The following issues were found
keras/engine/compile_utils.py
422 issues
Line: 17
Column: 1
# ==============================================================================
"""Utilities for `Model.compile`."""
import tensorflow.compat.v2 as tf
import copy
from keras import losses as losses_mod
from keras import metrics as metrics_mod
from keras.utils import generic_utils
Reported by Pylint.
Line: 283
Column: 3
loss._allow_sum_over_batch_size = True # pylint: disable=protected-access
return loss
def _should_broadcast(self, obj):
return not tf.nest.is_nested(obj)
def _copy_object(self, obj):
return obj # Losses don't need to be copied.
Reported by Pylint.
Line: 339
Column: 3
return None
return tf.nest.flatten(self._weighted_metrics)
def build(self, y_pred, y_true):
"""One-time setup of metric objects."""
super(MetricsContainer, self).build(y_pred)
self._metrics = self._maybe_broadcast_to_outputs(y_pred, self._metrics)
self._metrics = self._conform_to_outputs(y_pred, self._metrics)
Reported by Pylint.
Line: 423
Column: 5
def _create_ordered_metrics(self):
"""Cache the flat order needed when returning metrics, for backwards compat."""
self._metrics_in_order = []
for output_metrics, output_weighted_metrics in zip(self._metrics,
self._weighted_metrics):
for m in tf.nest.flatten(output_metrics):
if m is not None:
self._metrics_in_order.append(m)
Reported by Pylint.
Line: 546
Column: 3
return metric_obj
def _should_broadcast(self, obj):
# e.g. 'mse'.
if not tf.nest.is_nested(obj):
return True
# e.g. ['mse'] or ['mse', 'mae'].
return (isinstance(obj, (list, tuple)) and
Reported by Pylint.
Line: 704
Column: 7
if mask is not None:
mask = tf.cast(mask, y_p.dtype)
if sw is not None:
mask, _, sw = (
losses_utils.squeeze_or_expand_dimensions(mask, sample_weight=sw))
sw *= mask
else:
sw = mask
return sw
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import copy
from keras import losses as losses_mod
from keras import metrics as metrics_mod
from keras.utils import generic_utils
from keras.utils import losses_utils
from keras.utils import tf_utils
Reported by Pylint.
Line: 27
Column: 1
from keras.utils import tf_utils
class Container:
"""Base Container class."""
def __init__(self, output_names=None):
self._output_names = output_names
Reported by Pylint.
Line: 28
Column: 1
class Container:
"""Base Container class."""
def __init__(self, output_names=None):
self._output_names = output_names
def build(self, y_pred):
Reported by Pylint.
Line: 30
Column: 1
class Container:
"""Base Container class."""
def __init__(self, output_names=None):
self._output_names = output_names
def build(self, y_pred):
if self._output_names is None:
# In Subclass API, output names like 'output_1' are used for
Reported by Pylint.
keras/layers/recurrent_v2.py
418 issues
Line: 15
Column: 1
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-classes-have-attributes
"""Recurrent layers for TF 2."""
import tensorflow.compat.v2 as tf
import uuid
Reported by Pylint.
Line: 18
Column: 1
# pylint: disable=g-classes-have-attributes
"""Recurrent layers for TF 2."""
import tensorflow.compat.v2 as tf
import uuid
from tensorflow.python.eager.context import get_device_name
from keras import activations
from keras import backend
Reported by Pylint.
Line: 21
Column: 1
import tensorflow.compat.v2 as tf
import uuid
from tensorflow.python.eager.context import get_device_name
from keras import activations
from keras import backend
from keras.engine.input_spec import InputSpec
from keras.layers import recurrent
from tensorflow.python.platform import tf_logging as logging
Reported by Pylint.
Line: 26
Column: 1
from keras import backend
from keras.engine.input_spec import InputSpec
from keras.layers import recurrent
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
# The following string constants are used by Defun approach for unified backend
# of LSTM and GRU.
Reported by Pylint.
