The following issues were found
pandas/tests/io/json/test_ujson.py
374 issues
Line: 13
Column: 1
import dateutil
import numpy as np
import pytest
import pytz
import pandas._libs.json as ujson
from pandas.compat import (
IS64,
Reported by Pylint.
Line: 14
Column: 1
import dateutil
import numpy as np
import pytest
import pytz
import pandas._libs.json as ujson
from pandas.compat import (
IS64,
PY310,
Reported by Pylint.
Line: 16
Column: 1
import pytest
import pytz
import pandas._libs.json as ujson
from pandas.compat import (
IS64,
PY310,
is_platform_windows,
)
Reported by Pylint.
Line: 16
Column: 1
import pytest
import pytz
import pandas._libs.json as ujson
from pandas.compat import (
IS64,
PY310,
is_platform_windows,
)
Reported by Pylint.
Line: 64
Column: 28
return request.param
def get_int32_compat_dtype(numpy, orient):
# See GH#32527
dtype = np.int64
if not ((numpy is None or orient == "index") or (numpy is True and orient is None)):
if is_platform_windows():
dtype = np.int32
Reported by Pylint.
Line: 64
Column: 35
return request.param
def get_int32_compat_dtype(numpy, orient):
# See GH#32527
dtype = np.int64
if not ((numpy is None or orient == "index") or (numpy is True and orient is None)):
if is_platform_windows():
dtype = np.int32
Reported by Pylint.
Line: 469
Column: 13
class O2:
member = 0
pass
class O1:
member = 0
pass
Reported by Pylint.
Line: 473
Column: 13
class O1:
member = 0
pass
decoded_input = O1()
decoded_input.member = O2()
decoded_input.member.member = decoded_input
Reported by Pylint.
Line: 956
Column: 30
class TestPandasJSONTests:
def test_dataframe(self, orient, numpy):
if orient == "records" and numpy:
pytest.skip("Not idiomatic pandas")
dtype = get_int32_compat_dtype(numpy, orient)
Reported by Pylint.
Line: 956
Column: 38
class TestPandasJSONTests:
def test_dataframe(self, orient, numpy):
if orient == "records" and numpy:
pytest.skip("Not idiomatic pandas")
dtype = get_int32_compat_dtype(numpy, orient)
Reported by Pylint.
pandas/tests/plotting/test_series.py
362 issues
Line: 8
Column: 1
from itertools import chain
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 83
Column: 17
def test_plot_figsize_and_title(self):
# figsize and title
_, ax = self.plt.subplots()
ax = self.series.plot(title="Test", figsize=(16, 8), ax=ax)
self._check_text_labels(ax.title, "Test")
self._check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16, 8))
def test_dont_modify_rcParams(self):
Reported by Pylint.
Line: 91
Column: 18
def test_dont_modify_rcParams(self):
# GH 8242
key = "axes.prop_cycle"
colors = self.plt.rcParams[key]
_, ax = self.plt.subplots()
Series([1, 2, 3]).plot(ax=ax)
assert colors == self.plt.rcParams[key]
def test_ts_line_lim(self):
Reported by Pylint.
Line: 92
Column: 17
# GH 8242
key = "axes.prop_cycle"
colors = self.plt.rcParams[key]
_, ax = self.plt.subplots()
Series([1, 2, 3]).plot(ax=ax)
assert colors == self.plt.rcParams[key]
def test_ts_line_lim(self):
fig, ax = self.plt.subplots()
Reported by Pylint.
Line: 94
Column: 26
colors = self.plt.rcParams[key]
_, ax = self.plt.subplots()
Series([1, 2, 3]).plot(ax=ax)
assert colors == self.plt.rcParams[key]
def test_ts_line_lim(self):
fig, ax = self.plt.subplots()
ax = self.ts.plot(ax=ax)
xmin, xmax = ax.get_xlim()
Reported by Pylint.
Line: 97
Column: 19
assert colors == self.plt.rcParams[key]
def test_ts_line_lim(self):
fig, ax = self.plt.subplots()
ax = self.ts.plot(ax=ax)
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= lines[0].get_data(orig=False)[0][0]
assert xmax >= lines[0].get_data(orig=False)[0][-1]
Reported by Pylint.
