The following issues were found
keras/layers/merge.py
365 issues
Line: 19
Column: 1
# pylint: disable=redefined-builtin
"""Layers that can merge several inputs into one."""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.engine import base_layer_utils
from keras.engine.base_layer import Layer
from keras.utils import tf_utils
Reported by Pylint.
Line: 25
Column: 1
from keras.engine import base_layer_utils
from keras.engine.base_layer import Layer
from keras.utils import tf_utils
from tensorflow.python.util.tf_export import keras_export
class _Merge(Layer):
"""Generic merge layer for elementwise merge functions.
Reported by Pylint.
Line: 65
Column: 14
if None in [shape1, shape2]:
return None
elif len(shape1) < len(shape2):
return self._compute_elemwise_op_output_shape(shape2, shape1)
elif not shape2:
return shape1
output_shape = list(shape1[:-len(shape2)])
for i, j in zip(shape1[-len(shape2):], shape2):
if i is None or j is None:
Reported by Pylint.
Line: 114
Column: 7
# If the inputs have different ranks, we have to reshape them
# to make them broadcastable.
if None not in input_shape and len(set(map(len, input_shape))) == 1:
self._reshape_required = False
else:
self._reshape_required = True
def call(self, inputs):
if not isinstance(inputs, (list, tuple)):
Reported by Pylint.
Line: 116
Column: 7
if None not in input_shape and len(set(map(len, input_shape))) == 1:
self._reshape_required = False
else:
self._reshape_required = True
def call(self, inputs):
if not isinstance(inputs, (list, tuple)):
raise ValueError(
'A merge layer should be called on a list of inputs. '
Reported by Pylint.
Line: 118
Column: 3
else:
self._reshape_required = True
def call(self, inputs):
if not isinstance(inputs, (list, tuple)):
raise ValueError(
'A merge layer should be called on a list of inputs. '
f'Received: inputs={inputs} (not a list of tensors)')
if self._reshape_required:
Reported by Pylint.
Line: 29
Column: 1
class _Merge(Layer):
"""Generic merge layer for elementwise merge functions.
Used to implement `Sum`, `Average`, etc.
"""
def __init__(self, **kwargs):
Reported by Pylint.
Line: 34
Column: 1
Used to implement `Sum`, `Average`, etc.
"""
def __init__(self, **kwargs):
"""Initializes a Merge layer.
Args:
**kwargs: standard layer keyword arguments.
"""
Reported by Pylint.
Line: 35
Column: 1
"""
def __init__(self, **kwargs):
"""Initializes a Merge layer.
Args:
**kwargs: standard layer keyword arguments.
"""
super(_Merge, self).__init__(**kwargs)
Reported by Pylint.
Line: 40
Column: 1
Args:
**kwargs: standard layer keyword arguments.
"""
super(_Merge, self).__init__(**kwargs)
self.supports_masking = True
def _merge_function(self, inputs):
raise NotImplementedError
Reported by Pylint.
keras/models_test.py
363 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for `models.py` (model cloning, mainly)."""
import tensorflow.compat.v2 as tf
import functools
import os
from absl.testing import parameterized
Reported by Pylint.
Line: 22
Column: 1
import functools
import os
from absl.testing import parameterized
import numpy as np
import keras
from keras import backend
from keras import keras_parameterized
Reported by Pylint.
Line: 34
Column: 1
from keras import testing_utils
class TestModel(keras.Model):
"""A model subclass."""
def __init__(self, n_outputs=4, trainable=True):
"""A test class with one dense layer and number of outputs as a variable."""
super(TestModel, self).__init__()
Reported by Pylint.
Line: 43
Column: 3
self.layer1 = keras.layers.Dense(n_outputs)
self.n_outputs = tf.Variable(n_outputs, trainable=trainable)
def call(self, x):
return self.layer1(x)
def _get_layers(input_shape=(4,), add_input_layer=False):
if add_input_layer:
Reported by Pylint.
Line: 96
Column: 11
if share_weights:
clone_fn = functools.partial(
keras.models._clone_sequential_model, layer_fn=models.share_weights)
else:
clone_fn = keras.models.clone_model
val_a = np.random.random((10, 4))
model = models.Sequential(_get_layers(input_shape, add_input_layer))
Reported by Pylint.
