The following issues were found
pandas/tests/io/excel/test_readers.py
321 issues
Line: 12
Column: 1
from zipfile import BadZipFile
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 758
Column: 13
"specify an engine manually."
)
elif engine == "xlrd":
from xlrd import XLRDError
error = XLRDError
msg = (
"Unsupported format, or corrupt file: Expected BOF "
"record; found b'foo'"
Reported by Pylint.
Line: 799
Column: 9
with open("test1" + read_ext, "rb") as f:
s3_resource.Bucket("pandas-test").put_object(Key="test1" + read_ext, Body=f)
import s3fs
s3 = s3fs.S3FileSystem(**s3so)
with s3.open("s3://pandas-test/test1" + read_ext) as f:
url_table = pd.read_excel(f)
Reported by Pylint.
Line: 845
Column: 9
def test_read_from_py_localpath(self, read_ext):
# GH12655
from py.path import local as LocalPath
str_path = os.path.join("test1" + read_ext)
expected = pd.read_excel(str_path, sheet_name="Sheet1", index_col=0)
path_obj = LocalPath().join("test1" + read_ext)
Reported by Pylint.
Line: 1555
Column: 13
if engine is None:
pytest.skip()
elif engine == "xlrd":
import xlrd
errors = (BadZipFile, xlrd.biffh.XLRDError)
with tm.ensure_clean(f"corrupt{read_ext}") as file:
Path(file).write_text("corrupt")
Reported by Pylint.
Line: 56
Column: 31
]
def _is_valid_engine_ext_pair(engine, read_ext: str) -> bool:
"""
Filter out invalid (engine, ext) pairs instead of skipping, as that
produces 500+ pytest.skips.
"""
engine = engine.values[0]
Reported by Pylint.
Line: 56
Column: 39
]
def _is_valid_engine_ext_pair(engine, read_ext: str) -> bool:
"""
Filter out invalid (engine, ext) pairs instead of skipping, as that
produces 500+ pytest.skips.
"""
engine = engine.values[0]
Reported by Pylint.
Line: 82
Column: 21
return True
def _transfer_marks(engine, read_ext):
"""
engine gives us a pytest.param object with some marks, read_ext is just
a string. We need to generate a new pytest.param inheriting the marks.
"""
values = engine.values + (read_ext,)
Reported by Pylint.
Line: 82
Column: 29
return True
def _transfer_marks(engine, read_ext):
"""
engine gives us a pytest.param object with some marks, read_ext is just
a string. We need to generate a new pytest.param inheriting the marks.
"""
values = engine.values + (read_ext,)
Reported by Pylint.
Line: 109
Column: 12
@pytest.fixture
def engine(engine_and_read_ext):
engine, read_ext = engine_and_read_ext
return engine
@pytest.fixture
Reported by Pylint.
asv_bench/benchmarks/groupby.py
318 issues
Line: 7
Column: 1
import numpy as np
from pandas import (
Categorical,
DataFrame,
MultiIndex,
Series,
Timestamp,
Reported by Pylint.
Line: 17
Column: 1
period_range,
)
from .pandas_vb_common import tm
method_blocklist = {
"object": {
"median",
"prod",
Reported by Pylint.
Line: 874
Column: 1
self.df.groupby(self.groups).sample(n=1, weights=self.weights)
from .pandas_vb_common import setup # noqa: F401 isort:skip
Reported by Pylint.
Line: 61
Column: 9
class ApplyDictReturn:
def setup(self):
self.labels = np.arange(1000).repeat(10)
self.data = Series(np.random.randn(len(self.labels)))
def time_groupby_apply_dict_return(self):
self.data.groupby(self.labels).apply(
lambda x: {"first": x.values[0], "last": x.values[-1]}
Reported by Pylint.
Line: 62
Column: 9
class ApplyDictReturn:
def setup(self):
self.labels = np.arange(1000).repeat(10)
self.data = Series(np.random.randn(len(self.labels)))
def time_groupby_apply_dict_return(self):
self.data.groupby(self.labels).apply(
lambda x: {"first": x.values[0], "last": x.values[-1]}
)
Reported by Pylint.