Line: 27
Column: 1
from keras.engine.input_spec import InputSpec
from keras.layers import recurrent
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import keras_export
# The following string constants are used by Defun approach for unified backend
# of LSTM and GRU.
_FUNCTION_API_NAME_ATTRIBUTE = 'api_implements'
Reported by Pylint.
Line: 56
Column: 3
return False
# TODO(b/169707691): The wrapper can be removed if TFLite doesn't need to rely
# on supportive attributes from LSTM/GRU.
class _DefunWrapper:
"""A wrapper with no deep copy of the Defun in LSTM/GRU layer."""
def __init__(self, time_major, go_backwards, layer_name):
Reported by Pylint.
Line: 420
Column: 3
input_shape = backend.int_shape(inputs)
timesteps = input_shape[0] if self.time_major else input_shape[1]
# TODO(b/156447398) Investigate why the cuDNN kernel fails with ragged
# inputs.
if is_ragged_input or not self._could_use_gpu_kernel:
kwargs = {'training': training}
self._maybe_reset_cell_dropout_mask(self.cell)
Reported by Pylint.
Line: 1148
Column: 3
input_shape = backend.int_shape(inputs)
timesteps = input_shape[0] if self.time_major else input_shape[1]
# TODO(b/156447398) Investigate why the cuDNN kernel fails with ragged
# inputs.
if is_ragged_input or not self._could_use_gpu_kernel:
# Fall back to use the normal LSTM.
kwargs = {'training': training}
self._maybe_reset_cell_dropout_mask(self.cell)
Reported by Pylint.
Line: 1
Column: 1
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import uuid
from tensorflow.python.eager.context import get_device_name
from keras import activations
from keras import backend
from keras.engine.input_spec import InputSpec
from keras.layers import recurrent
Reported by Pylint.
keras/layers/preprocessing/integer_lookup_test.py
417 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras text vectorization preprocessing layer."""
import tensorflow.compat.v2 as tf
import gc
import itertools
import os
import random
Reported by Pylint.
Line: 24
Column: 1
import os
import random
from absl.testing import parameterized
import numpy as np
import keras
from keras import keras_parameterized
from keras import testing_utils
Reported by Pylint.
Line: 85
Column: 3
if use_dataset:
# Keras APIs expect batched datasets.
# TODO(rachelim): `model.predict` predicts the result on each
# dataset batch separately, then tries to concatenate the results
# together. When the results have different shapes on the non-concat
# axis (which can happen in the output_mode = INT case for
# IntegerLookup), the concatenation fails. In real use cases, this may
# not be an issue because users are likely to pipe the preprocessing layer
Reported by Pylint.
Line: 602
Column: 3
# Delete the session and graph to ensure that the loaded model is generated
# from scratch.
# TODO(b/149526183): Can't clear session when TF2 is disabled.
if tf.__internal__.tf2.enabled():
keras.backend.clear_session()
loaded_model = keras.models.load_model(
output_path,
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import gc
import itertools
import os
import random
from absl.testing import parameterized
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import gc
import itertools
import os
import random
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 21
Column: 1
import gc
import itertools
import os
import random
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 22
Column: 1
import gc
import itertools
import os
import random
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 35
Column: 1
def _get_end_to_end_test_cases():
test_cases = (
{
"testcase_name":
"test_ints_soft_vocab_cap",
# Create an array where 1138 is the most frequent term, followed by
# 1729, then 725, then 42. This ensures that the vocab accumulator
Reported by Pylint.
Line: 58
Column: 1
tf.int64
},)
crossed_test_cases = []
# Cross above test cases with use_dataset in (True, False)
for use_dataset in (True, False):
for case in test_cases:
case = case.copy()
if use_dataset:
Reported by Pylint.
keras/distribute/custom_training_loop_models_test.py
413 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for custom training loops."""
import tensorflow.compat.v2 as tf
import os
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 21
Column: 1
import os
from absl.testing import parameterized
import numpy as np
import keras
from keras.distribute import strategy_combinations
from keras.layers import core
Reported by Pylint.