Line: 105
Column: 18
# Sanity check
self.assertEqual(
isinstance(
list(model._flatten_layers(include_self=False, recursive=False))[0],
keras.layers.InputLayer), add_input_layer)
self.assertEqual(model._is_graph_network, add_input_layer)
# With placeholder creation -- clone model should have an InputLayer
# if the original model has one.
Reported by Pylint.
Line: 107
Column: 22
isinstance(
list(model._flatten_layers(include_self=False, recursive=False))[0],
keras.layers.InputLayer), add_input_layer)
self.assertEqual(model._is_graph_network, add_input_layer)
# With placeholder creation -- clone model should have an InputLayer
# if the original model has one.
new_model = clone_fn(model)
self.assertEqual(
Reported by Pylint.
Line: 115
Column: 17
self.assertEqual(
isinstance(
list(
new_model._flatten_layers(include_self=False,
recursive=False))[0],
keras.layers.InputLayer), add_input_layer)
self.assertEqual(new_model._is_graph_network, model._is_graph_network)
if input_shape and not tf.compat.v1.executing_eagerly_outside_functions():
# update ops from batch norm needs to be included
Reported by Pylint.
Line: 118
Column: 51
new_model._flatten_layers(include_self=False,
recursive=False))[0],
keras.layers.InputLayer), add_input_layer)
self.assertEqual(new_model._is_graph_network, model._is_graph_network)
if input_shape and not tf.compat.v1.executing_eagerly_outside_functions():
# update ops from batch norm needs to be included
self.assertGreaterEqual(len(new_model.updates), 2)
# On top of new tensor -- clone model should always have an InputLayer.
Reported by Pylint.
Line: 118
Column: 22
new_model._flatten_layers(include_self=False,
recursive=False))[0],
keras.layers.InputLayer), add_input_layer)
self.assertEqual(new_model._is_graph_network, model._is_graph_network)
if input_shape and not tf.compat.v1.executing_eagerly_outside_functions():
# update ops from batch norm needs to be included
self.assertGreaterEqual(len(new_model.updates), 2)
# On top of new tensor -- clone model should always have an InputLayer.
Reported by Pylint.
keras/saving/saved_model_experimental_test.py
359 issues
Line: 18
Column: 1
# pylint: disable=protected-access
"""Tests for saving/loading function for keras Model."""
import tensorflow.compat.v2 as tf
import os
import shutil
from absl.testing import parameterized
Reported by Pylint.
Line: 23
Column: 1
import os
import shutil
from absl.testing import parameterized
import numpy as np
import keras
from keras import optimizer_v1
from keras.engine import training as model_lib
Reported by Pylint.
Line: 430
Column: 20
with tf.compat.v1.Session(graph=tf.Graph()) as sess:
inputs, outputs, _ = load_model(sess, saved_model_dir,
mode_keys.ModeKeys.PREDICT)
input_name = model.input_names[0]
output_name = model.output_names[0]
predictions = sess.run(
outputs[output_name], {inputs[input_name]: [[7], [-3], [4]]})
self.assertAllEqual([[6], [0], [4]], predictions)
Reported by Pylint.
Line: 431
Column: 21
inputs, outputs, _ = load_model(sess, saved_model_dir,
mode_keys.ModeKeys.PREDICT)
input_name = model.input_names[0]
output_name = model.output_names[0]
predictions = sess.run(
outputs[output_name], {inputs[input_name]: [[7], [-3], [4]]})
self.assertAllEqual([[6], [0], [4]], predictions)
def testAssertModelCloneSameObjectsIgnoreOptimizer(self):
Reported by Pylint.
Line: 176
Column: 5
# For now, saving subclassed model should raise an error. It should be
# avoided later with loading from SavedModel.pb.
class SubclassedModel(model_lib.Model):
def __init__(self):
super(SubclassedModel, self).__init__()
self.layer1 = keras.layers.Dense(3)
self.layer2 = keras.layers.Dense(1)
Reported by Pylint.
Line: 183
Column: 7
self.layer1 = keras.layers.Dense(3)
self.layer2 = keras.layers.Dense(1)
def call(self, inp):
return self.layer2(self.layer1(inp))
model = SubclassedModel()
saved_model_dir = self._save_model_dir()
Reported by Pylint.
Line: 199
Column: 3
self.input_spec = keras.layers.InputSpec(shape=[None] * len(input_shape))
self.built = True
def call(self, x, training=None):
if training is None:
training = keras.backend.learning_phase()
output = control_flow_util.smart_cond(training, lambda: x * 0,
lambda: tf.identity(x))
if not tf.executing_eagerly():
Reported by Pylint.