Line: 112
Column: 17
assert xmax >= lines[0].get_data(orig=False)[0][-1]
def test_ts_area_lim(self):
_, ax = self.plt.subplots()
ax = self.ts.plot.area(stacked=False, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin <= line[0]
assert xmax >= line[-1]
Reported by Pylint.
Line: 122
Column: 17
tm.close()
# GH 7471
_, ax = self.plt.subplots()
ax = self.ts.plot.area(stacked=False, x_compat=True, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin <= line[0]
assert xmax >= line[-1]
Reported by Pylint.
Line: 133
Column: 17
tz_ts = self.ts.copy()
tz_ts.index = tz_ts.tz_localize("GMT").tz_convert("CET")
_, ax = self.plt.subplots()
ax = tz_ts.plot.area(stacked=False, x_compat=True, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin <= line[0]
assert xmax >= line[-1]
Reported by Pylint.
Line: 142
Column: 17
self._check_ticks_props(ax, xrot=0)
tm.close()
_, ax = self.plt.subplots()
ax = tz_ts.plot.area(stacked=False, secondary_y=True, ax=ax)
xmin, xmax = ax.get_xlim()
line = ax.get_lines()[0].get_data(orig=False)[0]
assert xmin <= line[0]
assert xmax >= line[-1]
Reported by Pylint.
pandas/tests/arrays/sparse/test_array.py
356 issues
Line: 6
Column: 1
import warnings
import numpy as np
import pytest
from pandas._libs.sparse import IntIndex
import pandas.util._test_decorators as td
import pandas as pd
Reported by Pylint.
Line: 8
Column: 1
import numpy as np
import pytest
from pandas._libs.sparse import IntIndex
import pandas.util._test_decorators as td
import pandas as pd
from pandas import isna
import pandas._testing as tm
Reported by Pylint.
Line: 8
Column: 1
import numpy as np
import pytest
from pandas._libs.sparse import IntIndex
import pandas.util._test_decorators as td
import pandas as pd
from pandas import isna
import pandas._testing as tm
Reported by Pylint.
Line: 197
Column: 9
@pytest.mark.parametrize("size", [0, 10])
@td.skip_if_no_scipy
def test_from_spmatrix(self, size, format):
import scipy.sparse
mat = scipy.sparse.random(size, 1, density=0.5, format=format)
result = SparseArray.from_spmatrix(mat)
result = np.asarray(result)
Reported by Pylint.
Line: 209
Column: 9
@pytest.mark.parametrize("format", ["coo", "csc", "csr"])
@td.skip_if_no_scipy
def test_from_spmatrix_including_explicit_zero(self, format):
import scipy.sparse
mat = scipy.sparse.random(10, 1, density=0.5, format=format)
mat.data[0] = 0
result = SparseArray.from_spmatrix(mat)
Reported by Pylint.
Line: 221
Column: 9
@td.skip_if_no_scipy
def test_from_spmatrix_raises(self):
import scipy.sparse
mat = scipy.sparse.eye(5, 4, format="csc")
with pytest.raises(ValueError, match="not '4'"):
SparseArray.from_spmatrix(mat)
Reported by Pylint.
Line: 720
Column: 16
def test_boolean_slice_empty(self):
arr = SparseArray([0, 1, 2])
res = arr[[False, False, False]]
assert res.dtype == arr.dtype
@pytest.mark.parametrize("op", ["add", "sub", "mul", "truediv", "floordiv", "pow"])
def test_binary_operators(self, op):
op = getattr(operator, op)
data1 = np.random.randn(20)
Reported by Pylint.
Line: 1183
Column: 9
@td.skip_if_no_scipy
def test_from_coo(self):
import scipy.sparse
row = [0, 3, 1, 0]
col = [0, 3, 1, 2]
data = [4, 5, 7, 9]
# TODO: Remove dtype when scipy is fixed
Reported by Pylint.
