The following issues were found
pandas/tests/indexes/timedeltas/test_indexing.py
100 issues
Line: 8
Column: 1
import re
import numpy as np
import pytest
from pandas import (
Index,
NaT,
Timedelta,
Reported by Pylint.
Line: 47
Column: 35
result = idx[0:5]
expected = timedelta_range("1 day", "5 day", freq="D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx[0:10:2]
expected = timedelta_range("1 day", "9 day", freq="2D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
Reported by Pylint.
Line: 47
Column: 35
result = idx[0:5]
expected = timedelta_range("1 day", "5 day", freq="D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx[0:10:2]
expected = timedelta_range("1 day", "9 day", freq="2D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
Reported by Pylint.
Line: 52
Column: 35
result = idx[0:10:2]
expected = timedelta_range("1 day", "9 day", freq="2D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx[-20:-5:3]
expected = timedelta_range("12 day", "24 day", freq="3D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
Reported by Pylint.
Line: 52
Column: 35
result = idx[0:10:2]
expected = timedelta_range("1 day", "9 day", freq="2D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx[-20:-5:3]
expected = timedelta_range("12 day", "24 day", freq="3D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
Reported by Pylint.
Line: 57
Column: 35
result = idx[-20:-5:3]
expected = timedelta_range("12 day", "24 day", freq="3D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx[4::-1]
expected = TimedeltaIndex(
["5 day", "4 day", "3 day", "2 day", "1 day"], freq="-1D", name="idx"
)
Reported by Pylint.
Line: 57
Column: 35
result = idx[-20:-5:3]
expected = timedelta_range("12 day", "24 day", freq="3D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx[4::-1]
expected = TimedeltaIndex(
["5 day", "4 day", "3 day", "2 day", "1 day"], freq="-1D", name="idx"
)
Reported by Pylint.
Line: 64
Column: 35
["5 day", "4 day", "3 day", "2 day", "1 day"], freq="-1D", name="idx"
)
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
@pytest.mark.parametrize(
"key",
[
Timestamp("1970-01-01"),
Reported by Pylint.
Line: 213
Column: 35
result = idx.take([0, 1, 2])
expected = timedelta_range("1 day", "3 day", freq="D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx.take([0, 2, 4])
expected = timedelta_range("1 day", "5 day", freq="2D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
Reported by Pylint.
Line: 213
Column: 35
result = idx.take([0, 1, 2])
expected = timedelta_range("1 day", "3 day", freq="D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
result = idx.take([0, 2, 4])
expected = timedelta_range("1 day", "5 day", freq="2D", name="idx")
tm.assert_index_equal(result, expected)
assert result.freq == expected.freq
Reported by Pylint.
pandas/tests/arrays/categorical/test_operators.py
99 issues
Line: 5
Column: 1
import warnings
import numpy as np
import pytest
import pandas as pd
from pandas import (
Categorical,
DataFrame,
Reported by Pylint.
Line: 83
Column: 13
# Only categories with same categories can be compared
msg = "Categoricals can only be compared if 'categories' are the same"
with pytest.raises(TypeError, match=msg):
cat > cat_rev
cat_rev_base2 = Categorical(["b", "b", "b"], categories=["c", "b", "a", "d"])
with pytest.raises(TypeError, match=msg):
cat_rev > cat_rev_base2
Reported by Pylint.
Line: 88
Column: 13
cat_rev_base2 = Categorical(["b", "b", "b"], categories=["c", "b", "a", "d"])
with pytest.raises(TypeError, match=msg):
cat_rev > cat_rev_base2
# Only categories with same ordering information can be compared
cat_unorderd = cat.set_ordered(False)
assert not (cat > cat).any()
Reported by Pylint.
Line: 95
Column: 13
assert not (cat > cat).any()
with pytest.raises(TypeError, match=msg):
cat > cat_unorderd
# comparison (in both directions) with Series will raise
s = Series(["b", "b", "b"])
msg = (
"Cannot compare a Categorical for op __gt__ with type "
Reported by Pylint.
Line: 104
Column: 13
r"<class 'numpy\.ndarray'>"
)
with pytest.raises(TypeError, match=msg):
cat > s
with pytest.raises(TypeError, match=msg):
cat_rev > s
with pytest.raises(TypeError, match=msg):
s < cat
with pytest.raises(TypeError, match=msg):
Reported by Pylint.