Line: 239
Column: 1
return model
class Subclassed(keras.models.Model):
def __init__(self):
super(Subclassed, self).__init__()
self.dense1 = keras.layers.Dense(2)
self.dense2 = keras.layers.Dense(3)
Reported by Pylint.
Line: 246
Column: 3
self.dense1 = keras.layers.Dense(2)
self.dense2 = keras.layers.Dense(3)
def call(self, inputs):
x = self.dense1(inputs)
x = self.dense2(x)
return x
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import os
import shutil
from absl.testing import parameterized
import numpy as np
Reported by Pylint.
keras/utils/generic_utils_test.py
358 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras generic Python utils."""
import tensorflow.compat.v2 as tf
from functools import partial
import threading
import numpy as np
Reported by Pylint.
Line: 303
Column: 48
return obj
def get_config(self):
return {'value': int(self), 'int_obj': self.int_obj}
@classmethod
def from_config(cls, config):
return cls(**config)
Reported by Pylint.
Line: 349
Column: 43
return obj
def get_config(self):
return {'value': int(self), 'fn': self.fn}
@classmethod
def from_config(cls, config):
return cls(**config)
Reported by Pylint.
Line: 376
Column: 28
def test_serialize_type_object_initializer(self):
layer = keras.layers.Dense(
1,
kernel_initializer=keras.initializers.ones,
bias_initializer=keras.initializers.zeros)
config = keras.layers.serialize(layer)
self.assertEqual(config['config']['bias_initializer']['class_name'],
'Zeros')
self.assertEqual(config['config']['kernel_initializer']['class_name'],
Reported by Pylint.
Line: 377
Column: 26
layer = keras.layers.Dense(
1,
kernel_initializer=keras.initializers.ones,
bias_initializer=keras.initializers.zeros)
config = keras.layers.serialize(layer)
self.assertEqual(config['config']['bias_initializer']['class_name'],
'Zeros')
self.assertEqual(config['config']['kernel_initializer']['class_name'],
'Ones')
Reported by Pylint.
Line: 174
Column: 26
new_inst = keras.utils.generic_utils.deserialize_keras_object(config)
self.assertIsNot(inst, new_inst)
self.assertIsInstance(new_inst, TestClass)
self.assertEqual(10, new_inst._value)
# Make sure registering a new class with same name will fail.
with self.assertRaisesRegex(ValueError, '.*has already been registered.*'):
@keras.utils.generic_utils.register_keras_serializable() # pylint: disable=function-redefined
class TestClass: # pylint: disable=function-redefined
Reported by Pylint.
Line: 216
Column: 25
new_inst = keras.utils.generic_utils.deserialize_keras_object(config)
self.assertIsNot(inst, new_inst)
self.assertIsInstance(new_inst, OtherTestClass)
self.assertEqual(5, new_inst._val)
def test_serialize_custom_function(self):
@keras.utils.generic_utils.register_keras_serializable()
def my_fn():
Reported by Pylint.
Line: 246
Column: 7
@keras.utils.generic_utils.register_keras_serializable( # pylint: disable=unused-variable
'TestPackage', 'TestClass')
class TestClass:
def __init__(self, value):
self._value = value
def test_serializable_object(self):
Reported by Pylint.
Line: 494
Column: 5
# nothing.
obj_id = 1
obj = MaybeSharedObject()
generic_utils._shared_object_loading_scope().set(obj_id, obj)
self.assertIsNone(generic_utils._shared_object_loading_scope().get(obj_id))
def test_shared_object_loading_scope_returns_shared_obj(self):
obj_id = 1
obj = MaybeSharedObject()
Reported by Pylint.
Line: 495
Column: 23
obj_id = 1
obj = MaybeSharedObject()
generic_utils._shared_object_loading_scope().set(obj_id, obj)
self.assertIsNone(generic_utils._shared_object_loading_scope().get(obj_id))
def test_shared_object_loading_scope_returns_shared_obj(self):
obj_id = 1
obj = MaybeSharedObject()
with generic_utils.SharedObjectLoadingScope() as scope:
Reported by Pylint.
keras/utils/composite_tensor_support_test.py
357 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras composite tensor support."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import scipy.sparse
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import scipy.sparse
import keras
Reported by Pylint.