Line: 92
Column: 9
"value2": ["foo", "bar", "baz", "qux"] * (N // 4),
}
)
self.df = df
def time_scalar_function_multi_col(self, factor):
self.df.groupby(["key", "key2"]).apply(lambda x: 1)
def time_scalar_function_single_col(self, factor):
Reported by Pylint.
Line: 94
Column: 46
)
self.df = df
def time_scalar_function_multi_col(self, factor):
self.df.groupby(["key", "key2"]).apply(lambda x: 1)
def time_scalar_function_single_col(self, factor):
self.df.groupby("key").apply(lambda x: 1)
Reported by Pylint.
Line: 97
Column: 47
def time_scalar_function_multi_col(self, factor):
self.df.groupby(["key", "key2"]).apply(lambda x: 1)
def time_scalar_function_single_col(self, factor):
self.df.groupby("key").apply(lambda x: 1)
@staticmethod
def df_copy_function(g):
# ensure that the group name is available (see GH #15062)
Reported by Pylint.
Line: 103
Column: 9
@staticmethod
def df_copy_function(g):
# ensure that the group name is available (see GH #15062)
g.name
return g.copy()
def time_copy_function_multi_col(self, factor):
self.df.groupby(["key", "key2"]).apply(self.df_copy_function)
Reported by Pylint.
Line: 106
Column: 44
g.name
return g.copy()
def time_copy_function_multi_col(self, factor):
self.df.groupby(["key", "key2"]).apply(self.df_copy_function)
def time_copy_overhead_single_col(self, factor):
self.df.groupby("key").apply(self.df_copy_function)
Reported by Pylint.
pandas/tests/resample/test_datetime_index.py
311 issues
Line: 6
Column: 1
from io import StringIO
import numpy as np
import pytest
import pytz
from pandas._libs import lib
from pandas.errors import UnsupportedFunctionCall
Reported by Pylint.
Line: 7
Column: 1
import numpy as np
import pytest
import pytz
from pandas._libs import lib
from pandas.errors import UnsupportedFunctionCall
import pandas as pd
Reported by Pylint.
Line: 9
Column: 1
import pytest
import pytz
from pandas._libs import lib
from pandas.errors import UnsupportedFunctionCall
import pandas as pd
from pandas import (
DataFrame,
Reported by Pylint.
Line: 881
Column: 59
ts_no_tz = ts_1.tz_localize(None)
result_3 = ts_no_tz.resample("D", origin="epoch").mean()
result_4 = ts_no_tz.resample("24H", origin="epoch").mean()
tm.assert_series_equal(result_1, result_3.tz_localize(rng.tz), check_freq=False)
tm.assert_series_equal(result_1, result_4.tz_localize(rng.tz), check_freq=False)
# check that we have the similar results with two different timezones (+2H and +5H)
start, end = "2000-10-01 23:30:00+0200", "2000-12-02 00:30:00+0200"
rng = date_range(start, end, freq="7min")
Reported by Pylint.
Line: 881
Column: 59
ts_no_tz = ts_1.tz_localize(None)
result_3 = ts_no_tz.resample("D", origin="epoch").mean()
result_4 = ts_no_tz.resample("24H", origin="epoch").mean()
tm.assert_series_equal(result_1, result_3.tz_localize(rng.tz), check_freq=False)
tm.assert_series_equal(result_1, result_4.tz_localize(rng.tz), check_freq=False)
# check that we have the similar results with two different timezones (+2H and +5H)
start, end = "2000-10-01 23:30:00+0200", "2000-12-02 00:30:00+0200"
rng = date_range(start, end, freq="7min")
Reported by Pylint.