Line: 106
Column: 13
with pytest.raises(TypeError, match=msg):
cat > s
with pytest.raises(TypeError, match=msg):
cat_rev > s
with pytest.raises(TypeError, match=msg):
s < cat
with pytest.raises(TypeError, match=msg):
s < cat_rev
Reported by Pylint.
Line: 108
Column: 13
with pytest.raises(TypeError, match=msg):
cat_rev > s
with pytest.raises(TypeError, match=msg):
s < cat
with pytest.raises(TypeError, match=msg):
s < cat_rev
# comparison with numpy.array will raise in both direction, but only on
# newer numpy versions
Reported by Pylint.
Line: 110
Column: 13
with pytest.raises(TypeError, match=msg):
s < cat
with pytest.raises(TypeError, match=msg):
s < cat_rev
# comparison with numpy.array will raise in both direction, but only on
# newer numpy versions
a = np.array(["b", "b", "b"])
with pytest.raises(TypeError, match=msg):
Reported by Pylint.
Line: 116
Column: 13
# newer numpy versions
a = np.array(["b", "b", "b"])
with pytest.raises(TypeError, match=msg):
cat > a
with pytest.raises(TypeError, match=msg):
cat_rev > a
# Make sure that unequal comparison take the categories order in
# account
Reported by Pylint.
Line: 118
Column: 13
with pytest.raises(TypeError, match=msg):
cat > a
with pytest.raises(TypeError, match=msg):
cat_rev > a
# Make sure that unequal comparison take the categories order in
# account
cat_rev = Categorical(list("abc"), categories=list("cba"), ordered=True)
exp = np.array([True, False, False])
Reported by Pylint.
pandas/tests/indexing/multiindex/test_slice.py
99 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas.errors import UnsortedIndexError
import pandas as pd
from pandas import (
DataFrame,
Index,
Reported by Pylint.
Line: 139
Column: 13
"that is not the same length as the index"
)
with pytest.raises(ValueError, match=msg):
df.loc[(slice(None), np.array([True, False])), :]
with pytest.raises(KeyError, match=r"\[1\] not in index"):
# slice(None) is on the index, [1] is on the columns, but 1 is
# not in the columns, so we raise
# This used to treat [1] as positional GH#16396
Reported by Pylint.
Line: 145
Column: 13
# slice(None) is on the index, [1] is on the columns, but 1 is
# not in the columns, so we raise
# This used to treat [1] as positional GH#16396
df.loc[slice(None), [1]]
# not lexsorted
assert df.index._lexsort_depth == 2
df = df.sort_index(level=1, axis=0)
assert df.index._lexsort_depth == 0
Reported by Pylint.
Line: 148
Column: 16
df.loc[slice(None), [1]]
# not lexsorted
assert df.index._lexsort_depth == 2
df = df.sort_index(level=1, axis=0)
assert df.index._lexsort_depth == 0
msg = (
"MultiIndex slicing requires the index to be "
Reported by Pylint.
Line: 150
Column: 16
# not lexsorted
assert df.index._lexsort_depth == 2
df = df.sort_index(level=1, axis=0)
assert df.index._lexsort_depth == 0
msg = (
"MultiIndex slicing requires the index to be "
r"lexsorted: slicing on levels \[1\], lexsort depth 0"
)
Reported by Pylint.
Line: 157
Column: 13
r"lexsorted: slicing on levels \[1\], lexsort depth 0"
)
with pytest.raises(UnsortedIndexError, match=msg):
df.loc[(slice(None), slice("bar")), :]
# GH 16734: not sorted, but no real slicing
result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :]
tm.assert_frame_equal(result, df.iloc[[1, 3], :])
Reported by Pylint.
Line: 449
Column: 13
r"slicing on levels \[1\], lexsort depth 1"
)
with pytest.raises(UnsortedIndexError, match=msg):
df.loc["A1", ("a", slice("foo"))]
# GH 16734: not sorted, but no real slicing
tm.assert_frame_equal(
df.loc["A1", (slice(None), "foo")], df.loc["A1"].iloc[:, [0, 2]]
)
Reported by Pylint.