Line: 22
Column: 1
from absl.testing import parameterized
import numpy as np
import scipy.sparse
import keras
from keras import keras_parameterized
from keras import testing_utils
from keras.engine import input_layer
Reported by Pylint.
Line: 43
Column: 3
super(ToDense, self).__init__(**kwargs)
self._default_value = default_value
def call(self, inputs):
if isinstance(inputs, dict): # Dicts are no longer flattened.
# Always a single element in these tests.
inputs = tf.nest.flatten(inputs)[0]
if isinstance(inputs, tf.RaggedTensor):
Reported by Pylint.
Line: 70
Column: 3
self._padding = padding
self._ragged_rank = ragged_rank
def call(self, inputs):
return tf.RaggedTensor.from_tensor(
inputs, padding=self._padding, ragged_rank=self._ragged_rank)
class ToSparse(Layer):
Reported by Pylint.
Line: 78
Column: 3
class ToSparse(Layer):
"""Create a sparse tensor based on a given dense tensor."""
def call(self, inputs):
indices = tf.where(tf.not_equal(inputs, 0))
values = tf.gather_nd(inputs, indices)
shape = tf.shape(inputs, out_type=tf.int64)
return tf.SparseTensor(indices, values, dense_shape=shape)
Reported by Pylint.
Line: 85
Column: 1
return tf.SparseTensor(indices, values, dense_shape=shape)
class _SubclassModel(keras.Model):
"""A Keras subclass model."""
def __init__(self, layers, i_layer=None):
super(_SubclassModel, self).__init__()
# Note that clone and build doesn't support lists of layers in subclassed
Reported by Pylint.
Line: 101
Column: 3
def _layer_name_for_i(self, i):
return "layer{}".format(i)
def call(self, inputs, **kwargs):
x = inputs
for i in range(self.num_layers):
layer = getattr(self, self._layer_name_for_i(i))
x = layer(x)
return x
Reported by Pylint.
Line: 101
Column: 1
def _layer_name_for_i(self, i):
return "layer{}".format(i)
def call(self, inputs, **kwargs):
x = inputs
for i in range(self.num_layers):
layer = getattr(self, self._layer_name_for_i(i))
x = layer(x)
return x
Reported by Pylint.
Line: 210
Column: 5
# converts the ragged tensor back to a dense tensor.
layers = [ToRagged(padding=0)]
model = testing_utils.get_model_from_layers(layers, input_shape=(None,))
model._run_eagerly = testing_utils.should_run_eagerly()
# Define some input data with additional padding.
input_data = np.array([[1, 0, 0], [2, 3, 0]])
output = model.predict(input_data)
Reported by Pylint.
keras/layers/preprocessing/preprocessing_stage_functional_test.py
353 issues
Line: 17
Column: 1
# ==============================================================================
"""Functional preprocessing stage tests."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import time
import numpy as np
from keras import keras_parameterized
Reported by Pylint.
Line: 18
Column: 1
"""Functional preprocessing stage tests."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import time
import numpy as np
from keras import keras_parameterized
from keras.engine import base_preprocessing_layer
Reported by Pylint.
Line: 34
Column: 1
from keras.layers.preprocessing import preprocessing_test_utils
class PL(base_preprocessing_layer.PreprocessingLayer):
def __init__(self, **kwargs):
self.adapt_time = None
self.adapt_count = 0
super(PL, self).__init__(**kwargs)
Reported by Pylint.
Line: 34
Column: 1
from keras.layers.preprocessing import preprocessing_test_utils
class PL(base_preprocessing_layer.PreprocessingLayer):
def __init__(self, **kwargs):
self.adapt_time = None
self.adapt_count = 0
super(PL, self).__init__(**kwargs)
Reported by Pylint.
Line: 41
Column: 3
self.adapt_count = 0
super(PL, self).__init__(**kwargs)
def adapt(self, data, reset_state=True):
self.adapt_time = time.time()
self.adapt_count += 1
def call(self, inputs):
return inputs + 1
Reported by Pylint.
Line: 41
Column: 25
self.adapt_count = 0
super(PL, self).__init__(**kwargs)
def adapt(self, data, reset_state=True):
self.adapt_time = time.time()
self.adapt_count += 1
def call(self, inputs):
return inputs + 1
Reported by Pylint.