Line: 882
Column: 59
result_3 = ts_no_tz.resample("D", origin="epoch").mean()
result_4 = ts_no_tz.resample("24H", origin="epoch").mean()
tm.assert_series_equal(result_1, result_3.tz_localize(rng.tz), check_freq=False)
tm.assert_series_equal(result_1, result_4.tz_localize(rng.tz), check_freq=False)
# check that we have the similar results with two different timezones (+2H and +5H)
start, end = "2000-10-01 23:30:00+0200", "2000-12-02 00:30:00+0200"
rng = date_range(start, end, freq="7min")
ts_2 = Series(random_values, index=rng)
Reported by Pylint.
Line: 882
Column: 59
result_3 = ts_no_tz.resample("D", origin="epoch").mean()
result_4 = ts_no_tz.resample("24H", origin="epoch").mean()
tm.assert_series_equal(result_1, result_3.tz_localize(rng.tz), check_freq=False)
tm.assert_series_equal(result_1, result_4.tz_localize(rng.tz), check_freq=False)
# check that we have the similar results with two different timezones (+2H and +5H)
start, end = "2000-10-01 23:30:00+0200", "2000-12-02 00:30:00+0200"
rng = date_range(start, end, freq="7min")
ts_2 = Series(random_values, index=rng)
Reported by Pylint.
Line: 1077
Column: 20
# #1471, #1458
rng = date_range("1/1/2012", "4/1/2012", freq="100min")
df = DataFrame(rng.month, index=rng)
result = df.resample("M").mean()
expected = df.resample("M", kind="period").mean().to_timestamp(how="end")
expected.index += Timedelta(1, "ns") - Timedelta(1, "D")
expected.index = expected.index._with_freq("infer")
Reported by Pylint.
Line: 1077
Column: 20
# #1471, #1458
rng = date_range("1/1/2012", "4/1/2012", freq="100min")
df = DataFrame(rng.month, index=rng)
result = df.resample("M").mean()
expected = df.resample("M", kind="period").mean().to_timestamp(how="end")
expected.index += Timedelta(1, "ns") - Timedelta(1, "D")
expected.index = expected.index._with_freq("infer")
Reported by Pylint.
Line: 1096
Column: 20
tm.assert_frame_equal(result, exp)
rng = date_range("1/1/2012", "4/1/2012", freq="100min")
df = DataFrame(rng.month, index=rng)
result = df.resample("Q").mean()
expected = df.resample("Q", kind="period").mean().to_timestamp(how="end")
expected.index += Timedelta(1, "ns") - Timedelta(1, "D")
expected.index._data.freq = "Q"
Reported by Pylint.
pandas/tests/frame/test_stack_unstack.py
306 issues
Line: 6
Column: 1
import itertools
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 649
Column: 45
exp_col = MultiIndex.from_product([[0, 1], ["A", "B", "C"]])
expected = DataFrame([[1, 1, 1, 0, 0, 0]], index=["a"], columns=exp_col)
tm.assert_frame_equal(result, expected)
assert (result.columns.levels[1] == idx.levels[1]).all()
# Unused items on both levels
levels = [[0, 1, 7], [0, 1, 2, 3]]
codes = [[0, 0, 1, 1], [0, 2, 0, 2]]
idx = MultiIndex(levels, codes)
Reported by Pylint.
Line: 71
Column: 24
df2 = df[["x"]]
df2["y"] = df["y"]
if not using_array_manager:
assert len(df2._mgr.blocks) == 2
res = df2.unstack()
expected = df.unstack()
tm.assert_series_equal(res, expected)
Reported by Pylint.
Line: 187
Column: 9
def test_unstack_fill_frame_timedelta(self):
# Test unstacking with time deltas
td = [Timedelta(days=i) for i in range(4)]
data = Series(td)
data.index = MultiIndex.from_tuples(
[("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")]
)
Reported by Pylint.
Line: 952
Column: 3
left = df.loc[17264:].copy().set_index(["s_id", "dosage", "agent"])
tm.assert_frame_equal(left.unstack(), right)
@td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) MultiIndex bug
def test_unstack_nan_index5(self):
# GH9497 - multiple unstack with nulls
df = DataFrame(
{
"1st": [1, 2, 1, 2, 1, 2],
Reported by Pylint.