Line: 1199
Column: 9
@td.skip_if_no_scipy
def test_to_coo(self):
import scipy.sparse
ser = pd.Series(
[1, 2, 3],
index=pd.MultiIndex.from_product([[0], [1, 2, 3]], names=["a", "b"]),
dtype="Sparse[int]",
Reported by Pylint.
Line: 21
Column: 28
class TestSparseArray:
def setup_method(self, method):
self.arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6])
self.arr = SparseArray(self.arr_data)
self.zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0)
def test_constructor_dtype(self):
Reported by Pylint.
pandas/tests/arrays/test_datetimelike.py
350 issues
Line: 6
Column: 1
import re
import numpy as np
import pytest
from pandas._libs import (
NaT,
OutOfBoundsDatetime,
Timestamp,
Reported by Pylint.
Line: 85
Column: 15
@pytest.fixture
def arr1d(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
return arr
def test_compare_len1_raises(self, arr1d):
# make sure we raise when comparing with different lengths, specific
# to the case where one has length-1, which numpy would broadcast
Reported by Pylint.
Line: 154
Column: 24
data = np.arange(100, dtype="i8") * 24 * 3600 * 10 ** 9
np.random.shuffle(data)
freq = None if self.array_cls is not PeriodArray else "D"
arr = self.array_cls(data, freq=freq)
idx = self.index_cls._simple_new(arr)
takers = [1, 4, 94]
Reported by Pylint.
Line: 156
Column: 15
freq = None if self.array_cls is not PeriodArray else "D"
arr = self.array_cls(data, freq=freq)
idx = self.index_cls._simple_new(arr)
takers = [1, 4, 94]
result = arr.take(takers)
expected = idx.take(takers)
Reported by Pylint.
Line: 175
Column: 15
def test_take_fill_raises(self, fill_value):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
msg = f"value should be a '{arr._scalar_type.__name__}' or 'NaT'. Got"
with pytest.raises(TypeError, match=msg):
arr.take([0, 1], allow_fill=True, fill_value=fill_value)
Reported by Pylint.
Line: 184
Column: 15
def test_take_fill(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
result = arr.take([-1, 1], allow_fill=True, fill_value=None)
assert result[0] is NaT
result = arr.take([-1, 1], allow_fill=True, fill_value=np.nan)
Reported by Pylint.
Line: 209
Column: 15
arr = arr1d
idx = self.index_cls(arr)
idx = idx.insert(0, NaT)
arr = self.array_cls(idx)
result = arr._concat_same_type([arr[:-1], arr[1:], arr])
arr2 = arr.astype(object)
expected = self.index_cls(np.concatenate([arr2[:-1], arr2[1:], arr2]), None)
Reported by Pylint.
Line: 219
Column: 15
def test_unbox_scalar(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
result = arr._unbox_scalar(arr[0])
expected = arr._data.dtype.type
assert isinstance(result, expected)
result = arr._unbox_scalar(NaT)
Reported by Pylint.
Line: 227
Column: 38
result = arr._unbox_scalar(NaT)
assert isinstance(result, expected)
msg = f"'value' should be a {self.scalar_type.__name__}."
with pytest.raises(ValueError, match=msg):
arr._unbox_scalar("foo")
def test_check_compatible_with(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
Reported by Pylint.
Line: 233
Column: 15
def test_check_compatible_with(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
arr._check_compatible_with(arr[0])
arr._check_compatible_with(arr[:1])
arr._check_compatible_with(NaT)
Reported by Pylint.
pandas/tests/frame/indexing/test_indexing.py
346 issues
Line: 8
Column: 1
import re
import numpy as np
import pytest
from pandas._libs import iNaT
import pandas.util._test_decorators as td
from pandas.core.dtypes.common import is_integer
Reported by Pylint.
Line: 46
Column: 23
assert len(series.index) == 20
assert tm.equalContents(series.index, sl.index)
for key, _ in float_frame._series.items():
assert float_frame[key] is not None
assert "random" not in float_frame
with pytest.raises(KeyError, match="random"):
float_frame["random"]
Reported by Pylint.
Line: 51
Column: 13
assert "random" not in float_frame
with pytest.raises(KeyError, match="random"):
float_frame["random"]
def test_getitem2(self, float_frame):
df = float_frame.copy()
df["$10"] = np.random.randn(len(df))
Reported by Pylint.
