The following issues were found
pandas/tests/strings/test_find_replace.py
69 issues
Line: 5
Column: 1
import re
import numpy as np
import pytest
import pandas as pd
from pandas import (
Series,
_testing as tm,
Reported by Pylint.
Line: 1
Column: 1
from datetime import datetime
import re
import numpy as np
import pytest
import pandas as pd
from pandas import (
Series,
Reported by Pylint.
Line: 18
Column: 1
# --------------------------------------------------------------------------------------
def test_contains(any_string_dtype):
values = np.array(
["foo", np.nan, "fooommm__foo", "mmm_", "foommm[_]+bar"], dtype=np.object_
)
values = Series(values, dtype=any_string_dtype)
pat = "mmm[_]+"
Reported by Pylint.
Line: 91
Column: 1
tm.assert_series_equal(result, expected)
def test_contains_object_mixed():
mixed = Series(
np.array(
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
dtype=object,
)
Reported by Pylint.
Line: 108
Column: 1
tm.assert_series_equal(result, expected)
def test_contains_na_kwarg_for_object_category():
# gh 22158
# na for category
values = Series(["a", "b", "c", "a", np.nan], dtype="category")
result = values.str.contains("a", na=True)
Reported by Pylint.
Line: 142
Column: 1
(3, True),
(np.nan, pd.NA),
],
)
@pytest.mark.parametrize("regex", [True, False])
def test_contains_na_kwarg_for_nullable_string_dtype(
nullable_string_dtype, na, expected, regex
):
# https://github.com/pandas-dev/pandas/pull/41025#issuecomment-824062416
Reported by Pylint.
Line: 142
Column: 1
(3, True),
(np.nan, pd.NA),
],
)
@pytest.mark.parametrize("regex", [True, False])
def test_contains_na_kwarg_for_nullable_string_dtype(
nullable_string_dtype, na, expected, regex
):
# https://github.com/pandas-dev/pandas/pull/41025#issuecomment-824062416
Reported by Pylint.
Line: 155
Column: 1
tm.assert_series_equal(result, expected)
def test_contains_moar(any_string_dtype):
# PR #1179
s = Series(
["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
dtype=any_string_dtype,
)
Reported by Pylint.
Line: 157
Column: 5
def test_contains_moar(any_string_dtype):
# PR #1179
s = Series(
["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
dtype=any_string_dtype,
)
result = s.str.contains("a")
Reported by Pylint.
Line: 199
Column: 1
tm.assert_series_equal(result, expected)
def test_contains_nan(any_string_dtype):
# PR #14171
s = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype)
result = s.str.contains("foo", na=False)
expected_dtype = np.bool_ if any_string_dtype == "object" else "boolean"
Reported by Pylint.
pandas/tests/reductions/test_stat_reductions.py
69 issues
Line: 7
Column: 1
import inspect
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 232
Column: 9
@td.skip_if_no_scipy
def test_skew(self):
from scipy.stats import skew
string_series = tm.makeStringSeries().rename("series")
alt = lambda x: skew(x, bias=False)
self._check_stat_op("skew", alt, string_series)
Reported by Pylint.
Line: 254
Column: 9
@td.skip_if_no_scipy
def test_kurt(self):
from scipy.stats import kurtosis
string_series = tm.makeStringSeries().rename("series")
alt = lambda x: kurtosis(x, bias=False)
self._check_stat_op("kurt", alt, string_series)
Reported by Pylint.
Line: 32
Column: 17
dti = pd.date_range("2001-01-01", periods=11, tz=tz)
# shuffle so that we are not just working with monotone-increasing
dti = dti.take([4, 1, 3, 10, 9, 7, 8, 5, 0, 2, 6])
dtarr = dti._data
obj = box(dtarr)
assert obj.mean() == pd.Timestamp("2001-01-06", tz=tz)
assert obj.mean(skipna=False) == pd.Timestamp("2001-01-06", tz=tz)
Reported by Pylint.
