The following issues were found
pandas/tests/frame/methods/test_to_records.py
65 issues
Line: 4
Column: 1
from collections import abc
import numpy as np
import pytest
from pandas import (
CategoricalDtype,
DataFrame,
MultiIndex,
Reported by Pylint.
Line: 1
Column: 1
from collections import abc
import numpy as np
import pytest
from pandas import (
CategoricalDtype,
DataFrame,
MultiIndex,
Reported by Pylint.
Line: 17
Column: 1
import pandas._testing as tm
class TestDataFrameToRecords:
def test_to_records_timeseries(self):
index = date_range("1/1/2000", periods=10)
df = DataFrame(np.random.randn(10, 3), index=index, columns=["a", "b", "c"])
result = df.to_records()
Reported by Pylint.
Line: 18
Column: 5
class TestDataFrameToRecords:
def test_to_records_timeseries(self):
index = date_range("1/1/2000", periods=10)
df = DataFrame(np.random.randn(10, 3), index=index, columns=["a", "b", "c"])
result = df.to_records()
assert result["index"].dtype == "M8[ns]"
Reported by Pylint.
Line: 18
Column: 5
class TestDataFrameToRecords:
def test_to_records_timeseries(self):
index = date_range("1/1/2000", periods=10)
df = DataFrame(np.random.randn(10, 3), index=index, columns=["a", "b", "c"])
result = df.to_records()
assert result["index"].dtype == "M8[ns]"
Reported by Pylint.
Line: 20
Column: 9
class TestDataFrameToRecords:
def test_to_records_timeseries(self):
index = date_range("1/1/2000", periods=10)
df = DataFrame(np.random.randn(10, 3), index=index, columns=["a", "b", "c"])
result = df.to_records()
assert result["index"].dtype == "M8[ns]"
result = df.to_records(index=False)
Reported by Pylint.
Line: 23
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
df = DataFrame(np.random.randn(10, 3), index=index, columns=["a", "b", "c"])
result = df.to_records()
assert result["index"].dtype == "M8[ns]"
result = df.to_records(index=False)
def test_to_records_dt64(self):
df = DataFrame(
Reported by Bandit.
Line: 27
Column: 5
result = df.to_records(index=False)
def test_to_records_dt64(self):
df = DataFrame(
[["one", "two", "three"], ["four", "five", "six"]],
index=date_range("2012-01-01", "2012-01-02"),
)
Reported by Pylint.
Line: 27
Column: 5
result = df.to_records(index=False)
def test_to_records_dt64(self):
df = DataFrame(
[["one", "two", "three"], ["four", "five", "six"]],
index=date_range("2012-01-01", "2012-01-02"),
)
Reported by Pylint.
Line: 28
Column: 9
result = df.to_records(index=False)
def test_to_records_dt64(self):
df = DataFrame(
[["one", "two", "three"], ["four", "five", "six"]],
index=date_range("2012-01-01", "2012-01-02"),
)
expected = df.index.values[0]
Reported by Pylint.
pandas/tests/extension/test_categorical.py
65 issues
Line: 19
Column: 1
import string
import numpy as np
import pytest
import pandas as pd
from pandas import (
Categorical,
CategoricalIndex,
Reported by Pylint.
Line: 90
Column: 33
class TestInterface(base.BaseInterfaceTests):
@pytest.mark.skip(reason="Memory usage doesn't match")
def test_memory_usage(self, data):
# Is this deliberate?
super().test_memory_usage(data)
def test_contains(self, data, data_missing):
# GH-37867
Reported by Pylint.
Line: 94
Column: 29
# Is this deliberate?
super().test_memory_usage(data)
def test_contains(self, data, data_missing):
# GH-37867
# na value handling in Categorical.__contains__ is deprecated.
# See base.BaseInterFaceTests.test_contains for more details.
na_value = data.dtype.na_value
Reported by Pylint.