Line: 45
Column: 3
self.adapt_time = time.time()
self.adapt_count += 1
def call(self, inputs):
return inputs + 1
class PLMerge(PL):
Reported by Pylint.
Line: 49
Column: 1
return inputs + 1
class PLMerge(PL):
def call(self, inputs):
return inputs[0] + inputs[1]
Reported by Pylint.
Line: 49
Column: 1
return inputs + 1
class PLMerge(PL):
def call(self, inputs):
return inputs[0] + inputs[1]
Reported by Pylint.
Line: 55
Column: 1
return inputs[0] + inputs[1]
class PLSplit(PL):
def call(self, inputs):
return inputs + 1, inputs - 1
Reported by Pylint.
keras/engine/training_dataset_test.py
351 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for training routines."""
import tensorflow.compat.v2 as tf
import io
import sys
import numpy as np
Reported by Pylint.
Line: 29
Column: 1
from keras import keras_parameterized
from keras import metrics as metrics_module
from keras import testing_utils
from tensorflow.python.platform import tf_logging as logging
class BatchCounterCallback(callbacks.Callback):
def __init__(self):
Reported by Pylint.
Line: 34
Column: 3
class BatchCounterCallback(callbacks.Callback):
def __init__(self):
self.batch_begin_count = 0
self.batch_end_count = 0
def on_batch_begin(self, *args, **kwargs):
self.batch_begin_count += 1
Reported by Pylint.
Line: 38
Column: 1
self.batch_begin_count = 0
self.batch_end_count = 0
def on_batch_begin(self, *args, **kwargs):
self.batch_begin_count += 1
def on_batch_end(self, *args, **kwargs):
self.batch_end_count += 1
Reported by Pylint.
Line: 38
Column: 1
self.batch_begin_count = 0
self.batch_end_count = 0
def on_batch_begin(self, *args, **kwargs):
self.batch_begin_count += 1
def on_batch_end(self, *args, **kwargs):
self.batch_end_count += 1
Reported by Pylint.
Line: 41
Column: 1
def on_batch_begin(self, *args, **kwargs):
self.batch_begin_count += 1
def on_batch_end(self, *args, **kwargs):
self.batch_end_count += 1
class TestTrainingWithDataset(keras_parameterized.TestCase):
Reported by Pylint.
Line: 41
Column: 1
def on_batch_begin(self, *args, **kwargs):
self.batch_begin_count += 1
def on_batch_end(self, *args, **kwargs):
self.batch_end_count += 1
class TestTrainingWithDataset(keras_parameterized.TestCase):
Reported by Pylint.
Line: 272
Column: 9
class SumLayer(keras.layers.Layer):
def build(self, _):
self.w = self.add_weight('w', ())
def call(self, inputs):
return keras.backend.sum(inputs, axis=1, keepdims=True) + self.w * 0
model = keras.Sequential([SumLayer(input_shape=(2,))])
Reported by Pylint.
Line: 274
Column: 7
def build(self, _):
self.w = self.add_weight('w', ())
def call(self, inputs):
return keras.backend.sum(inputs, axis=1, keepdims=True) + self.w * 0
model = keras.Sequential([SumLayer(input_shape=(2,))])
model.compile(
'rmsprop', loss='mae', run_eagerly=testing_utils.should_run_eagerly())
Reported by Pylint.
Line: 399
Column: 9
class CaptureStdout:
def __enter__(self):
self._stdout = sys.stdout
string_io = io.StringIO()
sys.stdout = string_io
self._stringio = string_io
return self
Reported by Pylint.
keras/metrics_correctness_test.py
347 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests metrics correctness using Keras model."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from keras import keras_parameterized
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
from keras import keras_parameterized
from keras import layers
from keras import losses
Reported by Pylint.
Line: 30
Column: 1
from keras.utils import losses_utils
def get_multi_io_model():
inp_1 = layers.Input(shape=(1,), name='input_1')
inp_2 = layers.Input(shape=(1,), name='input_2')
x = layers.Dense(3, kernel_initializer='ones', trainable=False)
out_1 = layers.Dense(
1, kernel_initializer='ones', name='output_1', trainable=False)
Reported by Pylint.
Line: 31
Column: 1
def get_multi_io_model():
inp_1 = layers.Input(shape=(1,), name='input_1')
inp_2 = layers.Input(shape=(1,), name='input_2')
x = layers.Dense(3, kernel_initializer='ones', trainable=False)
out_1 = layers.Dense(
1, kernel_initializer='ones', name='output_1', trainable=False)
out_2 = layers.Dense(
Reported by Pylint.