Line: 1295
Column: 58
df = DataFrame(np.random.randn(15, 4), index=mi)
df[1] = df[1].astype(np.int64)
if not using_array_manager:
assert any(not x.mgr_locs.is_slice_like for x in df._mgr.blocks)
res = df.unstack()
expected = pd.concat([df[n].unstack() for n in range(4)], keys=range(4), axis=1)
tm.assert_frame_equal(res, expected)
Reported by Pylint.
Line: 1952
Column: 24
# add another int column to get 2 blocks
df["is_"] = 1
if not using_array_manager:
assert len(df._mgr.blocks) == 2
result = df.unstack("b")
result[("is_", "ca")] = result[("is_", "ca")].fillna(0)
expected = DataFrame(
Reported by Pylint.
Line: 1
Column: 1
from datetime import datetime
from io import StringIO
import itertools
import numpy as np
import pytest
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 1
Column: 1
from datetime import datetime
from io import StringIO
import itertools
import numpy as np
import pytest
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 23
Column: 1
import pandas._testing as tm
class TestDataFrameReshape:
def test_stack_unstack(self, float_frame):
df = float_frame.copy()
df[:] = np.arange(np.prod(df.shape)).reshape(df.shape)
stacked = df.stack()
Reported by Pylint.
pandas/tests/io/excel/test_writers.py
306 issues
Line: 12
Column: 1
import re
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 114
Column: 18
refdf = DataFrame([[1, "foo"], [2, "bar"], [3, "baz"]], columns=["a", "b"])
with tm.ensure_clean(ext) as pth:
with ExcelWriter(pth) as writer:
refdf.to_excel(writer, "Data_no_head", header=False, index=False)
refdf.to_excel(writer, "Data_with_head", index=False)
refdf.columns = ["A", "B"]
Reported by Pylint.
Line: 149
Column: 18
dfs = dict(zip(sheets, dfs))
with tm.ensure_clean(ext) as pth:
with ExcelWriter(pth) as ew:
for sheetname, df in dfs.items():
df.to_excel(ew, sheetname)
dfs_returned = pd.read_excel(pth, sheet_name=sheets, index_col=0)
Reported by Pylint.
Line: 366
Column: 14
pd.read_excel(xl, "0")
def test_excel_writer_context_manager(self, frame, path):
with ExcelWriter(path) as writer:
frame.to_excel(writer, "Data1")
frame2 = frame.copy()
frame2.columns = frame.columns[::-1]
frame2.to_excel(writer, "Data2")
Reported by Pylint.
Line: 535
Column: 14
frame.to_excel(path, "test1", index=False)
# Test writing to separate sheets
with ExcelWriter(path) as writer:
frame.to_excel(writer, "test1")
tsframe.to_excel(writer, "test2")
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
tm.assert_frame_equal(frame, recons)
Reported by Pylint.
Line: 673
Column: 18
)
with tm.ensure_clean(ext) as filename2:
with ExcelWriter(path) as writer1:
df.to_excel(writer1, "test1")
with ExcelWriter(
filename2,
date_format="DD.MM.YYYY",
Reported by Pylint.
Line: 676
Column: 18
with ExcelWriter(path) as writer1:
df.to_excel(writer1, "test1")
with ExcelWriter(
filename2,
date_format="DD.MM.YYYY",
datetime_format="DD.MM.YYYY HH-MM-SS",
) as writer2:
df.to_excel(writer2, "test1")
Reported by Pylint.
Line: 771
Column: 68
# GH13511
def test_to_excel_multiindex_nan_label(self, merge_cells, path):
df = DataFrame({"A": [None, 2, 3], "B": [10, 20, 30], "C": np.random.sample(3)})
df = df.set_index(["A", "B"])
df.to_excel(path, merge_cells=merge_cells)
df1 = pd.read_excel(path, index_col=[0, 1])
tm.assert_frame_equal(df, df1)
Reported by Pylint.