Line: 94
Column: 35
# Is this deliberate?
super().test_memory_usage(data)
def test_contains(self, data, data_missing):
# GH-37867
# na value handling in Categorical.__contains__ is deprecated.
# See base.BaseInterFaceTests.test_contains for more details.
na_value = data.dtype.na_value
Reported by Pylint.
Line: 99
Column: 9
# na value handling in Categorical.__contains__ is deprecated.
# See base.BaseInterFaceTests.test_contains for more details.
na_value = data.dtype.na_value
# ensure data without missing values
data = data[~data.isna()]
# first elements are non-missing
assert data[0] in data
Reported by Pylint.
Line: 120
Column: 26
class TestConstructors(base.BaseConstructorsTests):
def test_empty(self, dtype):
cls = dtype.construct_array_type()
result = cls._empty((4,), dtype=dtype)
assert isinstance(result, cls)
# the dtype we passed is not initialized, so will not match the
Reported by Pylint.
Line: 122
Column: 18
class TestConstructors(base.BaseConstructorsTests):
def test_empty(self, dtype):
cls = dtype.construct_array_type()
result = cls._empty((4,), dtype=dtype)
assert isinstance(result, cls)
# the dtype we passed is not initialized, so will not match the
# dtype on our result.
assert result.dtype == CategoricalDtype([])
Reported by Pylint.
Line: 136
Column: 35
class TestGetitem(base.BaseGetitemTests):
@pytest.mark.skip(reason="Backwards compatibility")
def test_getitem_scalar(self, data):
# CategoricalDtype.type isn't "correct" since it should
# be a parent of the elements (object). But don't want
# to break things by changing.
super().test_getitem_scalar(data)
Reported by Pylint.
Line: 149
Column: 37
class TestMissing(base.BaseMissingTests):
@pytest.mark.skip(reason="Not implemented")
def test_fillna_limit_pad(self, data_missing):
super().test_fillna_limit_pad(data_missing)
@pytest.mark.skip(reason="Not implemented")
def test_fillna_limit_backfill(self, data_missing):
super().test_fillna_limit_backfill(data_missing)
Reported by Pylint.
Line: 153
Column: 42
super().test_fillna_limit_pad(data_missing)
@pytest.mark.skip(reason="Not implemented")
def test_fillna_limit_backfill(self, data_missing):
super().test_fillna_limit_backfill(data_missing)
class TestReduce(base.BaseNoReduceTests):
pass
Reported by Pylint.
pandas/tests/series/methods/test_quantile.py
64 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas.core.dtypes.common import is_integer
import pandas as pd
from pandas import (
Index,
Series,
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas.core.dtypes.common import is_integer
import pandas as pd
from pandas import (
Index,
Series,
Reported by Pylint.
Line: 15
Column: 1
from pandas.core.indexes.datetimes import Timestamp
class TestSeriesQuantile:
def test_quantile(self, datetime_series):
q = datetime_series.quantile(0.1)
assert q == np.percentile(datetime_series.dropna(), 10)
Reported by Pylint.
Line: 16
Column: 5
class TestSeriesQuantile:
def test_quantile(self, datetime_series):
q = datetime_series.quantile(0.1)
assert q == np.percentile(datetime_series.dropna(), 10)
q = datetime_series.quantile(0.9)
Reported by Pylint.
Line: 16
Column: 5
class TestSeriesQuantile:
def test_quantile(self, datetime_series):
q = datetime_series.quantile(0.1)
assert q == np.percentile(datetime_series.dropna(), 10)
q = datetime_series.quantile(0.9)
Reported by Pylint.
Line: 18
Column: 9
class TestSeriesQuantile:
def test_quantile(self, datetime_series):
q = datetime_series.quantile(0.1)
assert q == np.percentile(datetime_series.dropna(), 10)
q = datetime_series.quantile(0.9)
assert q == np.percentile(datetime_series.dropna(), 90)
Reported by Pylint.