Line: 53
Column: 4
dti = dti.take([4, 1, 3, 10, 9, 7, 8, 5, 0, 2, 6])
# use hourly frequency to avoid rounding errors in expected results
# TODO: flesh this out with different frequencies
parr = dti._data.to_period("H")
obj = box(parr)
with pytest.raises(TypeError, match="ambiguous"):
obj.mean()
with pytest.raises(TypeError, match="ambiguous"):
Reported by Pylint.
Line: 54
Column: 16
# use hourly frequency to avoid rounding errors in expected results
# TODO: flesh this out with different frequencies
parr = dti._data.to_period("H")
obj = box(parr)
with pytest.raises(TypeError, match="ambiguous"):
obj.mean()
with pytest.raises(TypeError, match="ambiguous"):
obj.mean(skipna=True)
Reported by Pylint.
Line: 73
Column: 17
def test_td64_mean(self, box):
tdi = pd.TimedeltaIndex([0, 3, -2, -7, 1, 2, -1, 3, 5, -2, 4], unit="D")
tdarr = tdi._data
obj = box(tdarr)
result = obj.mean()
expected = np.array(tdarr).mean()
assert result == expected
Reported by Pylint.
Line: 24
Column: 1
)
class TestDatetimeLikeStatReductions:
@pytest.mark.parametrize("box", [Series, pd.Index, DatetimeArray])
def test_dt64_mean(self, tz_naive_fixture, box):
tz = tz_naive_fixture
dti = pd.date_range("2001-01-01", periods=11, tz=tz)
Reported by Pylint.
Line: 26
Column: 5
class TestDatetimeLikeStatReductions:
@pytest.mark.parametrize("box", [Series, pd.Index, DatetimeArray])
def test_dt64_mean(self, tz_naive_fixture, box):
tz = tz_naive_fixture
dti = pd.date_range("2001-01-01", periods=11, tz=tz)
# shuffle so that we are not just working with monotone-increasing
dti = dti.take([4, 1, 3, 10, 9, 7, 8, 5, 0, 2, 6])
Reported by Pylint.
Line: 26
Column: 5
class TestDatetimeLikeStatReductions:
@pytest.mark.parametrize("box", [Series, pd.Index, DatetimeArray])
def test_dt64_mean(self, tz_naive_fixture, box):
tz = tz_naive_fixture
dti = pd.date_range("2001-01-01", periods=11, tz=tz)
# shuffle so that we are not just working with monotone-increasing
dti = dti.take([4, 1, 3, 10, 9, 7, 8, 5, 0, 2, 6])
Reported by Pylint.
pandas/core/config_init.py
69 issues
Line: 378
Column: 3
)
cf.register_option(
# TODO(2.0): change `validator=is_nonnegative_int` see GH#31569
"max_colwidth",
50,
max_colwidth_doc,
validator=is_instance_factory([type(None), int]),
cb=_deprecate_negative_int_max_colwidth,
Reported by Pylint.
Line: 28
Column: 1
# compute
use_bottleneck_doc = """
: bool
Use the bottleneck library to accelerate if it is installed,
the default is True
Valid values: False,True
"""
Reported by Pylint.
Line: 36
Column: 1
"""
def use_bottleneck_cb(key):
from pandas.core import nanops
nanops.set_use_bottleneck(cf.get_option(key))
Reported by Pylint.
Line: 37
Column: 5
def use_bottleneck_cb(key):
from pandas.core import nanops
nanops.set_use_bottleneck(cf.get_option(key))
use_numexpr_doc = """
Reported by Pylint.
Line: 42
Column: 1
nanops.set_use_bottleneck(cf.get_option(key))
use_numexpr_doc = """
: bool
Use the numexpr library to accelerate computation if it is installed,
the default is True
Valid values: False,True
"""
Reported by Pylint.
Line: 50
Column: 1
"""
def use_numexpr_cb(key):
from pandas.core.computation import expressions
expressions.set_use_numexpr(cf.get_option(key))
Reported by Pylint.
Line: 51
Column: 5
def use_numexpr_cb(key):
from pandas.core.computation import expressions
expressions.set_use_numexpr(cf.get_option(key))
use_numba_doc = """
Reported by Pylint.
Line: 56
Column: 1
expressions.set_use_numexpr(cf.get_option(key))
use_numba_doc = """
: bool
Use the numba engine option for select operations if it is installed,
the default is False
Valid values: False,True
"""
Reported by Pylint.