Line: 1221
Column: 18
df = DataFrame(np.random.randn(10, 2))
# Pass engine explicitly, as there is no file path to infer from.
with ExcelWriter(bio, engine=engine) as writer:
df.to_excel(writer)
bio.seek(0)
reread_df = pd.read_excel(bio, index_col=0)
tm.assert_frame_equal(df, reread_df)
Reported by Pylint.
Line: 1342
Column: 17
with tm.ensure_clean(ext) as f:
with pytest.raises(ValueError, match=re.escape(msg)):
ExcelWriter(f, if_sheet_exists="replace")
class TestExcelWriterEngineTests:
@pytest.mark.parametrize(
"klass,ext",
Reported by Pylint.
pandas/tests/io/formats/test_to_latex.py
301 issues
Line: 5
Column: 1
from datetime import datetime
from textwrap import dedent
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
Reported by Pylint.
Line: 458
Column: 42
"""Label for longtable LaTeX environment."""
return "tab:longtable"
def test_to_latex_caption_only(self, df_short, caption_table):
# GH 25436
result = df_short.to_latex(caption=caption_table)
expected = _dedent(
r"""
\begin{table}
Reported by Pylint.
Line: 479
Column: 40
)
assert result == expected
def test_to_latex_label_only(self, df_short, label_table):
# GH 25436
result = df_short.to_latex(label=label_table)
expected = _dedent(
r"""
\begin{table}
Reported by Pylint.
Line: 500
Column: 47
)
assert result == expected
def test_to_latex_caption_and_label(self, df_short, caption_table, label_table):
# GH 25436
result = df_short.to_latex(caption=caption_table, label=label_table)
expected = _dedent(
r"""
\begin{table}
Reported by Pylint.
Line: 524
Column: 9
def test_to_latex_caption_and_shortcaption(
self,
df_short,
caption_table,
short_caption,
):
result = df_short.to_latex(caption=(caption_table, short_caption))
expected = _dedent(
Reported by Pylint.
Line: 547
Column: 65
)
assert result == expected
def test_to_latex_caption_and_shortcaption_list_is_ok(self, df_short):
caption = ("Long-long-caption", "Short")
result_tuple = df_short.to_latex(caption=caption)
result_list = df_short.to_latex(caption=list(caption))
assert result_tuple == result_list
Reported by Pylint.
Line: 555
Column: 9
def test_to_latex_caption_shortcaption_and_label(
self,
df_short,
caption_table,
short_caption,
label_table,
):
# test when the short_caption is provided alongside caption and label
Reported by Pylint.
Line: 601
Column: 47
with pytest.raises(ValueError, match=msg):
df.to_latex(caption=bad_caption)
def test_to_latex_two_chars_caption(self, df_short):
# test that two chars caption is handled correctly
# it must not be unpacked into long_caption, short_caption.
result = df_short.to_latex(caption="xy")
expected = _dedent(
r"""
Reported by Pylint.
Line: 623
Column: 52
)
assert result == expected
def test_to_latex_longtable_caption_only(self, df_short, caption_longtable):
# GH 25436
# test when no caption and no label is provided
# is performed by test_to_latex_longtable()
result = df_short.to_latex(longtable=True, caption=caption_longtable)
expected = _dedent(
Reported by Pylint.
Line: 655
Column: 50
)
assert result == expected
def test_to_latex_longtable_label_only(self, df_short, label_longtable):
# GH 25436
result = df_short.to_latex(longtable=True, label=label_longtable)
expected = _dedent(
r"""
\begin{longtable}{lrl}
Reported by Pylint.
pandas/tests/frame/test_reductions.py
293 issues
Line: 7
Column: 1
from dateutil.tz import tzlocal
import numpy as np
import pytest
from pandas.compat import is_platform_windows
import pandas.util._test_decorators as td
from pandas.core.dtypes.common import is_categorical_dtype
Reported by Pylint.