Line: 19
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
def test_quantile(self, datetime_series):
q = datetime_series.quantile(0.1)
assert q == np.percentile(datetime_series.dropna(), 10)
q = datetime_series.quantile(0.9)
assert q == np.percentile(datetime_series.dropna(), 90)
# object dtype
Reported by Bandit.
Line: 21
Column: 9
q = datetime_series.quantile(0.1)
assert q == np.percentile(datetime_series.dropna(), 10)
q = datetime_series.quantile(0.9)
assert q == np.percentile(datetime_series.dropna(), 90)
# object dtype
q = Series(datetime_series, dtype=object).quantile(0.9)
assert q == np.percentile(datetime_series.dropna(), 90)
Reported by Pylint.
Line: 22
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
assert q == np.percentile(datetime_series.dropna(), 10)
q = datetime_series.quantile(0.9)
assert q == np.percentile(datetime_series.dropna(), 90)
# object dtype
q = Series(datetime_series, dtype=object).quantile(0.9)
assert q == np.percentile(datetime_series.dropna(), 90)
Reported by Bandit.
Line: 25
Column: 9
assert q == np.percentile(datetime_series.dropna(), 90)
# object dtype
q = Series(datetime_series, dtype=object).quantile(0.9)
assert q == np.percentile(datetime_series.dropna(), 90)
# datetime64[ns] dtype
dts = datetime_series.index.to_series()
q = dts.quantile(0.2)
Reported by Pylint.
pandas/tests/series/methods/test_align.py
64 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pytz
import pandas as pd
from pandas import (
Series,
date_range,
period_range,
Reported by Pylint.
Line: 3
Column: 1
import numpy as np
import pytest
import pytz
import pandas as pd
from pandas import (
Series,
date_range,
period_range,
Reported by Pylint.
Line: 185
Column: 3
rng = period_range("1/1/2000", "1/1/2010", freq="A")
ts = Series(np.random.randn(len(rng)), index=rng)
# TODO: assert something?
ts.align(ts[::2], join=join_type)
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pytz
import pandas as pd
from pandas import (
Series,
date_range,
period_range,
Reported by Pylint.
Line: 22
Column: 1
[[None, -5], [None, 0]],
[[None, 0], [None, 0]],
],
)
@pytest.mark.parametrize("fill", [None, -1])
def test_align(datetime_series, first_slice, second_slice, join_type, fill):
a = datetime_series[slice(*first_slice)]
b = datetime_series[slice(*second_slice)]
Reported by Pylint.
Line: 25
Column: 5
)
@pytest.mark.parametrize("fill", [None, -1])
def test_align(datetime_series, first_slice, second_slice, join_type, fill):
a = datetime_series[slice(*first_slice)]
b = datetime_series[slice(*second_slice)]
aa, ab = a.align(b, join=join_type, fill_value=fill)
join_index = a.index.join(b.index, how=join_type)
Reported by Pylint.
Line: 26
Column: 5
@pytest.mark.parametrize("fill", [None, -1])
def test_align(datetime_series, first_slice, second_slice, join_type, fill):
a = datetime_series[slice(*first_slice)]
b = datetime_series[slice(*second_slice)]
aa, ab = a.align(b, join=join_type, fill_value=fill)
join_index = a.index.join(b.index, how=join_type)
if fill is not None:
Reported by Pylint.
Line: 28
Column: 9
a = datetime_series[slice(*first_slice)]
b = datetime_series[slice(*second_slice)]
aa, ab = a.align(b, join=join_type, fill_value=fill)
join_index = a.index.join(b.index, how=join_type)
if fill is not None:
diff_a = aa.index.difference(join_index)
diff_b = ab.index.difference(join_index)
Reported by Pylint.
Line: 28
Column: 5
a = datetime_series[slice(*first_slice)]
b = datetime_series[slice(*second_slice)]
aa, ab = a.align(b, join=join_type, fill_value=fill)
join_index = a.index.join(b.index, how=join_type)
if fill is not None:
diff_a = aa.index.difference(join_index)
diff_b = ab.index.difference(join_index)
Reported by Pylint.