Line: 64
Column: 1
"""
def use_numba_cb(key):
from pandas.core.util import numba_
numba_.set_use_numba(cf.get_option(key))
Reported by Pylint.
Line: 65
Column: 5
def use_numba_cb(key):
from pandas.core.util import numba_
numba_.set_use_numba(cf.get_option(key))
with cf.config_prefix("compute"):
Reported by Pylint.
pandas/core/tools/datetimes.py
68 issues
Line: 21
Column: 1
import numpy as np
from pandas._libs import tslib
from pandas._libs.tslibs import (
OutOfBoundsDatetime,
Timedelta,
Timestamp,
conversion,
Reported by Pylint.
Line: 22
Column: 1
import numpy as np
from pandas._libs import tslib
from pandas._libs.tslibs import (
OutOfBoundsDatetime,
Timedelta,
Timestamp,
conversion,
iNaT,
Reported by Pylint.
Line: 22
Column: 1
import numpy as np
from pandas._libs import tslib
from pandas._libs.tslibs import (
OutOfBoundsDatetime,
Timedelta,
Timestamp,
conversion,
iNaT,
Reported by Pylint.
Line: 31
Column: 1
nat_strings,
parsing,
)
from pandas._libs.tslibs.parsing import ( # noqa
DateParseError,
format_is_iso,
guess_datetime_format,
)
from pandas._libs.tslibs.strptime import array_strptime
Reported by Pylint.
Line: 31
Column: 1
nat_strings,
parsing,
)
from pandas._libs.tslibs.parsing import ( # noqa
DateParseError,
format_is_iso,
guess_datetime_format,
)
from pandas._libs.tslibs.strptime import array_strptime
Reported by Pylint.
Line: 36
Column: 1
format_is_iso,
guess_datetime_format,
)
from pandas._libs.tslibs.strptime import array_strptime
from pandas._typing import (
AnyArrayLike,
ArrayLike,
Timezone,
)
Reported by Pylint.
Line: 36
Column: 1
format_is_iso,
guess_datetime_format,
)
from pandas._libs.tslibs.strptime import array_strptime
from pandas._typing import (
AnyArrayLike,
ArrayLike,
Timezone,
)
Reported by Pylint.
Line: 76
Column: 5
from pandas.core.indexes.datetimes import DatetimeIndex
if TYPE_CHECKING:
from pandas._libs.tslibs.nattype import NaTType
from pandas import Series
# ---------------------------------------------------------------------
# types used in annotations
Reported by Pylint.
Line: 76
Column: 5
from pandas.core.indexes.datetimes import DatetimeIndex
if TYPE_CHECKING:
from pandas._libs.tslibs.nattype import NaTType
from pandas import Series
# ---------------------------------------------------------------------
# types used in annotations
Reported by Pylint.
Line: 31
Column: 1
nat_strings,
parsing,
)
from pandas._libs.tslibs.parsing import ( # noqa
DateParseError,
format_is_iso,
guess_datetime_format,
)
from pandas._libs.tslibs.strptime import array_strptime
Reported by Pylint.
pandas/tests/indexes/period/methods/test_asfreq.py
68 issues
Line: 1
Column: 1
import pytest
from pandas import (
PeriodIndex,
period_range,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import pytest
from pandas import (
PeriodIndex,
period_range,
)
import pandas._testing as tm
Reported by Pylint.
Line: 10
Column: 1
import pandas._testing as tm
class TestPeriodIndex:
def test_asfreq(self):
pi1 = period_range(freq="A", start="1/1/2001", end="1/1/2001")
pi2 = period_range(freq="Q", start="1/1/2001", end="1/1/2001")
pi3 = period_range(freq="M", start="1/1/2001", end="1/1/2001")
pi4 = period_range(freq="D", start="1/1/2001", end="1/1/2001")
Reported by Pylint.
