The following issues were found
pandas/tests/frame/methods/test_select_dtypes.py
108 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas.core.dtypes.dtypes import ExtensionDtype
import pandas as pd
from pandas import (
DataFrame,
Timestamp,
Reported by Pylint.
Line: 30
Column: 1
return self._numeric
class DummyArray(ExtensionArray):
def __init__(self, data, dtype):
self.data = data
self._dtype = dtype
def __array__(self, dtype):
Reported by Pylint.
Line: 35
Column: 25
self.data = data
self._dtype = dtype
def __array__(self, dtype):
return self.data
@property
def dtype(self):
return self._dtype
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas.core.dtypes.dtypes import ExtensionDtype
import pandas as pd
from pandas import (
DataFrame,
Timestamp,
Reported by Pylint.
Line: 15
Column: 1
from pandas.core.arrays import ExtensionArray
class DummyDtype(ExtensionDtype):
type = int
def __init__(self, numeric):
self._numeric = numeric
Reported by Pylint.
Line: 30
Column: 1
return self._numeric
class DummyArray(ExtensionArray):
def __init__(self, data, dtype):
self.data = data
self._dtype = dtype
def __array__(self, dtype):
Reported by Pylint.
Line: 52
Column: 1
return self
class TestSelectDtypes:
def test_select_dtypes_include_using_list_like(self):
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
Reported by Pylint.
Line: 53
Column: 5
class TestSelectDtypes:
def test_select_dtypes_include_using_list_like(self):
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
Reported by Pylint.
Line: 53
Column: 5
class TestSelectDtypes:
def test_select_dtypes_include_using_list_like(self):
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
Reported by Pylint.
Line: 54
Column: 9
class TestSelectDtypes:
def test_select_dtypes_include_using_list_like(self):
df = DataFrame(
{
"a": list("abc"),
"b": list(range(1, 4)),
"c": np.arange(3, 6).astype("u1"),
"d": np.arange(4.0, 7.0, dtype="float64"),
Reported by Pylint.
pandas/tests/reshape/merge/test_multi.py
108 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
Reported by Pylint.
Line: 82
Column: 9
class TestMergeMulti:
def setup_method(self):
self.index = MultiIndex(
levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=["first", "second"],
)
self.to_join = DataFrame(
Reported by Pylint.
Line: 87
Column: 9
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=["first", "second"],
)
self.to_join = DataFrame(
np.random.randn(10, 3),
index=self.index,
columns=["j_one", "j_two", "j_three"],
)
Reported by Pylint.
Line: 109
Column: 9
]
data = np.random.randn(len(key1))
self.data = DataFrame({"key1": key1, "key2": key2, "data": data})
def test_merge_on_multikey(self, left, right, join_type):
on_cols = ["key1", "key2"]
result = left.join(right, on=on_cols, how=join_type).reset_index(drop=True)
Reported by Pylint.
Line: 111
Column: 44
data = np.random.randn(len(key1))
self.data = DataFrame({"key1": key1, "key2": key2, "data": data})
def test_merge_on_multikey(self, left, right, join_type):
on_cols = ["key1", "key2"]
result = left.join(right, on=on_cols, how=join_type).reset_index(drop=True)
expected = merge(left, right.reset_index(), on=on_cols, how=join_type)
Reported by Pylint.
Line: 111
Column: 38
data = np.random.randn(len(key1))
self.data = DataFrame({"key1": key1, "key2": key2, "data": data})
def test_merge_on_multikey(self, left, right, join_type):
on_cols = ["key1", "key2"]
result = left.join(right, on=on_cols, how=join_type).reset_index(drop=True)
expected = merge(left, right.reset_index(), on=on_cols, how=join_type)
Reported by Pylint.
Line: 130
Column: 42
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("sort", [False, True])
def test_left_join_multi_index(self, left, right, sort):
icols = ["1st", "2nd", "3rd"]
def bind_cols(df):
iord = lambda a: 0 if a != a else ord(a)
f = lambda ts: ts.map(iord) - ord("a")
Reported by Pylint.