Line: 35
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
diff_a = aa.index.difference(join_index)
diff_b = ab.index.difference(join_index)
if len(diff_a) > 0:
assert (aa.reindex(diff_a) == fill).all()
if len(diff_b) > 0:
assert (ab.reindex(diff_b) == fill).all()
ea = a.reindex(join_index)
eb = b.reindex(join_index)
Reported by Bandit.
pandas/tests/test_downstream.py
64 issues
Line: 9
Column: 1
import sys
import numpy as np # noqa
import pytest
import pandas.util._test_decorators as td
from pandas import DataFrame
import pandas._testing as tm
Reported by Pylint.
Line: 40
Column: 5
toolz = import_module("toolz") # noqa
dask = import_module("dask") # noqa
import dask.dataframe as dd
ddf = dd.from_pandas(df, npartitions=3)
assert ddf.A is not None
assert ddf.compute() is not None
Reported by Pylint.
Line: 58
Column: 5
@td.skip_if_no("xarray", "0.10.4")
def test_xarray_cftimeindex_nearest():
# https://github.com/pydata/xarray/issues/3751
import cftime
import xarray
times = xarray.cftime_range("0001", periods=2)
key = cftime.DatetimeGregorian(2000, 1, 1)
with tm.assert_produces_warning(
Reported by Pylint.
Line: 59
Column: 5
def test_xarray_cftimeindex_nearest():
# https://github.com/pydata/xarray/issues/3751
import cftime
import xarray
times = xarray.cftime_range("0001", periods=2)
key = cftime.DatetimeGregorian(2000, 1, 1)
with tm.assert_produces_warning(
FutureWarning, match="deprecated", check_stacklevel=False
Reported by Pylint.
Line: 102
Column: 5
def test_statsmodels():
statsmodels = import_module("statsmodels") # noqa
import statsmodels.api as sm
import statsmodels.formula.api as smf
df = sm.datasets.get_rdataset("Guerry", "HistData").data
smf.ols("Lottery ~ Literacy + np.log(Pop1831)", data=df).fit()
Reported by Pylint.
Line: 103
Column: 5
statsmodels = import_module("statsmodels") # noqa
import statsmodels.api as sm
import statsmodels.formula.api as smf
df = sm.datasets.get_rdataset("Guerry", "HistData").data
smf.ols("Lottery ~ Literacy + np.log(Pop1831)", data=df).fit()
Reported by Pylint.
Line: 114
Column: 5
def test_scikit_learn(df):
sklearn = import_module("sklearn") # noqa
from sklearn import (
datasets,
svm,
)
digits = datasets.load_digits()
Reported by Pylint.
Line: 8
Column: 1
import subprocess
import sys
import numpy as np # noqa
import pytest
import pandas.util._test_decorators as td
from pandas import DataFrame
Reported by Pylint.
Line: 32
Column: 3
return DataFrame({"A": [1, 2, 3]})
# TODO(ArrayManager) dask is still accessing the blocks
# https://github.com/dask/dask/pull/7318
@td.skip_array_manager_not_yet_implemented
def test_dask(df):
toolz = import_module("toolz") # noqa
Reported by Pylint.
Line: 35
Column: 15
# TODO(ArrayManager) dask is still accessing the blocks
# https://github.com/dask/dask/pull/7318
@td.skip_array_manager_not_yet_implemented
def test_dask(df):
toolz = import_module("toolz") # noqa
dask = import_module("dask") # noqa
import dask.dataframe as dd
Reported by Pylint.
pandas/core/groupby/grouper.py
64 issues
Line: 628
Column: 20
elif self._all_grouper is not None:
# retain dtype for categories, including unobserved ones
return self.result_index._values
return self._codes_and_uniques[1]
@cache_readonly
def result_index(self) -> Index:
Reported by Pylint.