Line: 32
Column: 1
def get_multi_io_model():
inp_1 = layers.Input(shape=(1,), name='input_1')
inp_2 = layers.Input(shape=(1,), name='input_2')
x = layers.Dense(3, kernel_initializer='ones', trainable=False)
out_1 = layers.Dense(
1, kernel_initializer='ones', name='output_1', trainable=False)
out_2 = layers.Dense(
1, kernel_initializer='ones', name='output_2', trainable=False)
Reported by Pylint.
Line: 33
Column: 1
def get_multi_io_model():
inp_1 = layers.Input(shape=(1,), name='input_1')
inp_2 = layers.Input(shape=(1,), name='input_2')
x = layers.Dense(3, kernel_initializer='ones', trainable=False)
out_1 = layers.Dense(
1, kernel_initializer='ones', name='output_1', trainable=False)
out_2 = layers.Dense(
1, kernel_initializer='ones', name='output_2', trainable=False)
Reported by Pylint.
Line: 33
Column: 3
def get_multi_io_model():
inp_1 = layers.Input(shape=(1,), name='input_1')
inp_2 = layers.Input(shape=(1,), name='input_2')
x = layers.Dense(3, kernel_initializer='ones', trainable=False)
out_1 = layers.Dense(
1, kernel_initializer='ones', name='output_1', trainable=False)
out_2 = layers.Dense(
1, kernel_initializer='ones', name='output_2', trainable=False)
Reported by Pylint.
Line: 34
Column: 1
inp_1 = layers.Input(shape=(1,), name='input_1')
inp_2 = layers.Input(shape=(1,), name='input_2')
x = layers.Dense(3, kernel_initializer='ones', trainable=False)
out_1 = layers.Dense(
1, kernel_initializer='ones', name='output_1', trainable=False)
out_2 = layers.Dense(
1, kernel_initializer='ones', name='output_2', trainable=False)
branch_a = [inp_1, x, out_1]
Reported by Pylint.
Line: 36
Column: 1
x = layers.Dense(3, kernel_initializer='ones', trainable=False)
out_1 = layers.Dense(
1, kernel_initializer='ones', name='output_1', trainable=False)
out_2 = layers.Dense(
1, kernel_initializer='ones', name='output_2', trainable=False)
branch_a = [inp_1, x, out_1]
branch_b = [inp_2, x, out_2]
return testing_utils.get_multi_io_model(branch_a, branch_b)
Reported by Pylint.
Line: 39
Column: 1
out_2 = layers.Dense(
1, kernel_initializer='ones', name='output_2', trainable=False)
branch_a = [inp_1, x, out_1]
branch_b = [inp_2, x, out_2]
return testing_utils.get_multi_io_model(branch_a, branch_b)
def custom_generator_multi_io(sample_weights=None):
Reported by Pylint.
keras/feature_column/dense_features_v2_test.py
343 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
import numpy as np
from tensorflow.python.eager import backprop
from keras import combinations
from keras import keras_parameterized
Reported by Pylint.
Line: 24
Column: 1
import tensorflow.compat.v2 as tf
import numpy as np
from tensorflow.python.eager import backprop
from keras import combinations
from keras import keras_parameterized
from keras.feature_column import dense_features_v2 as df
Reported by Pylint.
Line: 31
Column: 1
def _initialized_session(config=None):
sess = tf.compat.v1.Session(config=config)
sess.run(tf.compat.v1.global_variables_initializer())
sess.run(tf.compat.v1.tables_initializer())
return sess
Reported by Pylint.
Line: 32
Column: 1
def _initialized_session(config=None):
sess = tf.compat.v1.Session(config=config)
sess.run(tf.compat.v1.global_variables_initializer())
sess.run(tf.compat.v1.tables_initializer())
return sess
class DenseFeaturesTest(keras_parameterized.TestCase):
Reported by Pylint.
Line: 33
Column: 1
def _initialized_session(config=None):
sess = tf.compat.v1.Session(config=config)
sess.run(tf.compat.v1.global_variables_initializer())
sess.run(tf.compat.v1.tables_initializer())
return sess
class DenseFeaturesTest(keras_parameterized.TestCase):
Reported by Pylint.