Line: 459
Column: 9
df = df.sort_index(axis=1)
# slicing
df.loc["A1", (slice(None), "foo")]
df.loc[(slice(None), slice(None), ["C1", "C3"]), (slice(None), "foo")]
# setitem
df.loc(axis=0)[:, :, ["C1", "C3"]] = -10
Reported by Pylint.
Line: 460
Column: 9
# slicing
df.loc["A1", (slice(None), "foo")]
df.loc[(slice(None), slice(None), ["C1", "C3"]), (slice(None), "foo")]
# setitem
df.loc(axis=0)[:, :, ["C1", "C3"]] = -10
def test_loc_axis_arguments(self):
Reported by Pylint.
Line: 530
Column: 17
for i in [-1, 2, "foo"]:
msg = f"No axis named {i} for object type DataFrame"
with pytest.raises(ValueError, match=msg):
df.loc(axis=i)[:, :, ["C1", "C3"]]
def test_loc_axis_single_level_multi_col_indexing_multiindex_col_df(self):
# GH29519
df = DataFrame(
Reported by Pylint.
pandas/tests/groupby/aggregate/test_other.py
99 issues
Line: 9
Column: 1
from functools import partial
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 459
Column: 15
# with function that is not dtype-preserving
dti = date_range("2012-01-01", periods=4, tz="UTC")
if as_period:
dti = dti.tz_localize(None).to_period("D")
df = DataFrame({"a": [0, 0, 1, 1], "b": dti})
gb = df.groupby("a")
# Case that _does_ preserve the dtype
Reported by Pylint.
Line: 459
Column: 15
# with function that is not dtype-preserving
dti = date_range("2012-01-01", periods=4, tz="UTC")
if as_period:
dti = dti.tz_localize(None).to_period("D")
df = DataFrame({"a": [0, 0, 1, 1], "b": dti})
gb = df.groupby("a")
# Case that _does_ preserve the dtype
Reported by Pylint.
Line: 413
Column: 9
equiv_callables = [
sum,
np.sum,
lambda x: sum(x),
lambda x: x.sum(),
partial(sum),
fn_class(),
]
Reported by Pylint.
Line: 425
Column: 3
tm.assert_frame_equal(result, expected)
@td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) columns with ndarrays
def test_agg_over_numpy_arrays():
# GH 3788
df = DataFrame(
[
[1, np.array([10, 20, 30])],
Reported by Pylint.
Line: 449
Column: 3
result = gb.agg("sum", numeric_only=False)
tm.assert_frame_equal(result, expected)
# FIXME: the original version of this test called `gb.agg(sum)`
# and that raises TypeError if `numeric_only=False` is passed
@pytest.mark.parametrize("as_period", [True, False])
def test_agg_tzaware_non_datetime_result(as_period):
Reported by Pylint.
Line: 491
Column: 40
df = DataFrame({"a": 1, "b": [ts + dt.timedelta(minutes=nn) for nn in range(10)]})
result1 = df.groupby("a")["b"].agg(np.min).iloc[0]
result2 = df.groupby("a")["b"].agg(lambda x: np.min(x)).iloc[0]
result3 = df.groupby("a")["b"].min().iloc[0]
assert result1 == ts
assert result2 == ts
assert result3 == ts
Reported by Pylint.
Line: 549
Column: 13
(tuple, DataFrame({"C": {(1, 1): (1, 1, 1), (3, 4): (3, 4, 4)}})),
(list, DataFrame({"C": {(1, 1): [1, 1, 1], (3, 4): [3, 4, 4]}})),
(
lambda x: tuple(x),
DataFrame({"C": {(1, 1): (1, 1, 1), (3, 4): (3, 4, 4)}}),
),
(
lambda x: list(x),
DataFrame({"C": {(1, 1): [1, 1, 1], (3, 4): [3, 4, 4]}}),
Reported by Pylint.
Line: 553
Column: 13
DataFrame({"C": {(1, 1): (1, 1, 1), (3, 4): (3, 4, 4)}}),
),
(
lambda x: list(x),
DataFrame({"C": {(1, 1): [1, 1, 1], (3, 4): [3, 4, 4]}}),
),
],
)
def test_agg_structs_dataframe(structure, expected):
Reported by Pylint.