Line: 108
Column: 7
def test_keras_subclass_model_optimizer_run(self, distribution):
def get_subclass_model():
class KerasSubclassModel(keras.Model):
def __init__(self):
super(KerasSubclassModel, self).__init__()
self.l = keras.layers.Dense(4, name="dense")
Reported by Pylint.
Line: 114
Column: 9
super(KerasSubclassModel, self).__init__()
self.l = keras.layers.Dense(4, name="dense")
def call(self, x):
return self.l(x)
return KerasSubclassModel()
dataset = _get_dataset()
input_iterator = iter(distribution.experimental_distribute_dataset(dataset))
Reported by Pylint.
Line: 490
Column: 9
self.num_outputs = num_outputs
def build(self, input_shape):
self.kernel = self.add_variable(
"kernel", shape=[int(input_shape[-1]), self.num_outputs])
@tf.function(jit_compile=True)
def call(self, inputs):
return tf.matmul(inputs, self.kernel)
Reported by Pylint.
Line: 494
Column: 7
"kernel", shape=[int(input_shape[-1]), self.num_outputs])
@tf.function(jit_compile=True)
def call(self, inputs):
return tf.matmul(inputs, self.kernel)
with distribution.scope():
x = keras.layers.Input(shape=(3,))
y = CustomDense(4)(x)
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import os
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 30
Column: 1
from keras.optimizer_v2 import gradient_descent
class CustomModel(tf.Module):
def __init__(self, name=None):
super(CustomModel, self).__init__(name=name)
with self.name_scope:
self._layers = [
Reported by Pylint.
Line: 30
Column: 1
from keras.optimizer_v2 import gradient_descent
class CustomModel(tf.Module):
def __init__(self, name=None):
super(CustomModel, self).__init__(name=name)
with self.name_scope:
self._layers = [
Reported by Pylint.
Line: 32
Column: 1
class CustomModel(tf.Module):
def __init__(self, name=None):
super(CustomModel, self).__init__(name=name)
with self.name_scope:
self._layers = [
keras.layers.Dense(4, name="dense"),
]
Reported by Pylint.
keras/optimizer_v2/rmsprop_test.py
409 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for rmsprop."""
import tensorflow.compat.v2 as tf
import copy
import itertools
import math
Reported by Pylint.
Line: 23
Column: 1
import itertools
import math
from absl.testing import parameterized
import numpy as np
from tensorflow.python.framework import test_util
from keras import combinations
from keras import testing_utils
from keras.optimizer_v2 import learning_rate_schedule
Reported by Pylint.
Line: 25
Column: 1
from absl.testing import parameterized
import numpy as np
from tensorflow.python.framework import test_util
from keras import combinations
from keras import testing_utils
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import rmsprop
Reported by Pylint.
Line: 26
Column: 1
from absl.testing import parameterized
import numpy as np
from tensorflow.python.framework import test_util
from keras import combinations
from keras import testing_utils
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import rmsprop
_DATA_TYPES = [
Reported by Pylint.
Line: 27
Column: 1
import numpy as np
from tensorflow.python.framework import test_util
from keras import combinations
from keras import testing_utils
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import rmsprop
_DATA_TYPES = [
tf.half, tf.float32, tf.float64, tf.complex64,
Reported by Pylint.
Line: 28
Column: 1
from tensorflow.python.framework import test_util
from keras import combinations
from keras import testing_utils
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import rmsprop
_DATA_TYPES = [
tf.half, tf.float32, tf.float64, tf.complex64,
tf.complex128
Reported by Pylint.
Line: 29
Column: 1
from keras import combinations
from keras import testing_utils
from keras.optimizer_v2 import learning_rate_schedule
from keras.optimizer_v2 import rmsprop
_DATA_TYPES = [
tf.half, tf.float32, tf.float64, tf.complex64,
tf.complex128
]
Reported by Pylint.