Line: 130
Column: 48
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("sort", [False, True])
def test_left_join_multi_index(self, left, right, sort):
icols = ["1st", "2nd", "3rd"]
def bind_cols(df):
iord = lambda a: 0 if a != a else ord(a)
f = lambda ts: ts.map(iord) - ord("a")
Reported by Pylint.
Line: 138
Column: 31
f = lambda ts: ts.map(iord) - ord("a")
return f(df["1st"]) + f(df["3rd"]) * 1e2 + df["2nd"].fillna(0) * 1e4
def run_asserts(left, right, sort):
res = left.join(right, on=icols, how="left", sort=sort)
assert len(left) < len(res) + 1
assert not res["4th"].isna().any()
assert not res["5th"].isna().any()
Reported by Pylint.
Line: 138
Column: 25
f = lambda ts: ts.map(iord) - ord("a")
return f(df["1st"]) + f(df["3rd"]) * 1e2 + df["2nd"].fillna(0) * 1e4
def run_asserts(left, right, sort):
res = left.join(right, on=icols, how="left", sort=sort)
assert len(left) < len(res) + 1
assert not res["4th"].isna().any()
assert not res["5th"].isna().any()
Reported by Pylint.
pandas/tests/window/test_timeseries_window.py
108 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
Timestamp,
Reported by Pylint.
Line: 23
Column: 28
# rolling time-series friendly
# xref GH13327
def setup_method(self, method):
self.regular = DataFrame(
{"A": date_range("20130101", periods=5, freq="s"), "B": range(5)}
).set_index("A")
Reported by Pylint.
Line: 25
Column: 9
def setup_method(self, method):
self.regular = DataFrame(
{"A": date_range("20130101", periods=5, freq="s"), "B": range(5)}
).set_index("A")
self.ragged = DataFrame({"B": range(5)})
self.ragged.index = [
Reported by Pylint.
Line: 29
Column: 9
{"A": date_range("20130101", periods=5, freq="s"), "B": range(5)}
).set_index("A")
self.ragged = DataFrame({"B": range(5)})
self.ragged.index = [
Timestamp("20130101 09:00:00"),
Timestamp("20130101 09:00:02"),
Timestamp("20130101 09:00:03"),
Timestamp("20130101 09:00:05"),
Reported by Pylint.
Line: 50
Column: 9
Timestamp("20130101 09:00:06"),
],
)
df
df.rolling("2s").sum()
def test_invalid_window_non_int(self):
# not a valid freq
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
Timestamp,
Reported by Pylint.
Line: 18
Column: 1
import pandas.tseries.offsets as offsets
class TestRollingTS:
# rolling time-series friendly
# xref GH13327
def setup_method(self, method):
Reported by Pylint.
Line: 18
Column: 1
import pandas.tseries.offsets as offsets
class TestRollingTS:
# rolling time-series friendly
# xref GH13327
def setup_method(self, method):
Reported by Pylint.
Line: 23
Column: 5
# rolling time-series friendly
# xref GH13327
def setup_method(self, method):
self.regular = DataFrame(
{"A": date_range("20130101", periods=5, freq="s"), "B": range(5)}
).set_index("A")
Reported by Pylint.
Line: 38
Column: 5
Timestamp("20130101 09:00:06"),
]
def test_doc_string(self):
df = DataFrame(
{"B": [0, 1, 2, np.nan, 4]},
index=[
Timestamp("20130101 09:00:00"),
Reported by Pylint.
pandas/tests/indexing/multiindex/test_setitem.py
108 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
MultiIndex,
Reported by Pylint.
Line: 124
Column: 3
expected=copy,
)
# TODO(ArrayManager) df.loc["bar"] *= 2 doesn't raise an error but results in
# all NaNs -> doesn't work in the "split" path (also for BlockManager actually)
@td.skip_array_manager_not_yet_implemented
def test_multiindex_setitem(self):
# GH 3738
Reported by Pylint.