Line: 323
Column: 13
return np.std(x, ddof=1) / np.sqrt(len(x))
def skewness(x):
from scipy.stats import skew # noqa:F811
if len(x) < 3:
return np.nan
return skew(x, bias=False)
Reported by Pylint.
Line: 330
Column: 13
return skew(x, bias=False)
def kurt(x):
from scipy.stats import kurtosis # noqa:F811
if len(x) < 4:
return np.nan
return kurtosis(x, bias=False)
Reported by Pylint.
Line: 90
Column: 26
def wrapper(x):
return alternative(x.values)
skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative)
result0 = f(axis=0, skipna=False)
result1 = f(axis=1, skipna=False)
tm.assert_series_equal(
result0, frame.apply(wrapper), check_dtype=check_dtype, rtol=rtol, atol=atol
)
Reported by Pylint.
Line: 96
Column: 3
tm.assert_series_equal(
result0, frame.apply(wrapper), check_dtype=check_dtype, rtol=rtol, atol=atol
)
# FIXME: HACK: win32
tm.assert_series_equal(
result1,
frame.apply(wrapper, axis=1),
check_dtype=False,
rtol=rtol,
Reported by Pylint.
Line: 205
Column: 3
tm.assert_series_equal(result0, frame.apply(wrapper))
tm.assert_series_equal(
result1, frame.apply(wrapper, axis=1), check_dtype=False
) # FIXME: HACK: win32
else:
skipna_wrapper = alternative
wrapper = alternative
result0 = f(axis=0)
Reported by Pylint.
Line: 293
Column: 13
assert_stat_op_api("median", float_frame, float_string_frame)
try:
from scipy.stats import ( # noqa:F401
kurtosis,
skew,
)
assert_stat_op_api("skew", float_frame, float_string_frame)
Reported by Pylint.
Line: 293
Column: 13
assert_stat_op_api("median", float_frame, float_string_frame)
try:
from scipy.stats import ( # noqa:F401
kurtosis,
skew,
)
assert_stat_op_api("skew", float_frame, float_string_frame)
Reported by Pylint.
Line: 379
Column: 13
)
try:
from scipy import ( # noqa:F401
kurtosis,
skew,
)
assert_stat_op_calc("skew", skewness, float_frame_with_na)
Reported by Pylint.
Line: 379
Column: 13
)
try:
from scipy import ( # noqa:F401
kurtosis,
skew,
)
assert_stat_op_calc("skew", skewness, float_frame_with_na)
Reported by Pylint.
pandas/tests/arithmetic/test_period.py
291 issues
Line: 7
Column: 1
import operator
import numpy as np
import pytest
from pandas._libs.tslibs import (
IncompatibleFrequency,
Period,
Timestamp,
Reported by Pylint.
Line: 98
Column: 33
tm.assert_equal(result, expected)
result = parr != other
tm.assert_equal(result, ~expected)
result = parr < other
tm.assert_equal(result, ~expected)
result = parr > other
tm.assert_equal(result, ~expected)
Reported by Pylint.
Line: 98
Column: 33
tm.assert_equal(result, expected)
result = parr != other
tm.assert_equal(result, ~expected)
result = parr < other
tm.assert_equal(result, ~expected)
result = parr > other
tm.assert_equal(result, ~expected)
Reported by Pylint.
Line: 98
Column: 33
tm.assert_equal(result, expected)
result = parr != other
tm.assert_equal(result, ~expected)
result = parr < other
tm.assert_equal(result, ~expected)
result = parr > other
tm.assert_equal(result, ~expected)
Reported by Pylint.
Line: 98
Column: 33
tm.assert_equal(result, expected)
result = parr != other
tm.assert_equal(result, ~expected)
result = parr < other
tm.assert_equal(result, ~expected)
result = parr > other
tm.assert_equal(result, ~expected)
Reported by Pylint.