Line: 113
Column: 13
tm.assert_index_equal(subindex, subframe.index)
with pytest.raises(ValueError, match="Item wrong length"):
datetime_frame[indexer[:-1]]
subframe_obj = datetime_frame[indexer_obj]
tm.assert_frame_equal(subframe_obj, subframe)
with pytest.raises(ValueError, match="Boolean array expected"):
Reported by Pylint.
Line: 119
Column: 13
tm.assert_frame_equal(subframe_obj, subframe)
with pytest.raises(ValueError, match="Boolean array expected"):
datetime_frame[datetime_frame]
# test that Series work
indexer_obj = Series(indexer_obj, datetime_frame.index)
subframe_obj = datetime_frame[indexer_obj]
Reported by Pylint.
Line: 143
Column: 20
mixed_int_frame,
]:
data = df._get_numeric_data()
bif = df[df > 0]
bifw = DataFrame(
{c: np.where(data[c] > 0, data[c], np.nan) for c in data.columns},
index=data.index,
columns=data.columns,
Reported by Pylint.
Line: 226
Column: 9
# both of these should succeed trivially
k = np.array([], bool)
blah[k]
blah[k] = 0
def test_getitem_ix_mixed_integer(self):
df = DataFrame(
np.random.randn(4, 3), index=[1, 10, "C", "E"], columns=[1, 2, 3]
Reported by Pylint.
Line: 264
Column: 13
tm.assert_series_equal(float_frame.A, float_frame["A"])
msg = "'DataFrame' object has no attribute 'NONEXISTENT_NAME'"
with pytest.raises(AttributeError, match=msg):
float_frame.NONEXISTENT_NAME
def test_setattr_column(self):
df = DataFrame({"foobar": 1}, index=range(10))
df.foobar = 5
Reported by Pylint.
Line: 507
Column: 9
df = DataFrame(np.random.randn(10, 5))
# this is OK
result = df.iloc[:8:2] # noqa
df.iloc[:8:2] = np.nan
assert isna(df.iloc[:8:2]).values.all()
def test_getitem_setitem_integer_slice_keyerrors(self):
df = DataFrame(np.random.randn(10, 5), index=range(0, 20, 2))
Reported by Pylint.
Line: 534
Column: 13
# non-monotonic, raise KeyError
df2 = df.iloc[list(range(5)) + list(range(5, 10))[::-1]]
with pytest.raises(KeyError, match=r"^3$"):
df2.loc[3:11]
with pytest.raises(KeyError, match=r"^3$"):
df2.loc[3:11] = 0
@td.skip_array_manager_invalid_test # already covered in test_iloc_col_slice_view
def test_fancy_getitem_slice_mixed(self, float_frame, float_string_frame):
Reported by Pylint.
pandas/core/generic.py
344 issues
Line: 31
Column: 1
from pandas._config import config
from pandas._libs import lib
from pandas._libs.tslibs import (
Period,
Tick,
Timestamp,
to_offset,
Reported by Pylint.
Line: 238
Column: 9
def __init__(
self,
data: Manager,
copy: bool_t = False,
attrs: Mapping[Hashable, Any] | None = None,
):
# copy kwarg is retained for mypy compat, is not used
object.__setattr__(self, "_is_copy", None)
Reported by Pylint.
Line: 550
Column: 13
try:
return cls._AXIS_TO_AXIS_NUMBER[axis]
except KeyError:
raise ValueError(f"No axis named {axis} for object type {cls.__name__}")
@final
@classmethod
def _get_axis_name(cls, axis: Axis) -> str:
axis_number = cls._get_axis_number(axis)
Reported by Pylint.
Line: 1145
Column: 25
f = com.get_rename_function(replacements)
if level is not None:
level = ax._get_level_number(level)
# GH 13473
if not callable(replacements):
indexer = ax.get_indexer_for(replacements)
if errors == "raise" and len(indexer[indexer == -1]):
Reported by Pylint.