Line: 264
Column: 13
with pytest.raises(KeyError, match="49"):
# GH#33355 dont fall-back to positional when leading level is int
s[49]
def test_frame_getitem_setitem_boolean(self, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
df = frame.T.copy()
values = df.values
Reported by Pylint.
Line: 352
Column: 3
assert sliced_a2.name == ("A", "2")
assert sliced_b1.name == ("B", "1")
# TODO: no setitem here?
def test_getitem_setitem_tuple_plus_columns(
self, multiindex_year_month_day_dataframe_random_data
):
# GH #1013
ymd = multiindex_year_month_day_dataframe_random_data
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
MultiIndex,
Reported by Pylint.
Line: 20
Column: 1
import pandas.core.common as com
def assert_equal(a, b):
assert a == b
class TestMultiIndexSetItem:
def check(self, target, indexers, value, compare_fn=assert_equal, expected=None):
Reported by Pylint.
Line: 20
Column: 1
import pandas.core.common as com
def assert_equal(a, b):
assert a == b
class TestMultiIndexSetItem:
def check(self, target, indexers, value, compare_fn=assert_equal, expected=None):
Reported by Pylint.
Line: 20
Column: 1
import pandas.core.common as com
def assert_equal(a, b):
assert a == b
class TestMultiIndexSetItem:
def check(self, target, indexers, value, compare_fn=assert_equal, expected=None):
Reported by Pylint.
Line: 21
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
def assert_equal(a, b):
assert a == b
class TestMultiIndexSetItem:
def check(self, target, indexers, value, compare_fn=assert_equal, expected=None):
target.loc[indexers] = value
Reported by Bandit.
Line: 24
Column: 1
assert a == b
class TestMultiIndexSetItem:
def check(self, target, indexers, value, compare_fn=assert_equal, expected=None):
target.loc[indexers] = value
result = target.loc[indexers]
if expected is None:
expected = value
Reported by Pylint.
pandas/tests/series/indexing/test_where.py
108 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas.core.dtypes.common import is_integer
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 500
Column: 10
# GH#37682
tz = tz_naive_fixture
dr = date_range("2001-01-01", periods=3, tz=tz)._with_freq(None)
lvals = pd.DatetimeIndex([dr[0], dr[1], pd.NaT])
rvals = pd.Categorical([dr[0], pd.NaT, dr[2]])
mask = np.array([True, True, False])
Reported by Pylint.
Line: 500
Column: 10
# GH#37682
tz = tz_naive_fixture
dr = date_range("2001-01-01", periods=3, tz=tz)._with_freq(None)
lvals = pd.DatetimeIndex([dr[0], dr[1], pd.NaT])
rvals = pd.Categorical([dr[0], pd.NaT, dr[2]])
mask = np.array([True, True, False])
Reported by Pylint.
Line: 493
Column: 3
tm.assert_equal(exp, res)
# TODO(ArrayManager) DataFrame.values not yet correctly returning datetime array
# for categorical with datetime categories
@td.skip_array_manager_not_yet_implemented
def test_where_datetimelike_categorical(tz_naive_fixture):
# GH#37682
tz = tz_naive_fixture
Reported by Pylint.
Line: 500
Column: 10
# GH#37682
tz = tz_naive_fixture
dr = date_range("2001-01-01", periods=3, tz=tz)._with_freq(None)
lvals = pd.DatetimeIndex([dr[0], dr[1], pd.NaT])
rvals = pd.Categorical([dr[0], pd.NaT, dr[2]])
mask = np.array([True, True, False])
Reported by Pylint.
Line: 511
Column: 11
tm.assert_index_equal(res, dr)
# DatetimeArray.where
res = lvals._data.where(mask, rvals)
tm.assert_datetime_array_equal(res, dr._data)
# Series.where
res = Series(lvals).where(mask, rvals)
tm.assert_series_equal(res, Series(dr))
Reported by Pylint.