Line: 262
Column: 1
_attributes: tuple[str, ...] = ("key", "level", "freq", "axis", "sort")
def __new__(cls, *args, **kwargs):
if kwargs.get("freq") is not None:
from pandas.core.resample import TimeGrouper
_check_deprecated_resample_kwargs(kwargs, origin=cls)
cls = TimeGrouper
Reported by Pylint.
Line: 267
Column: 13
from pandas.core.resample import TimeGrouper
_check_deprecated_resample_kwargs(kwargs, origin=cls)
cls = TimeGrouper
return super().__new__(cls)
def __init__(
self,
key=None,
Reported by Pylint.
Line: 350
Column: 3
# Keep self.grouper value before overriding
if self._grouper is None:
# TODO: What are we assuming about subsequent calls?
self._grouper = self._gpr_index
self._indexer = self.indexer
# the key must be a valid info item
if self.key is not None:
Reported by Pylint.
Line: 373
Column: 31
else:
ax = self._grouper.take(obj.index)
else:
if key not in obj._info_axis:
raise KeyError(f"The grouper name {key} is not found")
ax = Index(obj[key], name=key)
else:
ax = obj._get_axis(self.axis)
Reported by Pylint.
Line: 385
Column: 29
# if a level is given it must be a mi level or
# equivalent to the axis name
if isinstance(ax, MultiIndex):
level = ax._get_level_number(level)
ax = Index(ax._get_level_values(level), name=ax.names[level])
else:
if level not in (0, ax.name):
raise ValueError(f"The level {level} is not valid")
Reported by Pylint.
Line: 395
Column: 3
# possibly sort
if (self.sort or sort) and not ax.is_monotonic:
# use stable sort to support first, last, nth
# TODO: why does putting na_position="first" fix datetimelike cases?
indexer = self.indexer = ax.array.argsort(
kind="mergesort", na_position="first"
)
ax = ax.take(indexer)
obj = obj.take(indexer, axis=self.axis)
Reported by Pylint.
Line: 606
Column: 16
return self.grouping_vector.indices
values = Categorical(self.grouping_vector)
return values._reverse_indexer()
@property
def codes(self) -> np.ndarray:
if self._codes is not None:
# _codes is set in __init__ for MultiIndex cases
Reported by Pylint.
Line: 624
Column: 20
"""
if self._group_index is not None:
# _group_index is set in __init__ for MultiIndex cases
return self._group_index._values
elif self._all_grouper is not None:
# retain dtype for categories, including unobserved ones
return self.result_index._values
Reported by Pylint.
Line: 628
Column: 20
elif self._all_grouper is not None:
# retain dtype for categories, including unobserved ones
return self.result_index._values
return self._codes_and_uniques[1]
@cache_readonly
def result_index(self) -> Index:
Reported by Pylint.
pandas/tests/indexes/multi/test_get_set.py
64 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas.core.dtypes.dtypes import DatetimeTZDtype
import pandas as pd
from pandas import (
CategoricalIndex,
MultiIndex,
Reported by Pylint.
Line: 377
Column: 59
result_lvl = result.get_level_values(0)
expected_lvl = CategoricalIndex(
list("bacb"), categories=cidx.categories, ordered=cidx.ordered
)
tm.assert_index_equal(result_lvl, expected_lvl)
def test_set_value_keeps_names():
Reported by Pylint.
Line: 26
Column: 12
def test_get_level_number_integer(idx):
idx.names = [1, 0]
assert idx._get_level_number(1) == 0
assert idx._get_level_number(0) == 1
msg = "Too many levels: Index has only 2 levels, not 3"
with pytest.raises(IndexError, match=msg):
idx._get_level_number(2)
with pytest.raises(KeyError, match="Level fourth not found"):
Reported by Pylint.