Line: 1158
Column: 25
]
raise KeyError(f"{missing_labels} not found in axis")
new_index = ax._transform_index(f, level=level)
result._set_axis_nocheck(new_index, axis=axis_no, inplace=True)
result._clear_item_cache()
if inplace:
self._update_inplace(result)
Reported by Pylint.
Line: 1159
Column: 13
raise KeyError(f"{missing_labels} not found in axis")
new_index = ax._transform_index(f, level=level)
result._set_axis_nocheck(new_index, axis=axis_no, inplace=True)
result._clear_item_cache()
if inplace:
self._update_inplace(result)
return None
Reported by Pylint.
Line: 1160
Column: 13
new_index = ax._transform_index(f, level=level)
result._set_axis_nocheck(new_index, axis=axis_no, inplace=True)
result._clear_item_cache()
if inplace:
self._update_inplace(result)
return None
else:
Reported by Pylint.
Line: 1335
Column: 17
f = com.get_rename_function(v)
curnames = self._get_axis(axis).names
newnames = [f(name) for name in curnames]
result._set_axis_name(newnames, axis=axis, inplace=True)
if not inplace:
return result
@final
def _set_axis_name(self, name, axis=0, inplace=False):
Reported by Pylint.
Line: 1405
Column: 38
@final
def _indexed_same(self, other) -> bool_t:
return all(
self._get_axis(a).equals(other._get_axis(a)) for a in self._AXIS_ORDERS
)
@final
def equals(self, other: object) -> bool_t:
"""
Reported by Pylint.
Line: 1490
Column: 33
if not (isinstance(other, type(self)) or isinstance(self, type(other))):
return False
other = cast(NDFrame, other)
return self._mgr.equals(other._mgr)
# -------------------------------------------------------------------------
# Unary Methods
@final
Reported by Pylint.
asv_bench/benchmarks/frame_methods.py
328 issues
Line: 6
Column: 1
import numpy as np
from pandas import (
DataFrame,
MultiIndex,
NaT,
Series,
date_range,
Reported by Pylint.
Line: 17
Column: 1
timedelta_range,
)
from .pandas_vb_common import tm
class GetNumericData:
def setup(self):
self.df = DataFrame(np.random.randn(10000, 25))
Reported by Pylint.
Line: 758
Column: 1
self.df2.memory_usage(deep=True)
from .pandas_vb_common import setup # noqa: F401 isort:skip
Reported by Pylint.
Line: 22
Column: 9
class GetNumericData:
def setup(self):
self.df = DataFrame(np.random.randn(10000, 25))
self.df["foo"] = "bar"
self.df["bar"] = "baz"
self.df = self.df._consolidate()
def time_frame_get_numeric_data(self):
Reported by Pylint.
Line: 25
Column: 19
self.df = DataFrame(np.random.randn(10000, 25))
self.df["foo"] = "bar"
self.df["bar"] = "baz"
self.df = self.df._consolidate()
def time_frame_get_numeric_data(self):
self.df._get_numeric_data()
Reported by Pylint.
Line: 25
Column: 9
self.df = DataFrame(np.random.randn(10000, 25))
self.df["foo"] = "bar"
self.df["bar"] = "baz"
self.df = self.df._consolidate()
def time_frame_get_numeric_data(self):
self.df._get_numeric_data()
Reported by Pylint.
Line: 28
Column: 9
self.df = self.df._consolidate()
def time_frame_get_numeric_data(self):
self.df._get_numeric_data()
class Lookup:
def setup(self):
self.df = DataFrame(np.random.randn(10000, 8), columns=list("abcdefgh"))
Reported by Pylint.
Line: 33
Column: 9
class Lookup:
def setup(self):
self.df = DataFrame(np.random.randn(10000, 8), columns=list("abcdefgh"))
self.df["foo"] = "bar"
self.row_labels = list(self.df.index[::10])[:900]
self.col_labels = list(self.df.columns) * 100
self.row_labels_all = np.array(
list(self.df.index) * len(self.df.columns), dtype="object"
Reported by Pylint.