Line: 512
Column: 41
# DatetimeArray.where
res = lvals._data.where(mask, rvals)
tm.assert_datetime_array_equal(res, dr._data)
# Series.where
res = Series(lvals).where(mask, rvals)
tm.assert_series_equal(res, Series(dr))
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas.core.dtypes.common import is_integer
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 18
Column: 1
import pandas._testing as tm
def test_where_unsafe_int(any_signed_int_numpy_dtype):
s = Series(np.arange(10), dtype=any_signed_int_numpy_dtype)
mask = s < 5
s[mask] = range(2, 7)
expected = Series(
Reported by Pylint.
Line: 19
Column: 5
def test_where_unsafe_int(any_signed_int_numpy_dtype):
s = Series(np.arange(10), dtype=any_signed_int_numpy_dtype)
mask = s < 5
s[mask] = range(2, 7)
expected = Series(
list(range(2, 7)) + list(range(5, 10)),
Reported by Pylint.
pandas/tests/resample/test_resample_api.py
105 issues
Line: 4
Column: 1
from datetime import datetime
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
NamedAgg,
Reported by Pylint.
Line: 97
Column: 15
tm.assert_frame_equal(result, expected)
def test_pipe(test_frame):
# GH17905
# series
r = test_series.resample("H")
expected = r.max() - r.mean()
Reported by Pylint.
Line: 113
Column: 18
tm.assert_frame_equal(result, expected)
def test_getitem(test_frame):
r = test_frame.resample("H")
tm.assert_index_equal(r._selected_obj.columns, test_frame.columns)
r = test_frame.resample("H")["B"]
Reported by Pylint.
Line: 116
Column: 27
def test_getitem(test_frame):
r = test_frame.resample("H")
tm.assert_index_equal(r._selected_obj.columns, test_frame.columns)
r = test_frame.resample("H")["B"]
assert r._selected_obj.name == test_frame.columns[1]
# technically this is allowed
Reported by Pylint.
Line: 119
Column: 12
tm.assert_index_equal(r._selected_obj.columns, test_frame.columns)
r = test_frame.resample("H")["B"]
assert r._selected_obj.name == test_frame.columns[1]
# technically this is allowed
r = test_frame.resample("H")["A", "B"]
tm.assert_index_equal(r._selected_obj.columns, test_frame.columns[[0, 1]])
Reported by Pylint.
Line: 123
Column: 27
# technically this is allowed
r = test_frame.resample("H")["A", "B"]
tm.assert_index_equal(r._selected_obj.columns, test_frame.columns[[0, 1]])
r = test_frame.resample("H")["A", "B"]
tm.assert_index_equal(r._selected_obj.columns, test_frame.columns[[0, 1]])
Reported by Pylint.
Line: 126
Column: 27
tm.assert_index_equal(r._selected_obj.columns, test_frame.columns[[0, 1]])
r = test_frame.resample("H")["A", "B"]
tm.assert_index_equal(r._selected_obj.columns, test_frame.columns[[0, 1]])
@pytest.mark.parametrize("key", [["D"], ["A", "D"]])
def test_select_bad_cols(key, test_frame):
g = test_frame.resample("H")
Reported by Pylint.
Line: 130
Column: 31
@pytest.mark.parametrize("key", [["D"], ["A", "D"]])
def test_select_bad_cols(key, test_frame):
g = test_frame.resample("H")
# 'A' should not be referenced as a bad column...
# will have to rethink regex if you change message!
msg = r"^\"Columns not found: 'D'\"$"
with pytest.raises(KeyError, match=msg):
Reported by Pylint.
Line: 136
Column: 9
# will have to rethink regex if you change message!
msg = r"^\"Columns not found: 'D'\"$"
with pytest.raises(KeyError, match=msg):
g[key]
def test_attribute_access(test_frame):
r = test_frame.resample("H")
Reported by Pylint.