Line: 95
Column: 3
return var_t, mg_t, rms_t, mom_t
def testDense(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for (dtype, learning_rate, rho, momentum, epsilon, centered) in _TESTPARAMS:
with tf.compat.v1.get_default_graph().as_default(), testing_utils.use_gpu():
# Initialize variables for numpy implementation.
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
grads0_np = np.array([0.1, 0.2], dtype=dtype.as_numpy_dtype)
Reported by Pylint.
Line: 172
Column: 3
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testDenseWithLearningRateDecay(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
with tf.Graph().as_default():
var0_np = np.array([1.0, 2.0])
grads0_np = np.array([0.1, 0.2])
var1_np = np.array([3.0, 4.0])
grads1_np = np.array([0.01, 0.2])
Reported by Pylint.
Line: 244
Column: 3
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testDenseWithLearningRateInverseTimeDecay(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
with tf.Graph().as_default():
var0_np = np.array([1.0, 2.0])
grads0_np = np.array([0.1, 0.2])
var1_np = np.array([3.0, 4.0])
grads1_np = np.array([0.01, 0.2])
Reported by Pylint.
keras/optimizer_v2/legacy_learning_rate_decay_test.py
401 issues
Line: 17
Column: 1
# ==============================================================================
"""Functional test for learning rate decay."""
import tensorflow.compat.v2 as tf
import math
from keras import combinations
from keras import keras_parameterized
from keras.optimizer_v2 import legacy_learning_rate_decay as learning_rate_decay
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import math
from keras import combinations
from keras import keras_parameterized
from keras.optimizer_v2 import legacy_learning_rate_decay as learning_rate_decay
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
Reported by Pylint.
Line: 21
Column: 1
import math
from keras import combinations
from keras import keras_parameterized
from keras.optimizer_v2 import legacy_learning_rate_decay as learning_rate_decay
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
class LRDecayTest(keras_parameterized.TestCase):
Reported by Pylint.
Line: 22
Column: 1
import math
from keras import combinations
from keras import keras_parameterized
from keras.optimizer_v2 import legacy_learning_rate_decay as learning_rate_decay
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
class LRDecayTest(keras_parameterized.TestCase):
Reported by Pylint.
Line: 22
Column: 1
import math
from keras import combinations
from keras import keras_parameterized
from keras.optimizer_v2 import legacy_learning_rate_decay as learning_rate_decay
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
class LRDecayTest(keras_parameterized.TestCase):
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import math
from keras import combinations
from keras import keras_parameterized
from keras.optimizer_v2 import legacy_learning_rate_decay as learning_rate_decay
Reported by Pylint.
Line: 26
Column: 1
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
class LRDecayTest(keras_parameterized.TestCase):
def testContinuous(self):
self.evaluate(tf.compat.v1.global_variables_initializer())
step = 5
decayed_lr = tf.compat.v1.train.exponential_decay(0.05, step, 10, 0.96)
Reported by Pylint.
Line: 28
Column: 1
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
class LRDecayTest(keras_parameterized.TestCase):
def testContinuous(self):
self.evaluate(tf.compat.v1.global_variables_initializer())
step = 5
decayed_lr = tf.compat.v1.train.exponential_decay(0.05, step, 10, 0.96)
expected = .05 * 0.96**(5.0 / 10.0)
self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6)
Reported by Pylint.
Line: 28
Column: 3
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
class LRDecayTest(keras_parameterized.TestCase):
def testContinuous(self):
self.evaluate(tf.compat.v1.global_variables_initializer())
step = 5
decayed_lr = tf.compat.v1.train.exponential_decay(0.05, step, 10, 0.96)
expected = .05 * 0.96**(5.0 / 10.0)
self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6)
Reported by Pylint.
Line: 28
Column: 3
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
class LRDecayTest(keras_parameterized.TestCase):
def testContinuous(self):
self.evaluate(tf.compat.v1.global_variables_initializer())
step = 5
decayed_lr = tf.compat.v1.train.exponential_decay(0.05, step, 10, 0.96)
expected = .05 * 0.96**(5.0 / 10.0)
self.assertAllClose(self.evaluate(decayed_lr), expected, 1e-6)
Reported by Pylint.
keras/layers/merge_test.py
393 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for merge layers."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
from keras import backend
from keras import combinations
Reported by Pylint.