Line: 573
Column: 10
[
(tuple, Series([(1, 1, 1), (3, 4, 4)], index=[1, 3], name="C")),
(list, Series([[1, 1, 1], [3, 4, 4]], index=[1, 3], name="C")),
(lambda x: tuple(x), Series([(1, 1, 1), (3, 4, 4)], index=[1, 3], name="C")),
(lambda x: list(x), Series([[1, 1, 1], [3, 4, 4]], index=[1, 3], name="C")),
],
)
def test_agg_structs_series(structure, expected):
# Issue #18079
Reported by Pylint.
pandas/tests/frame/methods/test_align.py
99 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pytz
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
Reported by Pylint.
Line: 3
Column: 1
import numpy as np
import pytest
import pytz
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
Reported by Pylint.
Line: 44
Column: 31
def test_align_float(self, float_frame):
af, bf = float_frame.align(float_frame)
assert af._mgr is not float_frame._mgr
af, bf = float_frame.align(float_frame, copy=False)
assert af._mgr is float_frame._mgr
# axis = 0
Reported by Pylint.
Line: 44
Column: 16
def test_align_float(self, float_frame):
af, bf = float_frame.align(float_frame)
assert af._mgr is not float_frame._mgr
af, bf = float_frame.align(float_frame, copy=False)
assert af._mgr is float_frame._mgr
# axis = 0
Reported by Pylint.
Line: 47
Column: 27
assert af._mgr is not float_frame._mgr
af, bf = float_frame.align(float_frame, copy=False)
assert af._mgr is float_frame._mgr
# axis = 0
other = float_frame.iloc[:-5, :3]
af, bf = float_frame.align(other, axis=0, fill_value=-1)
Reported by Pylint.
Line: 47
Column: 16
assert af._mgr is not float_frame._mgr
af, bf = float_frame.align(float_frame, copy=False)
assert af._mgr is float_frame._mgr
# axis = 0
other = float_frame.iloc[:-5, :3]
af, bf = float_frame.align(other, axis=0, fill_value=-1)
Reported by Pylint.
Line: 60
Column: 9
diff_a = float_frame.index.difference(join_idx)
diff_b = other.index.difference(join_idx)
diff_a_vals = af.reindex(diff_a).values
diff_b_vals = bf.reindex(diff_b).values
assert (diff_a_vals == -1).all()
af, bf = float_frame.align(other, join="right", axis=0)
tm.assert_index_equal(bf.columns, other.columns)
tm.assert_index_equal(bf.index, other.index)
Reported by Pylint.
Line: 80
Column: 3
diff_b = other.index.difference(join_idx)
diff_a_vals = af.reindex(diff_a).values
# TODO(wesm): unused?
diff_b_vals = bf.reindex(diff_b).values # noqa
assert (diff_a_vals == -1).all()
af, bf = float_frame.align(other, join="inner", axis=1)
Reported by Pylint.
Line: 137
Column: 9
# test other non-float types
other = DataFrame(index=range(5), columns=["A", "B", "C"])
af, bf = int_frame.align(other, join="inner", axis=1, method="pad")
tm.assert_index_equal(bf.columns, other.columns)
def test_align_mixed_type(self, float_string_frame):
af, bf = float_string_frame.align(
Reported by Pylint.
Line: 142
Column: 9
def test_align_mixed_type(self, float_string_frame):
af, bf = float_string_frame.align(
float_string_frame, join="inner", axis=1, method="pad"
)
tm.assert_index_equal(bf.columns, float_string_frame.columns)
def test_align_mixed_float(self, mixed_float_frame):
Reported by Pylint.
pandas/core/computation/expr.py
99 issues
Line: 256
Column: 3
assert not intersection, _msg
# TODO: Python 3.6.2: replace Callable[..., None] with Callable[..., NoReturn]
def _node_not_implemented(node_name: str) -> Callable[..., None]:
"""
Return a function that raises a NotImplementedError with a passed node name.
"""
Reported by Pylint.
Line: 302
Column: 11
callable
"""
def f(self, node, *args, **kwargs):
"""
Return a partial function with an Op subclass with an operator already passed.