Line: 35
Column: 9
def setup(self):
self.df = DataFrame(np.random.randn(10000, 8), columns=list("abcdefgh"))
self.df["foo"] = "bar"
self.row_labels = list(self.df.index[::10])[:900]
self.col_labels = list(self.df.columns) * 100
self.row_labels_all = np.array(
list(self.df.index) * len(self.df.columns), dtype="object"
)
self.col_labels_all = np.array(
Reported by Pylint.
Line: 36
Column: 9
self.df = DataFrame(np.random.randn(10000, 8), columns=list("abcdefgh"))
self.df["foo"] = "bar"
self.row_labels = list(self.df.index[::10])[:900]
self.col_labels = list(self.df.columns) * 100
self.row_labels_all = np.array(
list(self.df.index) * len(self.df.columns), dtype="object"
)
self.col_labels_all = np.array(
list(self.df.columns) * len(self.df.index), dtype="object"
Reported by Pylint.
pandas/tests/indexes/datetimes/test_date_range.py
328 issues
Line: 12
Column: 1
)
import numpy as np
import pytest
import pytz
from pytz import timezone
from pandas._libs.tslibs import timezones
from pandas._libs.tslibs.offsets import (
Reported by Pylint.
Line: 13
Column: 1
import numpy as np
import pytest
import pytz
from pytz import timezone
from pandas._libs.tslibs import timezones
from pandas._libs.tslibs.offsets import (
BDay,
Reported by Pylint.
Line: 14
Column: 1
import numpy as np
import pytest
import pytz
from pytz import timezone
from pandas._libs.tslibs import timezones
from pandas._libs.tslibs.offsets import (
BDay,
CDay,
Reported by Pylint.
Line: 16
Column: 1
import pytz
from pytz import timezone
from pandas._libs.tslibs import timezones
from pandas._libs.tslibs.offsets import (
BDay,
CDay,
DateOffset,
MonthEnd,
Reported by Pylint.
Line: 17
Column: 1
from pytz import timezone
from pandas._libs.tslibs import timezones
from pandas._libs.tslibs.offsets import (
BDay,
CDay,
DateOffset,
MonthEnd,
prefix_mapping,
Reported by Pylint.
Line: 17
Column: 1
from pytz import timezone
from pandas._libs.tslibs import timezones
from pandas._libs.tslibs.offsets import (
BDay,
CDay,
DateOffset,
MonthEnd,
prefix_mapping,
Reported by Pylint.
Line: 71
Column: 9
@td.skip_if_windows_python_3
def test_date_range_timestamp_equiv_explicit_dateutil(self):
from pandas._libs.tslibs.timezones import dateutil_gettz as gettz
rng = date_range("20090415", "20090519", tz=gettz("US/Eastern"))
stamp = rng[0]
ts = Timestamp("20090415", tz=gettz("US/Eastern"))
Reported by Pylint.
Line: 71
Column: 9
@td.skip_if_windows_python_3
def test_date_range_timestamp_equiv_explicit_dateutil(self):
from pandas._libs.tslibs.timezones import dateutil_gettz as gettz
rng = date_range("20090415", "20090519", tz=gettz("US/Eastern"))
stamp = rng[0]
ts = Timestamp("20090415", tz=gettz("US/Eastern"))
Reported by Pylint.
Line: 218
Column: 16
rng = date_range("2011-12-31", freq="-2A", periods=3)
exp = DatetimeIndex(["2011-12-31", "2009-12-31", "2007-12-31"], freq="-2A")
tm.assert_index_equal(rng, exp)
assert rng.freq == "-2A"
rng = date_range("2011-01-31", freq="-2M", periods=3)
exp = DatetimeIndex(["2011-01-31", "2010-11-30", "2010-09-30"], freq="-2M")
tm.assert_index_equal(rng, exp)
assert rng.freq == "-2M"
Reported by Pylint.