Line: 139
Column: 27
g[key]
def test_attribute_access(test_frame):
r = test_frame.resample("H")
tm.assert_series_equal(r.A.sum(), r["A"].sum())
Reported by Pylint.
pandas/tests/indexes/categorical/test_indexing.py
105 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas.errors import InvalidIndexError
import pandas as pd
from pandas import (
CategoricalIndex,
Index,
Reported by Pylint.
Line: 327
Column: 13
msg = "Cannot setitem on a Categorical with a new category"
with pytest.raises(TypeError, match=msg):
# Test the Categorical method directly
ci._data.where(mask, 2)
class TestContains:
def test_contains(self):
Reported by Pylint.
Line: 357
Column: 19
obj = ci
if unwrap:
obj = ci._data
assert np.nan in obj
assert None in obj
assert pd.NaT in obj
assert np.datetime64("NaT") in obj
Reported by Pylint.
Line: 367
Column: 20
obj2 = CategoricalIndex(tdi)
if unwrap:
obj2 = obj2._data
assert np.nan in obj2
assert None in obj2
assert pd.NaT in obj2
assert np.datetime64("NaT") not in obj2
Reported by Pylint.
Line: 377
Column: 20
obj3 = CategoricalIndex(pi)
if unwrap:
obj3 = obj3._data
assert np.nan in obj3
assert None in obj3
assert pd.NaT in obj3
assert np.datetime64("NaT") not in obj3
Reported by Pylint.
Line: 410
Column: 13
assert "a" not in idx
with pytest.raises(TypeError, match="unhashable type"):
["a"] in idx
with pytest.raises(TypeError, match="unhashable type"):
["a", "b"] in idx
Reported by Pylint.
Line: 413
Column: 13
["a"] in idx
with pytest.raises(TypeError, match="unhashable type"):
["a", "b"] in idx
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas.errors import InvalidIndexError
import pandas as pd
from pandas import (
CategoricalIndex,
Index,
Reported by Pylint.
Line: 16
Column: 1
import pandas._testing as tm
class TestTake:
def test_take_fill_value(self):
# GH 12631
# numeric category
idx = CategoricalIndex([1, 2, 3], name="xxx")
Reported by Pylint.
Line: 17
Column: 5
class TestTake:
def test_take_fill_value(self):
# GH 12631
# numeric category
idx = CategoricalIndex([1, 2, 3], name="xxx")
result = idx.take(np.array([1, 0, -1]))
Reported by Pylint.
pandas/tests/reshape/test_get_dummies.py
105 issues
Line: 4
Column: 1
import re
import numpy as np
import pytest
from pandas.core.dtypes.common import is_integer_dtype
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 237
Column: 47
expected = expected[["C"] + cols]
typ = SparseArray if sparse else Series
expected[cols] = expected[cols].apply(lambda x: typ(x))
tm.assert_frame_equal(result, expected)
def test_dataframe_dummies_prefix_str(self, df, sparse):
# not that you should do this...
result = get_dummies(df, prefix="bad", sparse=sparse)
Reported by Pylint.
Line: 502
Column: 78
expected = expected.apply(SparseArray, fill_value=0)
tm.assert_frame_equal(result, expected)
def test_dataframe_dummies_drop_first_with_categorical(self, df, sparse, dtype):
df["cat"] = Categorical(["x", "y", "y"])
result = get_dummies(df, drop_first=True, sparse=sparse)
expected = DataFrame(
{"C": [1, 2, 3], "A_b": [0, 1, 0], "B_c": [0, 0, 1], "cat_y": [0, 1, 1]}
)
Reported by Pylint.