Line: 27
Column: 12
def test_get_level_number_integer(idx):
idx.names = [1, 0]
assert idx._get_level_number(1) == 0
assert idx._get_level_number(0) == 1
msg = "Too many levels: Index has only 2 levels, not 3"
with pytest.raises(IndexError, match=msg):
idx._get_level_number(2)
with pytest.raises(KeyError, match="Level fourth not found"):
idx._get_level_number("fourth")
Reported by Pylint.
Line: 30
Column: 9
assert idx._get_level_number(0) == 1
msg = "Too many levels: Index has only 2 levels, not 3"
with pytest.raises(IndexError, match=msg):
idx._get_level_number(2)
with pytest.raises(KeyError, match="Level fourth not found"):
idx._get_level_number("fourth")
def test_get_dtypes():
Reported by Pylint.
Line: 32
Column: 9
with pytest.raises(IndexError, match=msg):
idx._get_level_number(2)
with pytest.raises(KeyError, match="Level fourth not found"):
idx._get_level_number("fourth")
def test_get_dtypes():
# Test MultiIndex.dtypes (# Gh37062)
idx_multitype = MultiIndex.from_product(
Reported by Pylint.
Line: 74
Column: 9
frame = multiindex_dataframe_random_data
with pytest.raises(IndexError, match="Too many levels"):
frame.index._get_level_number(2)
with pytest.raises(IndexError, match="not a valid level number"):
frame.index._get_level_number(-3)
def test_set_name_methods(idx, index_names):
Reported by Pylint.
Line: 76
Column: 9
with pytest.raises(IndexError, match="Too many levels"):
frame.index._get_level_number(2)
with pytest.raises(IndexError, match="not a valid level number"):
frame.index._get_level_number(-3)
def test_set_name_methods(idx, index_names):
# so long as these are synonyms, we don't need to test set_names
assert idx.rename == idx.set_names
Reported by Pylint.
Line: 391
Column: 12
np.random.randn(6, 4), columns=["one", "two", "three", "four"], index=idx
)
df = df.sort_index()
assert df._is_copy is None
assert df.index.names == ("Name", "Number")
df.at[("grethe", "4"), "one"] = 99.34
assert df._is_copy is None
assert df.index.names == ("Name", "Number")
Reported by Pylint.
Line: 394
Column: 12
assert df._is_copy is None
assert df.index.names == ("Name", "Number")
df.at[("grethe", "4"), "one"] = 99.34
assert df._is_copy is None
assert df.index.names == ("Name", "Number")
def test_set_levels_with_iterable():
# GH23273
Reported by Pylint.
pandas/tests/reshape/concat/test_append.py
64 issues
Line: 6
Column: 1
import dateutil
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 304
Column: 3
assert appended["A"].dtype == "f8"
assert appended["B"].dtype == "O"
# TODO(ArrayManager) DataFrame.append reindexes a Series itself (giving
# float dtype) -> delay reindexing until concat_array_managers which properly
# takes care of all-null dtype inference
@td.skip_array_manager_not_yet_implemented
def test_append_empty_frame_to_series_with_dateutil_tz(self):
# GH 23682
Reported by Pylint.
Line: 1
Column: 1
import datetime as dt
from itertools import combinations
import dateutil
import numpy as np
import pytest
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 22
Column: 1
import pandas._testing as tm
class TestAppend:
def test_append(self, sort, float_frame):
mixed_frame = float_frame.copy()
mixed_frame["foo"] = "bar"
begin_index = float_frame.index[:5]
Reported by Pylint.
Line: 23
Column: 5
class TestAppend:
def test_append(self, sort, float_frame):
mixed_frame = float_frame.copy()
mixed_frame["foo"] = "bar"
begin_index = float_frame.index[:5]
end_index = float_frame.index[5:]
Reported by Pylint.
Line: 23
Column: 5
class TestAppend:
def test_append(self, sort, float_frame):
mixed_frame = float_frame.copy()
mixed_frame["foo"] = "bar"
begin_index = float_frame.index[:5]
end_index = float_frame.index[5:]
Reported by Pylint.