Line: 218
Column: 16
rng = date_range("2011-12-31", freq="-2A", periods=3)
exp = DatetimeIndex(["2011-12-31", "2009-12-31", "2007-12-31"], freq="-2A")
tm.assert_index_equal(rng, exp)
assert rng.freq == "-2A"
rng = date_range("2011-01-31", freq="-2M", periods=3)
exp = DatetimeIndex(["2011-01-31", "2010-11-30", "2010-09-30"], freq="-2M")
tm.assert_index_equal(rng, exp)
assert rng.freq == "-2M"
Reported by Pylint.
pandas/tests/io/test_stata.py
328 issues
Line: 13
Column: 1
import zipfile
import numpy as np
import pytest
from pandas.core.dtypes.common import is_categorical_dtype
import pandas as pd
import pandas._testing as tm
Reported by Pylint.
Line: 55
Column: 16
@pytest.fixture
def parsed_114(dirpath):
dta14_114 = os.path.join(dirpath, "stata5_114.dta")
parsed_114 = read_stata(dta14_114, convert_dates=True)
parsed_114.index.name = "index"
return parsed_114
Reported by Pylint.
Line: 57
Column: 5
@pytest.fixture
def parsed_114(dirpath):
dta14_114 = os.path.join(dirpath, "stata5_114.dta")
parsed_114 = read_stata(dta14_114, convert_dates=True)
parsed_114.index.name = "index"
return parsed_114
class TestStata:
Reported by Pylint.
Line: 65
Column: 9
class TestStata:
@pytest.fixture(autouse=True)
def setup_method(self, datapath):
self.dirpath = datapath("io", "data", "stata")
self.dta1_114 = os.path.join(self.dirpath, "stata1_114.dta")
self.dta1_117 = os.path.join(self.dirpath, "stata1_117.dta")
self.dta2_113 = os.path.join(self.dirpath, "stata2_113.dta")
self.dta2_114 = os.path.join(self.dirpath, "stata2_114.dta")
Reported by Pylint.
Line: 66
Column: 9
@pytest.fixture(autouse=True)
def setup_method(self, datapath):
self.dirpath = datapath("io", "data", "stata")
self.dta1_114 = os.path.join(self.dirpath, "stata1_114.dta")
self.dta1_117 = os.path.join(self.dirpath, "stata1_117.dta")
self.dta2_113 = os.path.join(self.dirpath, "stata2_113.dta")
self.dta2_114 = os.path.join(self.dirpath, "stata2_114.dta")
self.dta2_115 = os.path.join(self.dirpath, "stata2_115.dta")
Reported by Pylint.
Line: 67
Column: 9
def setup_method(self, datapath):
self.dirpath = datapath("io", "data", "stata")
self.dta1_114 = os.path.join(self.dirpath, "stata1_114.dta")
self.dta1_117 = os.path.join(self.dirpath, "stata1_117.dta")
self.dta2_113 = os.path.join(self.dirpath, "stata2_113.dta")
self.dta2_114 = os.path.join(self.dirpath, "stata2_114.dta")
self.dta2_115 = os.path.join(self.dirpath, "stata2_115.dta")
self.dta2_117 = os.path.join(self.dirpath, "stata2_117.dta")
Reported by Pylint.
Line: 69
Column: 9
self.dta1_114 = os.path.join(self.dirpath, "stata1_114.dta")
self.dta1_117 = os.path.join(self.dirpath, "stata1_117.dta")
self.dta2_113 = os.path.join(self.dirpath, "stata2_113.dta")
self.dta2_114 = os.path.join(self.dirpath, "stata2_114.dta")
self.dta2_115 = os.path.join(self.dirpath, "stata2_115.dta")
self.dta2_117 = os.path.join(self.dirpath, "stata2_117.dta")
self.dta3_113 = os.path.join(self.dirpath, "stata3_113.dta")
Reported by Pylint.
Line: 70
Column: 9
self.dta1_117 = os.path.join(self.dirpath, "stata1_117.dta")
self.dta2_113 = os.path.join(self.dirpath, "stata2_113.dta")
self.dta2_114 = os.path.join(self.dirpath, "stata2_114.dta")
self.dta2_115 = os.path.join(self.dirpath, "stata2_115.dta")
self.dta2_117 = os.path.join(self.dirpath, "stata2_117.dta")
self.dta3_113 = os.path.join(self.dirpath, "stata3_113.dta")
self.dta3_114 = os.path.join(self.dirpath, "stata3_114.dta")
Reported by Pylint.