Line: 1
Column: 1
import re
import numpy as np
import pytest
from pandas.core.dtypes.common import is_integer_dtype
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 23
Column: 1
)
class TestGetDummies:
@pytest.fixture
def df(self):
return DataFrame({"A": ["a", "b", "a"], "B": ["b", "b", "c"], "C": [1, 2, 3]})
@pytest.fixture(params=["uint8", "i8", np.float64, bool, None])
Reported by Pylint.
Line: 23
Column: 1
)
class TestGetDummies:
@pytest.fixture
def df(self):
return DataFrame({"A": ["a", "b", "a"], "B": ["b", "b", "c"], "C": [1, 2, 3]})
@pytest.fixture(params=["uint8", "i8", np.float64, bool, None])
Reported by Pylint.
Line: 25
Column: 5
class TestGetDummies:
@pytest.fixture
def df(self):
return DataFrame({"A": ["a", "b", "a"], "B": ["b", "b", "c"], "C": [1, 2, 3]})
@pytest.fixture(params=["uint8", "i8", np.float64, bool, None])
def dtype(self, request):
return np.dtype(request.param)
Reported by Pylint.
Line: 25
Column: 5
class TestGetDummies:
@pytest.fixture
def df(self):
return DataFrame({"A": ["a", "b", "a"], "B": ["b", "b", "c"], "C": [1, 2, 3]})
@pytest.fixture(params=["uint8", "i8", np.float64, bool, None])
def dtype(self, request):
return np.dtype(request.param)
Reported by Pylint.
Line: 25
Column: 5
class TestGetDummies:
@pytest.fixture
def df(self):
return DataFrame({"A": ["a", "b", "a"], "B": ["b", "b", "c"], "C": [1, 2, 3]})
@pytest.fixture(params=["uint8", "i8", np.float64, bool, None])
def dtype(self, request):
return np.dtype(request.param)
Reported by Pylint.
Line: 29
Column: 5
return DataFrame({"A": ["a", "b", "a"], "B": ["b", "b", "c"], "C": [1, 2, 3]})
@pytest.fixture(params=["uint8", "i8", np.float64, bool, None])
def dtype(self, request):
return np.dtype(request.param)
@pytest.fixture(params=["dense", "sparse"])
def sparse(self, request):
# params are strings to simplify reading test results,
Reported by Pylint.
pandas/tests/indexes/multi/test_constructors.py
105 issues
Line: 8
Column: 1
import itertools
import numpy as np
import pytest
from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 390
Column: 13
def test_from_tuples_index_values(idx):
result = MultiIndex.from_tuples(idx)
assert (result.values == idx.values).all()
def test_tuples_with_name_string():
# GH 15110 and GH 14848
Reported by Pylint.
Line: 479
Column: 27
rng = Index(range(5))
other = ["a", "b"]
mi = MultiIndex.from_product([rng, other])
tm.assert_index_equal(mi._levels[0], rng, exact=True)
@pytest.mark.parametrize("ordered", [False, True])
@pytest.mark.parametrize("f", [lambda x: x, lambda x: Series(x), lambda x: x.values])
def test_from_product_index_series_categorical(ordered, f):
Reported by Pylint.
Line: 483
Column: 45
@pytest.mark.parametrize("ordered", [False, True])
@pytest.mark.parametrize("f", [lambda x: x, lambda x: Series(x), lambda x: x.values])
def test_from_product_index_series_categorical(ordered, f):
# GH13743
first = ["foo", "bar"]
idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered)
Reported by Pylint.
Line: 817
Column: 12
arr = [v, v]
idx = Index(arr)
assert idx.dtype == object
mi = MultiIndex.from_arrays([arr])
lev = mi.levels[0]
assert lev.dtype == object
Reported by Pylint.
Line: 1
Column: 1
from datetime import (
date,
datetime,
)
import itertools
import numpy as np
import pytest
Reported by Pylint.
Line: 23
Column: 1
import pandas._testing as tm
def test_constructor_single_level():
result = MultiIndex(
levels=[["foo", "bar", "baz", "qux"]], codes=[[0, 1, 2, 3]], names=["first"]
)
assert isinstance(result, MultiIndex)
expected = Index(["foo", "bar", "baz", "qux"], name="first")
Reported by Pylint.