Line: 100
Column: 33
result = parr != other
tm.assert_equal(result, ~expected)
result = parr < other
tm.assert_equal(result, ~expected)
result = parr > other
tm.assert_equal(result, ~expected)
other = other_box(pi[::-1])
Reported by Pylint.
Line: 100
Column: 33
result = parr != other
tm.assert_equal(result, ~expected)
result = parr < other
tm.assert_equal(result, ~expected)
result = parr > other
tm.assert_equal(result, ~expected)
other = other_box(pi[::-1])
Reported by Pylint.
Line: 100
Column: 33
result = parr != other
tm.assert_equal(result, ~expected)
result = parr < other
tm.assert_equal(result, ~expected)
result = parr > other
tm.assert_equal(result, ~expected)
other = other_box(pi[::-1])
Reported by Pylint.
Line: 100
Column: 33
result = parr != other
tm.assert_equal(result, ~expected)
result = parr < other
tm.assert_equal(result, ~expected)
result = parr > other
tm.assert_equal(result, ~expected)
other = other_box(pi[::-1])
Reported by Pylint.
Line: 102
Column: 33
result = parr < other
tm.assert_equal(result, ~expected)
result = parr > other
tm.assert_equal(result, ~expected)
other = other_box(pi[::-1])
expected = np.array([False, False, True, False, False])
expected = tm.box_expected(expected, xbox)
Reported by Pylint.
pandas/tests/scalar/timestamp/test_timestamp.py
290 issues
Line: 14
Column: 1
from dateutil.tz import tzutc
import numpy as np
import pytest
import pytz
from pytz import (
timezone,
utc,
)
Reported by Pylint.
Line: 15
Column: 1
from dateutil.tz import tzutc
import numpy as np
import pytest
import pytz
from pytz import (
timezone,
utc,
)
Reported by Pylint.
Line: 16
Column: 1
import numpy as np
import pytest
import pytz
from pytz import (
timezone,
utc,
)
from pandas._libs.tslibs.timezones import (
Reported by Pylint.
Line: 21
Column: 1
utc,
)
from pandas._libs.tslibs.timezones import (
dateutil_gettz as gettz,
get_timezone,
)
from pandas.compat import np_datetime64_compat
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 21
Column: 1
utc,
)
from pandas._libs.tslibs.timezones import (
dateutil_gettz as gettz,
get_timezone,
)
from pandas.compat import np_datetime64_compat
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 281
Column: 49
for n in ns:
assert (
Timestamp(n).asm8.view("i8") == np.datetime64(n, "ns").view("i8") == n
)
assert Timestamp("nat").asm8.view("i8") == np.datetime64("nat", "ns").view("i8")
def test_class_ops_pytz(self):
Reported by Pylint.
Line: 284
Column: 52
Timestamp(n).asm8.view("i8") == np.datetime64(n, "ns").view("i8") == n
)
assert Timestamp("nat").asm8.view("i8") == np.datetime64("nat", "ns").view("i8")
def test_class_ops_pytz(self):
def compare(x, y):
assert int((Timestamp(x).value - Timestamp(y).value) / 1e9) == 0
Reported by Pylint.
Line: 50
Column: 13
msg = "Timestamp.freq is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
# warning issued at attribute lookup
ts.freq
for per in ["month", "quarter", "year"]:
for side in ["start", "end"]:
attr = f"is_{per}_{side}"
Reported by Pylint.
Line: 111
Column: 13
check(ts.second, 3)
msg = "'Timestamp' object has no attribute 'millisecond'"
with pytest.raises(AttributeError, match=msg):
ts.millisecond
check(ts.microsecond, 100)
check(ts.nanosecond, 1)
check(ts.dayofweek, 6)
check(ts.day_of_week, 6)
check(ts.quarter, 2)
Reported by Pylint.