Line: 38
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
del end_frame["A"]
partial_appended = begin_frame.append(end_frame, sort=sort)
assert "A" in partial_appended
partial_appended = end_frame.append(begin_frame, sort=sort)
assert "A" in partial_appended
# mixed type handling
Reported by Bandit.
Line: 41
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
assert "A" in partial_appended
partial_appended = end_frame.append(begin_frame, sort=sort)
assert "A" in partial_appended
# mixed type handling
appended = mixed_frame[:5].append(mixed_frame[5:])
tm.assert_frame_equal(appended, mixed_frame)
Reported by Bandit.
Line: 57
Column: 5
mixed_appended2.reindex(columns=["A", "B", "C", "D"]),
)
def test_append_empty(self, float_frame):
empty = DataFrame()
appended = float_frame.append(empty)
tm.assert_frame_equal(float_frame, appended)
assert appended is not float_frame
Reported by Pylint.
Line: 57
Column: 5
mixed_appended2.reindex(columns=["A", "B", "C", "D"]),
)
def test_append_empty(self, float_frame):
empty = DataFrame()
appended = float_frame.append(empty)
tm.assert_frame_equal(float_frame, appended)
assert appended is not float_frame
Reported by Pylint.
pandas/tests/indexes/test_engines.py
63 issues
Line: 4
Column: 1
import re
import numpy as np
import pytest
from pandas._libs import (
algos as libalgos,
index as libindex,
)
Reported by Pylint.
Line: 6
Column: 1
import numpy as np
import pytest
from pandas._libs import (
algos as libalgos,
index as libindex,
)
import pandas as pd
Reported by Pylint.
Line: 6
Column: 1
import numpy as np
import pytest
from pandas._libs import (
algos as libalgos,
index as libindex,
)
import pandas as pd
Reported by Pylint.
Line: 54
Column: 17
msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))])
for dti in [dti1, dti2, dti3, dti4, dti5]:
with pytest.raises(TypeError, match=msg):
scalar in dti._engine
with pytest.raises(KeyError, match=msg):
dti._engine.get_loc(scalar)
Reported by Pylint.
Line: 54
Column: 27
msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))])
for dti in [dti1, dti2, dti3, dti4, dti5]:
with pytest.raises(TypeError, match=msg):
scalar in dti._engine
with pytest.raises(KeyError, match=msg):
dti._engine.get_loc(scalar)
Reported by Pylint.
Line: 57
Column: 17
scalar in dti._engine
with pytest.raises(KeyError, match=msg):
dti._engine.get_loc(scalar)
class TestTimedeltaEngine:
@pytest.mark.parametrize(
"scalar",
Reported by Pylint.
Line: 86
Column: 27
msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))])
for tdi in [tdi1, tdi2, tdi3, tdi4, tdi5]:
with pytest.raises(TypeError, match=msg):
scalar in tdi._engine
with pytest.raises(KeyError, match=msg):
tdi._engine.get_loc(scalar)
Reported by Pylint.
Line: 86
Column: 17
msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))])
for tdi in [tdi1, tdi2, tdi3, tdi4, tdi5]:
with pytest.raises(TypeError, match=msg):
scalar in tdi._engine
with pytest.raises(KeyError, match=msg):
tdi._engine.get_loc(scalar)
Reported by Pylint.
Line: 89
Column: 17
scalar in tdi._engine
with pytest.raises(KeyError, match=msg):
tdi._engine.get_loc(scalar)
class TestNumericEngine:
def test_is_monotonic(self, numeric_indexing_engine_type_and_dtype):
engine_type, dtype = numeric_indexing_engine_type_and_dtype
Reported by Pylint.