Line: 11
Column: 5
class TestPeriodIndex:
def test_asfreq(self):
pi1 = period_range(freq="A", start="1/1/2001", end="1/1/2001")
pi2 = period_range(freq="Q", start="1/1/2001", end="1/1/2001")
pi3 = period_range(freq="M", start="1/1/2001", end="1/1/2001")
pi4 = period_range(freq="D", start="1/1/2001", end="1/1/2001")
pi5 = period_range(freq="H", start="1/1/2001", end="1/1/2001 00:00")
Reported by Pylint.
Line: 11
Column: 5
class TestPeriodIndex:
def test_asfreq(self):
pi1 = period_range(freq="A", start="1/1/2001", end="1/1/2001")
pi2 = period_range(freq="Q", start="1/1/2001", end="1/1/2001")
pi3 = period_range(freq="M", start="1/1/2001", end="1/1/2001")
pi4 = period_range(freq="D", start="1/1/2001", end="1/1/2001")
pi5 = period_range(freq="H", start="1/1/2001", end="1/1/2001 00:00")
Reported by Pylint.
Line: 11
Column: 5
class TestPeriodIndex:
def test_asfreq(self):
pi1 = period_range(freq="A", start="1/1/2001", end="1/1/2001")
pi2 = period_range(freq="Q", start="1/1/2001", end="1/1/2001")
pi3 = period_range(freq="M", start="1/1/2001", end="1/1/2001")
pi4 = period_range(freq="D", start="1/1/2001", end="1/1/2001")
pi5 = period_range(freq="H", start="1/1/2001", end="1/1/2001 00:00")
Reported by Pylint.
Line: 20
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
pi6 = period_range(freq="Min", start="1/1/2001", end="1/1/2001 00:00")
pi7 = period_range(freq="S", start="1/1/2001", end="1/1/2001 00:00:00")
assert pi1.asfreq("Q", "S") == pi2
assert pi1.asfreq("Q", "s") == pi2
assert pi1.asfreq("M", "start") == pi3
assert pi1.asfreq("D", "StarT") == pi4
assert pi1.asfreq("H", "beGIN") == pi5
assert pi1.asfreq("Min", "S") == pi6
Reported by Bandit.
Line: 21
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
pi7 = period_range(freq="S", start="1/1/2001", end="1/1/2001 00:00:00")
assert pi1.asfreq("Q", "S") == pi2
assert pi1.asfreq("Q", "s") == pi2
assert pi1.asfreq("M", "start") == pi3
assert pi1.asfreq("D", "StarT") == pi4
assert pi1.asfreq("H", "beGIN") == pi5
assert pi1.asfreq("Min", "S") == pi6
assert pi1.asfreq("S", "S") == pi7
Reported by Bandit.
Line: 22
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
assert pi1.asfreq("Q", "S") == pi2
assert pi1.asfreq("Q", "s") == pi2
assert pi1.asfreq("M", "start") == pi3
assert pi1.asfreq("D", "StarT") == pi4
assert pi1.asfreq("H", "beGIN") == pi5
assert pi1.asfreq("Min", "S") == pi6
assert pi1.asfreq("S", "S") == pi7
Reported by Bandit.
Line: 23
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
assert pi1.asfreq("Q", "S") == pi2
assert pi1.asfreq("Q", "s") == pi2
assert pi1.asfreq("M", "start") == pi3
assert pi1.asfreq("D", "StarT") == pi4
assert pi1.asfreq("H", "beGIN") == pi5
assert pi1.asfreq("Min", "S") == pi6
assert pi1.asfreq("S", "S") == pi7
assert pi2.asfreq("A", "S") == pi1
Reported by Bandit.
pandas/tests/extension/base/interface.py
68 issues
Line: 29
Column: 16
def test_can_hold_na_valid(self, data):
# GH-20761
assert data._can_hold_na is True
def test_contains(self, data, data_missing):
# GH-37867
# Tests for membership checks. Membership checks for nan-likes is tricky and
# the settled on rule is: `nan_like in arr` is True if nan_like is
Reported by Pylint.
Line: 84
Column: 20
def test_is_numeric_honored(self, data):
result = pd.Series(data)
if hasattr(result._mgr, "blocks"):
assert result._mgr.blocks[0].is_numeric is data.dtype._is_numeric
def test_isna_extension_array(self, data_missing):
# If your `isna` returns an ExtensionArray, you must also implement
# _reduce. At the *very* least, you must implement any and all
Reported by Pylint.