Line: 27
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = MultiIndex(
levels=[["foo", "bar", "baz", "qux"]], codes=[[0, 1, 2, 3]], names=["first"]
)
assert isinstance(result, MultiIndex)
expected = Index(["foo", "bar", "baz", "qux"], name="first")
tm.assert_index_equal(result.levels[0], expected)
assert result.names == ["first"]
Reported by Bandit.
Line: 30
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
assert isinstance(result, MultiIndex)
expected = Index(["foo", "bar", "baz", "qux"], name="first")
tm.assert_index_equal(result.levels[0], expected)
assert result.names == ["first"]
def test_constructor_no_levels():
msg = "non-zero number of levels/codes"
with pytest.raises(ValueError, match=msg):
Reported by Bandit.
Line: 33
Column: 1
assert result.names == ["first"]
def test_constructor_no_levels():
msg = "non-zero number of levels/codes"
with pytest.raises(ValueError, match=msg):
MultiIndex(levels=[], codes=[])
msg = "Must pass both levels and codes"
Reported by Pylint.
pandas/tests/groupby/test_timegrouper.py
105 issues
Line: 7
Column: 1
from io import StringIO
import numpy as np
import pytest
import pytz
import pandas as pd
from pandas import (
DataFrame,
Reported by Pylint.
Line: 8
Column: 1
import numpy as np
import pytest
import pytz
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Reported by Pylint.
Line: 318
Column: 3
expected = (
df.groupby("user_id")["whole_cost"]
.resample(freq)
.sum(min_count=1) # XXX
.dropna()
.reorder_levels(["date", "user_id"])
.sort_index()
.astype("int64")
)
Reported by Pylint.
Line: 746
Column: 26
grouper = Grouper(key="time", freq="h")
result = test.groupby(grouper)["data"].nunique()
expected = test[test.time.notnull()].groupby(grouper)["data"].nunique()
expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected)
def test_scalar_call_versus_list_call(self):
# Issue: 17530
data_frame = {
Reported by Pylint.
Line: 26
Column: 1
from pandas.core.groupby.ops import BinGrouper
class TestGroupBy:
def test_groupby_with_timegrouper(self):
# GH 4161
# TimeGrouper requires a sorted index
# also verifies that the resultant index has the correct name
df_original = DataFrame(
Reported by Pylint.
Line: 26
Column: 1
from pandas.core.groupby.ops import BinGrouper
class TestGroupBy:
def test_groupby_with_timegrouper(self):
# GH 4161
# TimeGrouper requires a sorted index
# also verifies that the resultant index has the correct name
df_original = DataFrame(
Reported by Pylint.
Line: 27
Column: 5
class TestGroupBy:
def test_groupby_with_timegrouper(self):
# GH 4161
# TimeGrouper requires a sorted index
# also verifies that the resultant index has the correct name
df_original = DataFrame(
{
Reported by Pylint.
Line: 27
Column: 5
class TestGroupBy:
def test_groupby_with_timegrouper(self):
# GH 4161
# TimeGrouper requires a sorted index
# also verifies that the resultant index has the correct name
df_original = DataFrame(
{
Reported by Pylint.
Line: 49
Column: 13
# GH 6908 change target column's order
df_reordered = df_original.sort_values(by="Quantity")
for df in [df_original, df_reordered]:
df = df.set_index(["Date"])
expected = DataFrame(
{"Quantity": 0},
index=date_range(
Reported by Pylint.
Line: 50
Column: 13
df_reordered = df_original.sort_values(by="Quantity")
for df in [df_original, df_reordered]:
df = df.set_index(["Date"])
expected = DataFrame(
{"Quantity": 0},
index=date_range(
"20130901", "20131205", freq="5D", name="Date", closed="left"
Reported by Pylint.