Line: 231
Column: 42
keras.layers.Multiply, keras.layers.Minimum,
keras.layers.Maximum, keras.layers.Average,
keras.layers.Concatenate]))
def test_merge_with_ragged_input(self, layer):
ragged_data = tf.ragged.constant(
[[1., 1., 1.], [1., 1.], [1., 1., 1., 1.]], ragged_rank=1)
dense_data = ragged_data.to_tensor()
input1 = keras.Input(shape=(None,), ragged=True)
input2 = keras.Input(shape=(None,), ragged=True)
Reported by Pylint.
Line: 30
Column: 1
@keras_parameterized.run_all_keras_modes
class MergeLayersTest(keras_parameterized.TestCase):
def test_merge_add(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
i3 = keras.layers.Input(shape=(4, 5))
Reported by Pylint.
Line: 32
Column: 1
@keras_parameterized.run_all_keras_modes
class MergeLayersTest(keras_parameterized.TestCase):
def test_merge_add(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
i3 = keras.layers.Input(shape=(4, 5))
add_layer = keras.layers.Add()
Reported by Pylint.
Line: 32
Column: 3
@keras_parameterized.run_all_keras_modes
class MergeLayersTest(keras_parameterized.TestCase):
def test_merge_add(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
i3 = keras.layers.Input(shape=(4, 5))
add_layer = keras.layers.Add()
Reported by Pylint.
Line: 33
Column: 5
class MergeLayersTest(keras_parameterized.TestCase):
def test_merge_add(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
i3 = keras.layers.Input(shape=(4, 5))
add_layer = keras.layers.Add()
o = add_layer([i1, i2, i3])
Reported by Pylint.
Line: 33
Column: 1
class MergeLayersTest(keras_parameterized.TestCase):
def test_merge_add(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
i3 = keras.layers.Input(shape=(4, 5))
add_layer = keras.layers.Add()
o = add_layer([i1, i2, i3])
Reported by Pylint.
Line: 34
Column: 1
def test_merge_add(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
i3 = keras.layers.Input(shape=(4, 5))
add_layer = keras.layers.Add()
o = add_layer([i1, i2, i3])
self.assertListEqual(o.shape.as_list(), [None, 4, 5])
Reported by Pylint.
Line: 34
Column: 5
def test_merge_add(self):
i1 = keras.layers.Input(shape=(4, 5))
i2 = keras.layers.Input(shape=(4, 5))
i3 = keras.layers.Input(shape=(4, 5))
add_layer = keras.layers.Add()
o = add_layer([i1, i2, i3])
self.assertListEqual(o.shape.as_list(), [None, 4, 5])
Reported by Pylint.
keras/optimizer_v2/adagrad_test.py
381 issues
Line: 17
Column: 1
# ==============================================================================
"""Functional tests for aggregate operations."""
import tensorflow.compat.v2 as tf
import copy
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
Line: 21
Column: 1
import copy
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras.optimizer_v2 import adagrad
from keras.optimizer_v2 import learning_rate_schedule
Reported by Pylint.
Line: 23
Column: 1
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras.optimizer_v2 import adagrad
from keras.optimizer_v2 import learning_rate_schedule
_DATA_TYPES = [
tf.half, tf.float32, tf.float64, tf.complex64,
Reported by Pylint.
Line: 24
Column: 1
from absl.testing import parameterized
import numpy as np
from keras import combinations
from keras.optimizer_v2 import adagrad
from keras.optimizer_v2 import learning_rate_schedule
_DATA_TYPES = [
tf.half, tf.float32, tf.float64, tf.complex64,
tf.complex128
Reported by Pylint.
Line: 25
Column: 1
import numpy as np
from keras import combinations
from keras.optimizer_v2 import adagrad
from keras.optimizer_v2 import learning_rate_schedule
_DATA_TYPES = [
tf.half, tf.float32, tf.float64, tf.complex64,
tf.complex128
]
Reported by Pylint.