Line: 85
Column: 20
def test_is_numeric_honored(self, data):
result = pd.Series(data)
if hasattr(result._mgr, "blocks"):
assert result._mgr.blocks[0].is_numeric is data.dtype._is_numeric
def test_isna_extension_array(self, data_missing):
# If your `isna` returns an ExtensionArray, you must also implement
# _reduce. At the *very* least, you must implement any and all
na = data_missing.isna()
Reported by Pylint.
Line: 85
Column: 56
def test_is_numeric_honored(self, data):
result = pd.Series(data)
if hasattr(result._mgr, "blocks"):
assert result._mgr.blocks[0].is_numeric is data.dtype._is_numeric
def test_isna_extension_array(self, data_missing):
# If your `isna` returns an ExtensionArray, you must also implement
# _reduce. At the *very* least, you must implement any and all
na = data_missing.isna()
Reported by Pylint.
Line: 92
Column: 20
# _reduce. At the *very* least, you must implement any and all
na = data_missing.isna()
if is_extension_array_dtype(na):
assert na._reduce("any")
assert na.any()
assert not na._reduce("all")
assert not na.all()
Reported by Pylint.
Line: 95
Column: 24
assert na._reduce("any")
assert na.any()
assert not na._reduce("all")
assert not na.all()
assert na.dtype._is_boolean
def test_copy(self, data):
Reported by Pylint.
Line: 98
Column: 20
assert not na._reduce("all")
assert not na.all()
assert na.dtype._is_boolean
def test_copy(self, data):
# GH#27083 removing deep keyword from EA.copy
assert data[0] != data[1]
result = data.copy()
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
from pandas.core.dtypes.common import is_extension_array_dtype
from pandas.core.dtypes.dtypes import ExtensionDtype
import pandas as pd
import pandas._testing as tm
from pandas.tests.extension.base.base import BaseExtensionTests
Reported by Pylint.
Line: 18
Column: 5
# Interface
# ------------------------------------------------------------------------
def test_len(self, data):
assert len(data) == 100
def test_size(self, data):
assert data.size == 100
Reported by Pylint.
Line: 18
Column: 5
# Interface
# ------------------------------------------------------------------------
def test_len(self, data):
assert len(data) == 100
def test_size(self, data):
assert data.size == 100
Reported by Pylint.
pandas/tests/frame/test_nonunique_indexes.py
67 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
date_range,
)
Reported by Pylint.
Line: 16
Column: 5
def check(result, expected=None):
if expected is not None:
tm.assert_frame_equal(result, expected)
result.dtypes
str(result)
class TestDataFrameNonuniqueIndexes:
def test_setattr_columns_vs_construct_with_columns(self):
Reported by Pylint.
Line: 90
Column: 14
check(df, expected)
# consolidate
df = df._consolidate()
expected = DataFrame(
[[1, 1, "bah", 3], [1, 2, "bah", 3], [2, 3, "bah", 3]],
columns=["foo", "foo", "string", "foo2"],
)
check(df, expected)
Reported by Pylint.
Line: 176
Column: 17
this_df = df.copy()
expected_ser = Series(index.values, index=this_df.index)
expected_df = DataFrame(
{"A": expected_ser, "B": this_df["B"], "A": expected_ser},
columns=["A", "B", "A"],
)
this_df["A"] = index
check(this_df, expected_df)
Reported by Pylint.
Line: 206
Column: 13
# not-comparing like-labelled
msg = "Can only compare identically-labeled DataFrame objects"
with pytest.raises(ValueError, match=msg):
df1 == df2
df1r = df1.reindex_like(df2)
result = df1r == df2
expected = DataFrame(
[[False, True], [True, False], [False, False], [True, False]],
Reported by Pylint.
Line: 306
Column: 24
df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1)
if not using_array_manager:
assert len(df._mgr.blknos) == len(df.columns)
assert len(df._mgr.blklocs) == len(df.columns)
# testing iloc
for i in range(len(df.columns)):
df.iloc[:, i]
Reported by Pylint.