Returns
-------
Reported by Pylint.
Line: 302
Column: 17
callable
"""
def f(self, node, *args, **kwargs):
"""
Return a partial function with an Op subclass with an operator already passed.
Returns
-------
Reported by Pylint.
Line: 495
Column: 9
def _maybe_evaluate_binop(
self,
op,
op_class,
lhs,
rhs,
eval_in_python=("in", "not in"),
maybe_eval_in_python=("==", "!=", "<", ">", "<=", ">="),
):
Reported by Pylint.
Line: 531
Column: 1
return self._maybe_eval(res, eval_in_python + maybe_eval_in_python)
return res
def visit_BinOp(self, node, **kwargs):
op, op_class, left, right = self._maybe_transform_eq_ne(node)
left, right = self._maybe_downcast_constants(left, right)
return self._maybe_evaluate_binop(op, op_class, left, right)
def visit_Div(self, node, **kwargs):
Reported by Pylint.
Line: 536
Column: 1
left, right = self._maybe_downcast_constants(left, right)
return self._maybe_evaluate_binop(op, op_class, left, right)
def visit_Div(self, node, **kwargs):
return lambda lhs, rhs: Div(lhs, rhs)
def visit_UnaryOp(self, node, **kwargs):
op = self.visit(node.op)
operand = self.visit(node.operand)
Reported by Pylint.
Line: 536
Column: 25
left, right = self._maybe_downcast_constants(left, right)
return self._maybe_evaluate_binop(op, op_class, left, right)
def visit_Div(self, node, **kwargs):
return lambda lhs, rhs: Div(lhs, rhs)
def visit_UnaryOp(self, node, **kwargs):
op = self.visit(node.op)
operand = self.visit(node.operand)
Reported by Pylint.
Line: 537
Column: 16
return self._maybe_evaluate_binop(op, op_class, left, right)
def visit_Div(self, node, **kwargs):
return lambda lhs, rhs: Div(lhs, rhs)
def visit_UnaryOp(self, node, **kwargs):
op = self.visit(node.op)
operand = self.visit(node.operand)
return op(operand)
Reported by Pylint.
Line: 539
Column: 1
def visit_Div(self, node, **kwargs):
return lambda lhs, rhs: Div(lhs, rhs)
def visit_UnaryOp(self, node, **kwargs):
op = self.visit(node.op)
operand = self.visit(node.operand)
return op(operand)
def visit_Name(self, node, **kwargs):
Reported by Pylint.
Line: 547
Column: 1
def visit_Name(self, node, **kwargs):
return self.term_type(node.id, self.env, **kwargs)
def visit_NameConstant(self, node, **kwargs):
return self.const_type(node.value, self.env)
def visit_Num(self, node, **kwargs):
return self.const_type(node.n, self.env)
Reported by Pylint.
pandas/tests/window/moments/test_moments_consistency_expanding.py
99 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
isna,
Reported by Pylint.
Line: 172
Column: 8
@pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4])
@pytest.mark.parametrize("f", [lambda v: Series(v).sum(), np.nansum])
def test_expanding_apply_consistency_sum_nans(consistency_data, min_periods, f):
x, is_constant, no_nans = consistency_data
if f is np.nansum and min_periods == 0:
pass
else:
expanding_f_result = x.expanding(min_periods=min_periods).sum()
Reported by Pylint.
Line: 172
Column: 21
@pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4])
@pytest.mark.parametrize("f", [lambda v: Series(v).sum(), np.nansum])
def test_expanding_apply_consistency_sum_nans(consistency_data, min_periods, f):
x, is_constant, no_nans = consistency_data
if f is np.nansum and min_periods == 0:
pass
else:
expanding_f_result = x.expanding(min_periods=min_periods).sum()
Reported by Pylint.
Line: 188
Column: 8
@pytest.mark.parametrize("f", [lambda v: Series(v).sum(), np.nansum, np.sum])
def test_expanding_apply_consistency_sum_no_nans(consistency_data, min_periods, f):
x, is_constant, no_nans = consistency_data
if no_nans:
if f is np.nansum and min_periods == 0:
pass
else:
Reported by Pylint.