Line: 414
Column: 1
with tf.Graph().as_default():
for dtype in _DATA_TYPES:
var_repeated = tf.Variable([1.0, 2.0], dtype=dtype)
loss_repeated = lambda: tf.reduce_sum( # pylint: disable=g-long-lambda
tf.compat.v1.nn.embedding_lookup(var_repeated, [0, 0])) # pylint: disable=cell-var-from-loop
var_aggregated = tf.Variable([1.0, 2.0], dtype=dtype)
loss_aggregated = lambda: 2 * tf.reduce_sum( # pylint: disable=g-long-lambda
tf.compat.v1.nn.embedding_lookup(var_aggregated, [0])) # pylint: disable=cell-var-from-loop
update_op_repeated = adagrad.Adagrad(2.0).minimize(
Reported by Pylint.
Line: 417
Column: 1
loss_repeated = lambda: tf.reduce_sum( # pylint: disable=g-long-lambda
tf.compat.v1.nn.embedding_lookup(var_repeated, [0, 0])) # pylint: disable=cell-var-from-loop
var_aggregated = tf.Variable([1.0, 2.0], dtype=dtype)
loss_aggregated = lambda: 2 * tf.reduce_sum( # pylint: disable=g-long-lambda
tf.compat.v1.nn.embedding_lookup(var_aggregated, [0])) # pylint: disable=cell-var-from-loop
update_op_repeated = adagrad.Adagrad(2.0).minimize(
loss_repeated, var_list=[var_repeated])
update_op_aggregated = adagrad.Adagrad(2.0).minimize(
loss_aggregated, var_list=[var_aggregated])
Reported by Pylint.
Line: 241
Column: 3
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testMinimizeSparseResourceVariable(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
with tf.Graph().as_default():
for dtype in _DATA_TYPES:
var0 = tf.Variable([[1.0, 2.0], [3.0, 4.0]], dtype=dtype)
x = tf.constant([[4.0], [5.0]], dtype=dtype)
Reported by Pylint.
Line: 264
Column: 3
atol=0.01)
def testTensorLearningRate(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
with tf.Graph().as_default():
for dtype in _DATA_TYPES:
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
Reported by Pylint.
Line: 297
Column: 3
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testSparseBasic(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
with tf.Graph().as_default():
for dtype in _DATA_TYPES:
var0_np = np.array([1.0, 1.0, 2.0], dtype=dtype.as_numpy_dtype)
grads0_np = np.array([0.1, 0, 0.1], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 3.0, 4.0], dtype=dtype.as_numpy_dtype)
Reported by Pylint.
keras/optimizer_v2/learning_rate_schedule_test.py
379 issues
Line: 19
Column: 1
import math
from absl.testing import parameterized
from keras import combinations
from keras.optimizer_v2 import gradient_descent
from keras.optimizer_v2 import learning_rate_schedule
import numpy as np
Reported by Pylint.
Line: 21
Column: 1
from absl.testing import parameterized
from keras import combinations
from keras.optimizer_v2 import gradient_descent
from keras.optimizer_v2 import learning_rate_schedule
import numpy as np
import tensorflow.compat.v2 as tf
Reported by Pylint.
Line: 22
Column: 1
from absl.testing import parameterized
from keras import combinations
from keras.optimizer_v2 import gradient_descent
from keras.optimizer_v2 import learning_rate_schedule
import numpy as np
import tensorflow.compat.v2 as tf
Reported by Pylint.
Line: 23
Column: 1
from keras import combinations
from keras.optimizer_v2 import gradient_descent
from keras.optimizer_v2 import learning_rate_schedule
import numpy as np
import tensorflow.compat.v2 as tf
Reported by Pylint.
Line: 26
Column: 1
from keras.optimizer_v2 import learning_rate_schedule
import numpy as np
import tensorflow.compat.v2 as tf
def _maybe_serialized(lr_decay, serialize_and_deserialize):
if serialize_and_deserialize:
serialized = learning_rate_schedule.serialize(lr_decay)
Reported by Pylint.