Line: 307
Column: 24
if not using_array_manager:
assert len(df._mgr.blknos) == len(df.columns)
assert len(df._mgr.blklocs) == len(df.columns)
# testing iloc
for i in range(len(df.columns)):
df.iloc[:, i]
Reported by Pylint.
Line: 311
Column: 13
# testing iloc
for i in range(len(df.columns)):
df.iloc[:, i]
def test_dup_columns_across_dtype(self):
# dup columns across dtype GH 2079/2194
vals = [[1, -1, 2.0], [2, -2, 3.0]]
rs = DataFrame(vals, columns=["A", "A", "B"])
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
date_range,
)
Reported by Pylint.
Line: 13
Column: 1
import pandas._testing as tm
def check(result, expected=None):
if expected is not None:
tm.assert_frame_equal(result, expected)
result.dtypes
str(result)
Reported by Pylint.
pandas/core/strings/object_array.py
67 issues
Line: 10
Column: 1
import numpy as np
import pandas._libs.lib as lib
import pandas._libs.missing as libmissing
import pandas._libs.ops as libops
from pandas._typing import (
Dtype,
Scalar,
Reported by Pylint.
Line: 10
Column: 1
import numpy as np
import pandas._libs.lib as lib
import pandas._libs.missing as libmissing
import pandas._libs.ops as libops
from pandas._typing import (
Dtype,
Scalar,
Reported by Pylint.
Line: 11
Column: 1
import numpy as np
import pandas._libs.lib as lib
import pandas._libs.missing as libmissing
import pandas._libs.ops as libops
from pandas._typing import (
Dtype,
Scalar,
)
Reported by Pylint.
Line: 11
Column: 1
import numpy as np
import pandas._libs.lib as lib
import pandas._libs.missing as libmissing
import pandas._libs.ops as libops
from pandas._typing import (
Dtype,
Scalar,
)
Reported by Pylint.
Line: 12
Column: 1
import pandas._libs.lib as lib
import pandas._libs.missing as libmissing
import pandas._libs.ops as libops
from pandas._typing import (
Dtype,
Scalar,
)
Reported by Pylint.
Line: 12
Column: 1
import pandas._libs.lib as lib
import pandas._libs.missing as libmissing
import pandas._libs.ops as libops
from pandas._typing import (
Dtype,
Scalar,
)
Reported by Pylint.
Line: 79
Column: 3
)
if len(e.args) >= 1 and re.search(p_err, e.args[0]):
# FIXME: this should be totally avoidable
raise e
def g(x):
# This type of fallback behavior can be removed once
# we remove object-dtype .str accessor.
Reported by Pylint.
Line: 356
Column: 69
for i, t in enumerate(tags2):
pat = sep + t + sep
dummies[:, i] = lib.map_infer(arr.to_numpy(), lambda x: pat in x)
return dummies, tags2
def _str_upper(self):
return self._str_map(lambda x: x.upper())
Reported by Pylint.
Line: 1
Column: 1
from __future__ import annotations
from collections.abc import Callable # noqa: PDF001
import re
import textwrap
import unicodedata
import numpy as np
Reported by Pylint.
Line: 24
Column: 1
from pandas.core.strings.base import BaseStringArrayMethods
class ObjectStringArrayMixin(BaseStringArrayMethods):
"""
String Methods operating on object-dtype ndarrays.
"""
_str_na_value = np.nan
Reported by Pylint.
pandas/tests/reshape/concat/test_empty.py
67 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
concat,
Reported by Pylint.
Line: 200
Column: 3
result = concat(
[Series(dtype="float64").astype("Sparse"), Series(dtype="float64")]
)
# TODO: release-note: concat sparse dtype
expected = pd.SparseDtype(np.float64)
assert result.dtype == expected
result = concat(
[Series(dtype="float64").astype("Sparse"), Series(dtype="object")]
Reported by Pylint.
Line: 207
Column: 3
result = concat(
[Series(dtype="float64").astype("Sparse"), Series(dtype="object")]
)
# TODO: release-note: concat sparse dtype
expected = pd.SparseDtype("object")
assert result.dtype == expected
def test_concat_empty_df_object_dtype(self):
# GH 9149
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
concat,
Reported by Pylint.