Line: 204
Column: 21
@pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4])
@pytest.mark.parametrize("ddof", [0, 1])
def test_moments_consistency_var(consistency_data, min_periods, ddof):
x, is_constant, no_nans = consistency_data
mean_x = x.expanding(min_periods=min_periods).mean()
var_x = x.expanding(min_periods=min_periods).var(ddof=ddof)
assert not (var_x < 0).any().any()
Reported by Pylint.
Line: 204
Column: 8
@pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4])
@pytest.mark.parametrize("ddof", [0, 1])
def test_moments_consistency_var(consistency_data, min_periods, ddof):
x, is_constant, no_nans = consistency_data
mean_x = x.expanding(min_periods=min_periods).mean()
var_x = x.expanding(min_periods=min_periods).var(ddof=ddof)
assert not (var_x < 0).any().any()
Reported by Pylint.
Line: 219
Column: 21
@pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4])
@pytest.mark.parametrize("ddof", [0, 1])
def test_moments_consistency_var_constant(consistency_data, min_periods, ddof):
x, is_constant, no_nans = consistency_data
if is_constant:
count_x = x.expanding(min_periods=min_periods).count()
var_x = x.expanding(min_periods=min_periods).var(ddof=ddof)
Reported by Pylint.
Line: 237
Column: 8
@pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4])
@pytest.mark.parametrize("ddof", [0, 1])
def test_expanding_consistency_std(consistency_data, min_periods, ddof):
x, is_constant, no_nans = consistency_data
var_x = x.expanding(min_periods=min_periods).var(ddof=ddof)
std_x = x.expanding(min_periods=min_periods).std(ddof=ddof)
assert not (var_x < 0).any().any()
assert not (std_x < 0).any().any()
Reported by Pylint.
Line: 237
Column: 21
@pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4])
@pytest.mark.parametrize("ddof", [0, 1])
def test_expanding_consistency_std(consistency_data, min_periods, ddof):
x, is_constant, no_nans = consistency_data
var_x = x.expanding(min_periods=min_periods).var(ddof=ddof)
std_x = x.expanding(min_periods=min_periods).std(ddof=ddof)
assert not (var_x < 0).any().any()
assert not (std_x < 0).any().any()
Reported by Pylint.
Line: 251
Column: 8
@pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4])
@pytest.mark.parametrize("ddof", [0, 1])
def test_expanding_consistency_cov(consistency_data, min_periods, ddof):
x, is_constant, no_nans = consistency_data
var_x = x.expanding(min_periods=min_periods).var(ddof=ddof)
assert not (var_x < 0).any().any()
cov_x_x = x.expanding(min_periods=min_periods).cov(x, ddof=ddof)
assert not (cov_x_x < 0).any().any()
Reported by Pylint.
pandas/tests/frame/test_repr_info.py
98 issues
Line: 9
Column: 1
import warnings
import numpy as np
import pytest
from pandas import (
Categorical,
DataFrame,
MultiIndex,
Reported by Pylint.
Line: 36
Column: 3
nseqs = 1000
words = [[np.random.choice(lets) for x in range(slen)] for _ in range(nseqs)]
df = DataFrame(words).astype("U1")
# TODO(Arraymanager) astype("U1") actually gives this dtype instead of object
if not using_array_manager:
assert (df.dtypes == object).all()
# smoke tests; at one point this raised with 61 but not 60
repr(df)
Reported by Pylint.
Line: 68
Column: 37
df.index = index
repr(df)
def test_repr_with_mi_nat(self, float_string_frame):
df = DataFrame({"X": [1, 2]}, index=[[NaT, Timestamp("20130101")], ["a", "b"]])
result = repr(df)
expected = " X\nNaT a 1\n2013-01-01 b 2"
assert result == expected
Reported by Pylint.
Line: 282
Column: 30
"""
with option_context("display.latex.escape", False, "display.latex.repr", True):
df = DataFrame([[r"$\alpha$", "b", "c"], [1, 2, 3]])
assert result == df._repr_latex_()
# GH 12182
assert df._repr_latex_() is None
def test_repr_categorical_dates_periods(self):
Reported by Pylint.