Line: 72
Column: 3
self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6)
def testVariables(self, serialize):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
with tf.Graph().as_default():
step = tf.Variable(1)
assign_1 = step.assign(1)
assign_2 = step.assign(2)
assign_100 = step.assign(100)
Reported by Pylint.
Line: 30
Column: 3
def _maybe_serialized(lr_decay, serialize_and_deserialize):
if serialize_and_deserialize:
serialized = learning_rate_schedule.serialize(lr_decay)
return learning_rate_schedule.deserialize(serialized)
else:
return lr_decay
Reported by Pylint.
Line: 30
Column: 1
def _maybe_serialized(lr_decay, serialize_and_deserialize):
if serialize_and_deserialize:
serialized = learning_rate_schedule.serialize(lr_decay)
return learning_rate_schedule.deserialize(serialized)
else:
return lr_decay
Reported by Pylint.
Line: 31
Column: 1
def _maybe_serialized(lr_decay, serialize_and_deserialize):
if serialize_and_deserialize:
serialized = learning_rate_schedule.serialize(lr_decay)
return learning_rate_schedule.deserialize(serialized)
else:
return lr_decay
Reported by Pylint.
Line: 32
Column: 1
def _maybe_serialized(lr_decay, serialize_and_deserialize):
if serialize_and_deserialize:
serialized = learning_rate_schedule.serialize(lr_decay)
return learning_rate_schedule.deserialize(serialized)
else:
return lr_decay
@combinations.generate(combinations.combine(serialize=[False, True],
Reported by Pylint.
keras/tests/add_loss_correctness_test.py
372 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests add_loss API correctness."""
import tensorflow.compat.v2 as tf
import numpy as np
from keras import Input
from keras import keras_parameterized
from keras import layers
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import numpy as np
from keras import Input
from keras import keras_parameterized
from keras import layers
from keras import losses
from keras import Model
from keras import optimizer_v2
Reported by Pylint.
Line: 21
Column: 1
import numpy as np
from keras import Input
from keras import keras_parameterized
from keras import layers
from keras import losses
from keras import Model
from keras import optimizer_v2
from keras import Sequential
Reported by Pylint.
Line: 22
Column: 1
import numpy as np
from keras import Input
from keras import keras_parameterized
from keras import layers
from keras import losses
from keras import Model
from keras import optimizer_v2
from keras import Sequential
from keras import testing_utils
Reported by Pylint.
Line: 23
Column: 1
from keras import Input
from keras import keras_parameterized
from keras import layers
from keras import losses
from keras import Model
from keras import optimizer_v2
from keras import Sequential
from keras import testing_utils
from tensorflow.python.platform import tf_logging as logging
Reported by Pylint.
Line: 24
Column: 1
from keras import keras_parameterized
from keras import layers
from keras import losses
from keras import Model
from keras import optimizer_v2
from keras import Sequential
from keras import testing_utils
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training.rmsprop import RMSPropOptimizer
Reported by Pylint.
Line: 25
Column: 1
from keras import layers
from keras import losses
from keras import Model
from keras import optimizer_v2
from keras import Sequential
from keras import testing_utils
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training.rmsprop import RMSPropOptimizer
Reported by Pylint.
Line: 26
Column: 1
from keras import losses
from keras import Model
from keras import optimizer_v2
from keras import Sequential
from keras import testing_utils
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training.rmsprop import RMSPropOptimizer
MAE = losses.MeanAbsoluteError
Reported by Pylint.
Line: 27
Column: 1
from keras import Model
from keras import optimizer_v2
from keras import Sequential
from keras import testing_utils
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training.rmsprop import RMSPropOptimizer
MAE = losses.MeanAbsoluteError
mae = losses.mean_absolute_error
Reported by Pylint.
Line: 28
Column: 1
from keras import optimizer_v2
from keras import Sequential
from keras import testing_utils
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training.rmsprop import RMSPropOptimizer
MAE = losses.MeanAbsoluteError
mae = losses.mean_absolute_error
Reported by Pylint.