Line: 34
Column: 1
sess = tf.compat.v1.Session(config=config)
sess.run(tf.compat.v1.global_variables_initializer())
sess.run(tf.compat.v1.tables_initializer())
return sess
class DenseFeaturesTest(keras_parameterized.TestCase):
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
Reported by Pylint.
Line: 37
Column: 1
return sess
class DenseFeaturesTest(keras_parameterized.TestCase):
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_retrieving_input(self):
features = {'a': [0.]}
dense_features = df.DenseFeatures(tf.feature_column.numeric_column('a'))
Reported by Pylint.
Line: 37
Column: 1
return sess
class DenseFeaturesTest(keras_parameterized.TestCase):
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_retrieving_input(self):
features = {'a': [0.]}
dense_features = df.DenseFeatures(tf.feature_column.numeric_column('a'))
Reported by Pylint.
Line: 39
Column: 1
class DenseFeaturesTest(keras_parameterized.TestCase):
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_retrieving_input(self):
features = {'a': [0.]}
dense_features = df.DenseFeatures(tf.feature_column.numeric_column('a'))
inputs = self.evaluate(dense_features(features))
self.assertAllClose([[0.]], inputs)
Reported by Pylint.
Line: 40
Column: 3
class DenseFeaturesTest(keras_parameterized.TestCase):
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_retrieving_input(self):
features = {'a': [0.]}
dense_features = df.DenseFeatures(tf.feature_column.numeric_column('a'))
inputs = self.evaluate(dense_features(features))
self.assertAllClose([[0.]], inputs)
Reported by Pylint.
keras/layers/normalization/batch_normalization_test.py
343 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for normalization layers."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
from keras import combinations
from keras import keras_parameterized
Reported by Pylint.
Line: 494
Column: 7
# Simulates training-mode with trainable layer.
# Should use mini-batch statistics.
with keras.backend.learning_phase_scope(1):
model = get_model(bn_mean, bn_std)
model.compile(loss='mse', optimizer='rmsprop')
out = model.predict(val_a)
self.assertAllClose(
(val_a - np.mean(val_a)) / np.std(val_a), out, atol=1e-3)
Reported by Pylint.
Line: 212
Column: 5
@keras_parameterized.run_all_keras_modes(always_skip_v1=True)
def test_eager_batchnorm_in_custom_model_call_with_tf_function(self):
class MyModel(keras.Model):
def __init__(self):
super(MyModel, self).__init__()
self.bn = keras.layers.BatchNormalization()
Reported by Pylint.
Line: 219
Column: 7
self.bn = keras.layers.BatchNormalization()
@tf.function()
def call(self, x, training):
return self.bn(x, training=training)
model = MyModel()
for _ in range(10):
Reported by Pylint.
Line: 473
Column: 3
Args:
layer: Either V1 or V2 of BatchNormalization layer.
"""
# TODO(fchollet): enable in all execution modes when issue with
# learning phase setting is resolved.
with tf.Graph().as_default(), self.cached_session():
bn_mean = 0.5
bn_std = 10.
val_a = np.expand_dims(np.arange(10.), axis=1)
Reported by Pylint.
Line: 30
Column: 1
from keras.layers.normalization import batch_normalization_v1
class BatchNormalizationTest(keras_parameterized.TestCase):
@keras_parameterized.run_all_keras_modes
def test_basic_batchnorm(self):
testing_utils.layer_test(
keras.layers.BatchNormalization,
Reported by Pylint.
Line: 32
Column: 1
class BatchNormalizationTest(keras_parameterized.TestCase):
@keras_parameterized.run_all_keras_modes
def test_basic_batchnorm(self):
testing_utils.layer_test(
keras.layers.BatchNormalization,
kwargs={
'momentum': 0.9,
Reported by Pylint.
Line: 33
Column: 3
class BatchNormalizationTest(keras_parameterized.TestCase):
@keras_parameterized.run_all_keras_modes
def test_basic_batchnorm(self):
testing_utils.layer_test(
keras.layers.BatchNormalization,
kwargs={
'momentum': 0.9,
'epsilon': 0.1,
Reported by Pylint.
Line: 33
Column: 1
class BatchNormalizationTest(keras_parameterized.TestCase):
@keras_parameterized.run_all_keras_modes
def test_basic_batchnorm(self):
testing_utils.layer_test(
keras.layers.BatchNormalization,
kwargs={
'momentum': 0.9,
'epsilon': 0.1,
Reported by Pylint.