Line: 285
Column: 16
assert result == df._repr_latex_()
# GH 12182
assert df._repr_latex_() is None
def test_repr_categorical_dates_periods(self):
# normal DataFrame
dt = date_range("2011-01-01 09:00", freq="H", periods=5, tz="US/Eastern")
p = period_range("2011-01", freq="M", periods=5)
Reported by Pylint.
Line: 1
Column: 1
from datetime import (
datetime,
timedelta,
)
from io import StringIO
import warnings
import numpy as np
import pytest
Reported by Pylint.
Line: 28
Column: 1
import pandas.io.formats.format as fmt
class TestDataFrameReprInfoEtc:
def test_repr_bytes_61_lines(self, using_array_manager):
# GH#12857
lets = list("ACDEFGHIJKLMNOP")
slen = 50
nseqs = 1000
Reported by Pylint.
Line: 28
Column: 1
import pandas.io.formats.format as fmt
class TestDataFrameReprInfoEtc:
def test_repr_bytes_61_lines(self, using_array_manager):
# GH#12857
lets = list("ACDEFGHIJKLMNOP")
slen = 50
nseqs = 1000
Reported by Pylint.
Line: 29
Column: 5
class TestDataFrameReprInfoEtc:
def test_repr_bytes_61_lines(self, using_array_manager):
# GH#12857
lets = list("ACDEFGHIJKLMNOP")
slen = 50
nseqs = 1000
words = [[np.random.choice(lets) for x in range(slen)] for _ in range(nseqs)]
Reported by Pylint.
Line: 29
Column: 5
class TestDataFrameReprInfoEtc:
def test_repr_bytes_61_lines(self, using_array_manager):
# GH#12857
lets = list("ACDEFGHIJKLMNOP")
slen = 50
nseqs = 1000
words = [[np.random.choice(lets) for x in range(slen)] for _ in range(nseqs)]
Reported by Pylint.
pandas/tests/frame/methods/test_drop.py
98 issues
Line: 4
Column: 1
import re
import numpy as np
import pytest
from pandas.errors import PerformanceWarning
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 176
Column: 16
[("a", ""), ("b1", "c1"), ("b2", "c2")], names=["b", "c"]
)
lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi)
assert lexsorted_df.columns._is_lexsorted()
# define the non-lexsorted version
not_lexsorted_df = DataFrame(
columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]]
)
Reported by Pylint.
Line: 186
Column: 20
index="a", columns=["b", "c"], values="d"
)
not_lexsorted_df = not_lexsorted_df.reset_index()
assert not not_lexsorted_df.columns._is_lexsorted()
# compare the results
tm.assert_frame_equal(lexsorted_df, not_lexsorted_df)
expected = lexsorted_df.drop("a", axis=1)
Reported by Pylint.
Line: 487
Column: 58
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("indexer", [("a", "a"), [("a", "a")]])
def test_drop_tuple_with_non_unique_multiindex(self, indexer):
# GH#42771
idx = MultiIndex.from_product([["a", "b"], ["a", "a"]])
df = DataFrame({"x": range(len(idx))}, index=idx)
result = df.drop(index=[("a", "a")])
expected = DataFrame(
Reported by Pylint.
Line: 1
Column: 1
import re
import numpy as np
import pytest
from pandas.errors import PerformanceWarning
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 25
Column: 1
[
(r"labels \[4\] not found in level", 4, "a"),
(r"labels \[7\] not found in level", 7, "b"),
],
)
def test_drop_raise_exception_if_labels_not_in_level(msg, labels, level):
# GH 8594
mi = MultiIndex.from_arrays([[1, 2, 3], [4, 5, 6]], names=["a", "b"])
s = Series([10, 20, 30], index=mi)
Reported by Pylint.
Line: 29
Column: 5
)
def test_drop_raise_exception_if_labels_not_in_level(msg, labels, level):
# GH 8594
mi = MultiIndex.from_arrays([[1, 2, 3], [4, 5, 6]], names=["a", "b"])
s = Series([10, 20, 30], index=mi)
df = DataFrame([10, 20, 30], index=mi)
with pytest.raises(KeyError, match=msg):
s.drop(labels, level=level)
Reported by Pylint.