Line: 15
Column: 1
import pandas._testing as tm
class TestEmptyConcat:
def test_handle_empty_objects(self, sort):
df = DataFrame(np.random.randn(10, 4), columns=list("abcd"))
baz = df[:5].copy()
baz["foo"] = "bar"
Reported by Pylint.
Line: 16
Column: 5
class TestEmptyConcat:
def test_handle_empty_objects(self, sort):
df = DataFrame(np.random.randn(10, 4), columns=list("abcd"))
baz = df[:5].copy()
baz["foo"] = "bar"
empty = df[5:5]
Reported by Pylint.
Line: 16
Column: 5
class TestEmptyConcat:
def test_handle_empty_objects(self, sort):
df = DataFrame(np.random.randn(10, 4), columns=list("abcd"))
baz = df[:5].copy()
baz["foo"] = "bar"
empty = df[5:5]
Reported by Pylint.
Line: 17
Column: 9
class TestEmptyConcat:
def test_handle_empty_objects(self, sort):
df = DataFrame(np.random.randn(10, 4), columns=list("abcd"))
baz = df[:5].copy()
baz["foo"] = "bar"
empty = df[5:5]
Reported by Pylint.
Line: 19
Column: 9
def test_handle_empty_objects(self, sort):
df = DataFrame(np.random.randn(10, 4), columns=list("abcd"))
baz = df[:5].copy()
baz["foo"] = "bar"
empty = df[5:5]
frames = [baz, empty, empty, df[5:]]
concatted = concat(frames, axis=0, sort=sort)
Reported by Pylint.
Line: 34
Column: 9
# empty as first element with time series
# GH3259
df = DataFrame(
{"A": range(10000)}, index=date_range("20130101", periods=10000, freq="s")
)
empty = DataFrame()
result = concat([df, empty], axis=1)
tm.assert_frame_equal(result, df)
Reported by Pylint.
pandas/tests/frame/test_iteration.py
67 issues
Line: 25
Column: 13
def test_iteritems(self):
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"])
for k, v in df.items():
assert isinstance(v, DataFrame._constructor_sliced)
def test_items(self):
# GH#17213, GH#13918
cols = ["a", "b", "c"]
Reported by Pylint.
Line: 26
Column: 34
def test_iteritems(self):
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"])
for k, v in df.items():
assert isinstance(v, DataFrame._constructor_sliced)
def test_items(self):
# GH#17213, GH#13918
cols = ["a", "b", "c"]
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=cols)
Reported by Pylint.
Line: 89
Column: 19
def test_itertuples(self, float_frame):
for i, tup in enumerate(float_frame.itertuples()):
ser = DataFrame._constructor_sliced(tup[1:])
ser.name = tup[0]
expected = float_frame.iloc[i, :].reset_index(drop=True)
tm.assert_series_equal(ser, expected)
df = DataFrame(
Reported by Pylint.
Line: 158
Column: 13
for t in df.itertuples(index=False):
str(t)
for row, s in df.iterrows():
str(s)
for c, col in df.items():
str(s)
Reported by Pylint.
Line: 161
Column: 16
for row, s in df.iterrows():
str(s)
for c, col in df.items():
str(s)
Reported by Pylint.
Line: 161
Column: 13
for row, s in df.iterrows():
str(s)
for c, col in df.items():
str(s)
Reported by Pylint.
Line: 162
Column: 17
str(s)
for c, col in df.items():
str(s)
Reported by Pylint.
Line: 1
Column: 1
import datetime
import numpy as np
from pandas.compat import (
IS64,
is_platform_windows,
)
Reported by Pylint.
Line: 19
Column: 1
import pandas._testing as tm
class TestIteration:
def test_keys(self, float_frame):
assert float_frame.keys() is float_frame.columns
def test_iteritems(self):
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"])
Reported by Pylint.
Line: 20
Column: 5
class TestIteration:
def test_keys(self, float_frame):
assert float_frame.keys() is float_frame.columns
def test_iteritems(self):
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"])
for k, v in df.items():
Reported by Pylint.