randint(0, num_classes, shape) for shape in shapes]
one_hots = [
Reported by Pylint.
Line: 29
Column: 1
def test_to_categorical(self):
num_classes = 5
shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)]
expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes),
(5, 4, 3, num_classes), (3, num_classes),
(3, 2, num_classes)]
labels = [np.random.randint(0, num_classes, shape) for shape in shapes]
one_hots = [
np_utils.to_categorical(label, num_classes) for label in labels]
Reported by Pylint.
Line: 32
Column: 1
expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes),
(5, 4, 3, num_classes), (3, num_classes),
(3, 2, num_classes)]
labels = [np.random.randint(0, num_classes, shape) for shape in shapes]
one_hots = [
np_utils.to_categorical(label, num_classes) for label in labels]
for label, one_hot, expected_shape in zip(labels,
one_hots,
expected_shapes):
Reported by Pylint.
Line: 33
Column: 1
(5, 4, 3, num_classes), (3, num_classes),
(3, 2, num_classes)]
labels = [np.random.randint(0, num_classes, shape) for shape in shapes]
one_hots = [
np_utils.to_categorical(label, num_classes) for label in labels]
for label, one_hot, expected_shape in zip(labels,
one_hots,
expected_shapes):
# Check shape
Reported by Pylint.
keras/utils/io_utils.py
13 issues
Line: 15
Column: 1
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-import-not-at-top
"""Utilities related to disk I/O."""
import os
Reported by Pylint.
Line: 22
Column: 1
def path_to_string(path):
"""Convert `PathLike` objects to their string representation.
If given a non-string typed path object, converts it to its string
representation.
If the object passed to `path` is not among the above, then it is
Reported by Pylint.
Line: 37
Column: 1
Returns:
A string representation of the path argument, if Python support exists.
"""
if isinstance(path, os.PathLike):
return os.fspath(path)
return path
def ask_to_proceed_with_overwrite(filepath):
Reported by Pylint.
Line: 38
Column: 1
A string representation of the path argument, if Python support exists.
"""
if isinstance(path, os.PathLike):
return os.fspath(path)
return path
def ask_to_proceed_with_overwrite(filepath):
"""Produces a prompt asking about overwriting a file.
Reported by Pylint.
Line: 39
Column: 1
"""
if isinstance(path, os.PathLike):
return os.fspath(path)
return path
def ask_to_proceed_with_overwrite(filepath):
"""Produces a prompt asking about overwriting a file.
Reported by Pylint.
Line: 43
Column: 1
def ask_to_proceed_with_overwrite(filepath):
"""Produces a prompt asking about overwriting a file.
Args:
filepath: the path to the file to be overwritten.
Returns:
Reported by Pylint.
Line: 51
Column: 1
Returns:
True if we can proceed with overwrite, False otherwise.
"""
overwrite = input('[WARNING] %s already exists - overwrite? '
'[y/n]' % (filepath)).strip().lower()
while overwrite not in ('y', 'n'):
overwrite = input('Enter "y" (overwrite) or "n" '
'(cancel).').strip().lower()
if overwrite == 'n':
Reported by Pylint.
Line: 53
Column: 1
"""
overwrite = input('[WARNING] %s already exists - overwrite? '
'[y/n]' % (filepath)).strip().lower()
while overwrite not in ('y', 'n'):
overwrite = input('Enter "y" (overwrite) or "n" '
'(cancel).').strip().lower()
if overwrite == 'n':
return False
print('[TIP] Next time specify overwrite=True!')
Reported by Pylint.
Line: 54
Column: 1
overwrite = input('[WARNING] %s already exists - overwrite? '
'[y/n]' % (filepath)).strip().lower()
while overwrite not in ('y', 'n'):
overwrite = input('Enter "y" (overwrite) or "n" '
'(cancel).').strip().lower()
if overwrite == 'n':
return False
print('[TIP] Next time specify overwrite=True!')
return True
Reported by Pylint.
Line: 56
Column: 1
while overwrite not in ('y', 'n'):
overwrite = input('Enter "y" (overwrite) or "n" '
'(cancel).').strip().lower()
if overwrite == 'n':
return False
print('[TIP] Next time specify overwrite=True!')
return True
Reported by Pylint.