Line: 30
Column: 5
def test_drop_raise_exception_if_labels_not_in_level(msg, labels, level):
# GH 8594
mi = MultiIndex.from_arrays([[1, 2, 3], [4, 5, 6]], names=["a", "b"])
s = Series([10, 20, 30], index=mi)
df = DataFrame([10, 20, 30], index=mi)
with pytest.raises(KeyError, match=msg):
s.drop(labels, level=level)
with pytest.raises(KeyError, match=msg):
Reported by Pylint.
Line: 31
Column: 5
# GH 8594
mi = MultiIndex.from_arrays([[1, 2, 3], [4, 5, 6]], names=["a", "b"])
s = Series([10, 20, 30], index=mi)
df = DataFrame([10, 20, 30], index=mi)
with pytest.raises(KeyError, match=msg):
s.drop(labels, level=level)
with pytest.raises(KeyError, match=msg):
df.drop(labels, level=level)
Reported by Pylint.
Line: 40
Column: 1
@pytest.mark.parametrize("labels,level", [(4, "a"), (7, "b")])
def test_drop_errors_ignore(labels, level):
# GH 8594
mi = MultiIndex.from_arrays([[1, 2, 3], [4, 5, 6]], names=["a", "b"])
s = Series([10, 20, 30], index=mi)
df = DataFrame([10, 20, 30], index=mi)
Reported by Pylint.
pandas/tests/series/methods/test_fillna.py
98 issues
Line: 8
Column: 1
)
import numpy as np
import pytest
import pytz
from pandas import (
Categorical,
DataFrame,
Reported by Pylint.
Line: 9
Column: 1
import numpy as np
import pytest
import pytz
from pandas import (
Categorical,
DataFrame,
DatetimeIndex,
Reported by Pylint.
Line: 677
Column: 15
def test_fillna_categorical_raises(self):
data = ["a", np.nan, "b", np.nan, np.nan]
ser = Series(Categorical(data, categories=["a", "b"]))
cat = ser._values
msg = "Cannot setitem on a Categorical with a new category"
with pytest.raises(TypeError, match=msg):
ser.fillna("d")
Reported by Pylint.
Line: 749
Column: 23
# but we dont (yet) consider distinct tzinfos for non-UTC tz equivalent
ts = Timestamp("2000-01-01", tz="US/Pacific")
ser2 = Series(ser._values.tz_convert("dateutil/US/Pacific"))
result = ser2.fillna(ts)
expected = Series([ser[0], ts, ser[2]], dtype=object)
tm.assert_series_equal(result, expected)
def test_fillna_pos_args_deprecation(self):
Reported by Pylint.
Line: 1
Column: 1
from datetime import (
datetime,
timedelta,
timezone,
)
import numpy as np
import pytest
import pytz
Reported by Pylint.
Line: 26
Column: 1
import pandas._testing as tm
class TestSeriesFillNA:
def test_fillna_nat(self):
series = Series([0, 1, 2, NaT.value], dtype="M8[ns]")
filled = series.fillna(method="pad")
filled2 = series.fillna(value=series.values[2])
Reported by Pylint.
Line: 26
Column: 1
import pandas._testing as tm
class TestSeriesFillNA:
def test_fillna_nat(self):
series = Series([0, 1, 2, NaT.value], dtype="M8[ns]")
filled = series.fillna(method="pad")
filled2 = series.fillna(value=series.values[2])
Reported by Pylint.
Line: 27
Column: 5
class TestSeriesFillNA:
def test_fillna_nat(self):
series = Series([0, 1, 2, NaT.value], dtype="M8[ns]")
filled = series.fillna(method="pad")
filled2 = series.fillna(value=series.values[2])
Reported by Pylint.
Line: 27
Column: 5
class TestSeriesFillNA:
def test_fillna_nat(self):
series = Series([0, 1, 2, NaT.value], dtype="M8[ns]")
filled = series.fillna(method="pad")
filled2 = series.fillna(value=series.values[2])
Reported by Pylint.
Line: 39
Column: 9
tm.assert_series_equal(filled, expected)
tm.assert_series_equal(filled2, expected)
df = DataFrame({"A": series})
filled = df.fillna(method="pad")
filled2 = df.fillna(value=series.values[2])
expected = DataFrame({"A": expected})
tm.assert_frame_equal(filled, expected)
tm.assert_frame_equal(filled2, expected)
Reported by Pylint.