Line: 71
Column: 9
self.dta2_113 = os.path.join(self.dirpath, "stata2_113.dta")
self.dta2_114 = os.path.join(self.dirpath, "stata2_114.dta")
self.dta2_115 = os.path.join(self.dirpath, "stata2_115.dta")
self.dta2_117 = os.path.join(self.dirpath, "stata2_117.dta")
self.dta3_113 = os.path.join(self.dirpath, "stata3_113.dta")
self.dta3_114 = os.path.join(self.dirpath, "stata3_114.dta")
self.dta3_115 = os.path.join(self.dirpath, "stata3_115.dta")
Reported by Pylint.
Line: 72
Column: 9
self.dta2_113 = os.path.join(self.dirpath, "stata2_113.dta")
self.dta2_114 = os.path.join(self.dirpath, "stata2_114.dta")
self.dta2_115 = os.path.join(self.dirpath, "stata2_115.dta")
self.dta2_117 = os.path.join(self.dirpath, "stata2_117.dta")
self.dta3_113 = os.path.join(self.dirpath, "stata3_113.dta")
self.dta3_114 = os.path.join(self.dirpath, "stata3_114.dta")
self.dta3_115 = os.path.join(self.dirpath, "stata3_115.dta")
self.dta3_117 = os.path.join(self.dirpath, "stata3_117.dta")
Reported by Pylint.
pandas/core/frame.py
324 issues
Line: 42
Column: 1
from pandas._config import get_option
from pandas._libs import (
algos as libalgos,
lib,
properties,
)
from pandas._libs.hashtable import duplicated
Reported by Pylint.
Line: 42
Column: 1
from pandas._config import get_option
from pandas._libs import (
algos as libalgos,
lib,
properties,
)
from pandas._libs.hashtable import duplicated
Reported by Pylint.
Line: 42
Column: 1
from pandas._config import get_option
from pandas._libs import (
algos as libalgos,
lib,
properties,
)
from pandas._libs.hashtable import duplicated
Reported by Pylint.
Line: 47
Column: 1
lib,
properties,
)
from pandas._libs.hashtable import duplicated
from pandas._libs.lib import no_default
from pandas._typing import (
AggFuncType,
AnyArrayLike,
ArrayLike,
Reported by Pylint.
Line: 47
Column: 1
lib,
properties,
)
from pandas._libs.hashtable import duplicated
from pandas._libs.lib import no_default
from pandas._typing import (
AggFuncType,
AnyArrayLike,
ArrayLike,
Reported by Pylint.
Line: 48
Column: 1
properties,
)
from pandas._libs.hashtable import duplicated
from pandas._libs.lib import no_default
from pandas._typing import (
AggFuncType,
AnyArrayLike,
ArrayLike,
Axes,
Reported by Pylint.
Line: 48
Column: 1
properties,
)
from pandas._libs.hashtable import duplicated
from pandas._libs.lib import no_default
from pandas._typing import (
AggFuncType,
AnyArrayLike,
ArrayLike,
Axes,
Reported by Pylint.
Line: 748
Column: 3
# For data is a scalar extension dtype
if isinstance(dtype, ExtensionDtype):
# TODO(EA2D): special case not needed with 2D EAs
values = [
construct_1d_arraylike_from_scalar(data, len(index), dtype)
for _ in range(len(columns))
]
Reported by Pylint.
Line: 869
Column: 3
return False
dtype = blocks[0].dtype
# TODO(EA2D) special case would be unnecessary with 2D EAs
return not is_1d_only_ea_dtype(dtype)
# error: Return type "Union[ndarray, DatetimeArray, TimedeltaArray]" of
# "_values" incompatible with return type "ndarray" in supertype "NDFrame"
@property
Reported by Pylint.
Line: 926
Column: 16
users expect. display.max_columns remains in effect.
GH3541, GH3573
"""
width, height = console.get_console_size()
max_columns = get_option("display.max_columns")
nb_columns = len(self.columns)
# exceed max columns
if (max_columns and nb_columns > max_columns) or (
Reported by Pylint.