Line: 133
Column: 13
check(ts.second, 0)
msg = "'Timestamp' object has no attribute 'millisecond'"
with pytest.raises(AttributeError, match=msg):
ts.millisecond
check(ts.microsecond, 0)
check(ts.nanosecond, 0)
check(ts.dayofweek, 2)
check(ts.day_of_week, 2)
check(ts.quarter, 4)
Reported by Pylint.
pandas/tests/indexes/period/test_indexing.py
288 issues
Line: 8
Column: 1
import re
import numpy as np
import pytest
from pandas._libs.tslibs import period as libperiod
from pandas.errors import InvalidIndexError
import pandas as pd
Reported by Pylint.
Line: 10
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs import period as libperiod
from pandas.errors import InvalidIndexError
import pandas as pd
from pandas import (
DatetimeIndex,
Reported by Pylint.
Line: 332
Column: 14
def test_get_loc_integer(self):
dti = date_range("2016-01-01", periods=3)
pi = dti.to_period("D")
with pytest.raises(KeyError, match="16801"):
pi.get_loc(16801)
pi2 = dti.to_period("Y") # duplicates, ordinals are all 46
with pytest.raises(KeyError, match="46"):
Reported by Pylint.
Line: 332
Column: 14
def test_get_loc_integer(self):
dti = date_range("2016-01-01", periods=3)
pi = dti.to_period("D")
with pytest.raises(KeyError, match="16801"):
pi.get_loc(16801)
pi2 = dti.to_period("Y") # duplicates, ordinals are all 46
with pytest.raises(KeyError, match="46"):
Reported by Pylint.
Line: 336
Column: 15
with pytest.raises(KeyError, match="16801"):
pi.get_loc(16801)
pi2 = dti.to_period("Y") # duplicates, ordinals are all 46
with pytest.raises(KeyError, match="46"):
pi2.get_loc(46)
# TODO: This method came from test_period; de-dup with version above
@pytest.mark.parametrize("method", [None, "pad", "backfill", "nearest"])
Reported by Pylint.
Line: 336
Column: 15
with pytest.raises(KeyError, match="16801"):
pi.get_loc(16801)
pi2 = dti.to_period("Y") # duplicates, ordinals are all 46
with pytest.raises(KeyError, match="46"):
pi2.get_loc(46)
# TODO: This method came from test_period; de-dup with version above
@pytest.mark.parametrize("method", [None, "pad", "backfill", "nearest"])
Reported by Pylint.
Line: 416
Column: 14
# see also test_get_indexer_mismatched_dtype testing we get analogous
# behavior for get_loc
dti = date_range("2016-01-01", periods=3)
pi = dti.to_period("D")
pi2 = dti.to_period("W")
pi3 = pi.view(pi2.dtype) # i.e. matching i8 representations
with pytest.raises(KeyError, match="W-SUN"):
pi.get_loc(pi2[0])
Reported by Pylint.
Line: 416
Column: 14
# see also test_get_indexer_mismatched_dtype testing we get analogous
# behavior for get_loc
dti = date_range("2016-01-01", periods=3)
pi = dti.to_period("D")
pi2 = dti.to_period("W")
pi3 = pi.view(pi2.dtype) # i.e. matching i8 representations
with pytest.raises(KeyError, match="W-SUN"):
pi.get_loc(pi2[0])
Reported by Pylint.
Line: 417
Column: 15
# behavior for get_loc
dti = date_range("2016-01-01", periods=3)
pi = dti.to_period("D")
pi2 = dti.to_period("W")
pi3 = pi.view(pi2.dtype) # i.e. matching i8 representations
with pytest.raises(KeyError, match="W-SUN"):
pi.get_loc(pi2[0])
Reported by Pylint.
Line: 417
Column: 15
# behavior for get_loc
dti = date_range("2016-01-01", periods=3)
pi = dti.to_period("D")
pi2 = dti.to_period("W")
pi3 = pi.view(pi2.dtype) # i.e. matching i8 representations
with pytest.raises(KeyError, match="W-SUN"):
pi.get_loc(pi2[0])
Reported by Pylint.