Line: 93
Column: 33
class TestNumericEngine:
def test_is_monotonic(self, numeric_indexing_engine_type_and_dtype):
engine_type, dtype = numeric_indexing_engine_type_and_dtype
num = 1000
arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype)
# monotonic increasing
Reported by Pylint.
pandas/tests/frame/methods/test_drop_duplicates.py
63 issues
Line: 5
Column: 1
import re
import numpy as np
import pytest
from pandas import (
DataFrame,
NaT,
)
Reported by Pylint.
Line: 1
Column: 1
from datetime import datetime
import re
import numpy as np
import pytest
from pandas import (
DataFrame,
NaT,
Reported by Pylint.
Line: 15
Column: 1
@pytest.mark.parametrize("subset", ["a", ["a"], ["a", "B"]])
def test_drop_duplicates_with_misspelled_column_name(subset):
# GH 19730
df = DataFrame({"A": [0, 0, 1], "B": [0, 0, 1], "C": [0, 0, 1]})
msg = re.escape("Index(['a'], dtype='object')")
with pytest.raises(KeyError, match=msg):
Reported by Pylint.
Line: 17
Column: 5
@pytest.mark.parametrize("subset", ["a", ["a"], ["a", "B"]])
def test_drop_duplicates_with_misspelled_column_name(subset):
# GH 19730
df = DataFrame({"A": [0, 0, 1], "B": [0, 0, 1], "C": [0, 0, 1]})
msg = re.escape("Index(['a'], dtype='object')")
with pytest.raises(KeyError, match=msg):
df.drop_duplicates(subset)
Reported by Pylint.
Line: 24
Column: 1
df.drop_duplicates(subset)
def test_drop_duplicates():
df = DataFrame(
{
"AAA": ["foo", "bar", "foo", "bar", "foo", "bar", "bar", "foo"],
"B": ["one", "one", "two", "two", "two", "two", "one", "two"],
"C": [1, 1, 2, 2, 2, 2, 1, 2],
Reported by Pylint.
Line: 24
Column: 1
df.drop_duplicates(subset)
def test_drop_duplicates():
df = DataFrame(
{
"AAA": ["foo", "bar", "foo", "bar", "foo", "bar", "bar", "foo"],
"B": ["one", "one", "two", "two", "two", "two", "one", "two"],
"C": [1, 1, 2, 2, 2, 2, 1, 2],
Reported by Pylint.
Line: 25
Column: 5
def test_drop_duplicates():
df = DataFrame(
{
"AAA": ["foo", "bar", "foo", "bar", "foo", "bar", "bar", "foo"],
"B": ["one", "one", "two", "two", "two", "two", "one", "two"],
"C": [1, 1, 2, 2, 2, 2, 1, 2],
"D": range(8),
Reported by Pylint.
Line: 45
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = df.drop_duplicates("AAA", keep=False)
expected = df.loc[[]]
tm.assert_frame_equal(result, expected)
assert len(result) == 0
# multi column
expected = df.loc[[0, 1, 2, 3]]
result = df.drop_duplicates(np.array(["AAA", "B"]))
tm.assert_frame_equal(result, expected)
Reported by Bandit.
Line: 95
Column: 5
tm.assert_frame_equal(result, expected)
# GH 11376
df = DataFrame({"x": [7, 6, 3, 3, 4, 8, 0], "y": [0, 6, 5, 5, 9, 1, 2]})
expected = df.loc[df.index != 3]
tm.assert_frame_equal(df.drop_duplicates(), expected)
df = DataFrame([[1, 0], [0, 2]])
tm.assert_frame_equal(df.drop_duplicates(), df)
Reported by Pylint.
Line: 99
Column: 5
expected = df.loc[df.index != 3]
tm.assert_frame_equal(df.drop_duplicates(), expected)
df = DataFrame([[1, 0], [0, 2]])
tm.assert_frame_equal(df.drop_duplicates(), df)
df = DataFrame([[-2, 0], [0, -4]])
tm.assert_frame_equal(df.drop_duplicates(), df)
Reported by Pylint.