The following issues were found
asv_bench/benchmarks/array.py
22 issues
Line: 3
Column: 1
import numpy as np
import pandas as pd
class BooleanArray:
def setup(self):
self.values_bool = np.array([True, False, True, False])
self.values_float = np.array([1.0, 0.0, 1.0, 0.0])
Reported by Pylint.
Line: 8
Column: 9
class BooleanArray:
def setup(self):
self.values_bool = np.array([True, False, True, False])
self.values_float = np.array([1.0, 0.0, 1.0, 0.0])
self.values_integer = np.array([1, 0, 1, 0])
self.values_integer_like = [1, 0, 1, 0]
self.data = np.array([True, False, True, False])
self.mask = np.array([False, False, True, False])
Reported by Pylint.
Line: 9
Column: 9
class BooleanArray:
def setup(self):
self.values_bool = np.array([True, False, True, False])
self.values_float = np.array([1.0, 0.0, 1.0, 0.0])
self.values_integer = np.array([1, 0, 1, 0])
self.values_integer_like = [1, 0, 1, 0]
self.data = np.array([True, False, True, False])
self.mask = np.array([False, False, True, False])
Reported by Pylint.
Line: 10
Column: 9
def setup(self):
self.values_bool = np.array([True, False, True, False])
self.values_float = np.array([1.0, 0.0, 1.0, 0.0])
self.values_integer = np.array([1, 0, 1, 0])
self.values_integer_like = [1, 0, 1, 0]
self.data = np.array([True, False, True, False])
self.mask = np.array([False, False, True, False])
def time_constructor(self):
Reported by Pylint.
Line: 11
Column: 9
self.values_bool = np.array([True, False, True, False])
self.values_float = np.array([1.0, 0.0, 1.0, 0.0])
self.values_integer = np.array([1, 0, 1, 0])
self.values_integer_like = [1, 0, 1, 0]
self.data = np.array([True, False, True, False])
self.mask = np.array([False, False, True, False])
def time_constructor(self):
pd.arrays.BooleanArray(self.data, self.mask)
Reported by Pylint.
Line: 12
Column: 9
self.values_float = np.array([1.0, 0.0, 1.0, 0.0])
self.values_integer = np.array([1, 0, 1, 0])
self.values_integer_like = [1, 0, 1, 0]
self.data = np.array([True, False, True, False])
self.mask = np.array([False, False, True, False])
def time_constructor(self):
pd.arrays.BooleanArray(self.data, self.mask)
Reported by Pylint.
Line: 13
Column: 9
self.values_integer = np.array([1, 0, 1, 0])
self.values_integer_like = [1, 0, 1, 0]
self.data = np.array([True, False, True, False])
self.mask = np.array([False, False, True, False])
def time_constructor(self):
pd.arrays.BooleanArray(self.data, self.mask)
def time_from_bool_array(self):
Reported by Pylint.
Line: 33
Column: 9
class IntegerArray:
def setup(self):
self.values_integer = np.array([1, 0, 1, 0])
self.data = np.array([1, 2, 3, 4], dtype="int64")
self.mask = np.array([False, False, True, False])
def time_constructor(self):
pd.arrays.IntegerArray(self.data, self.mask)
Reported by Pylint.
Line: 34
Column: 9
class IntegerArray:
def setup(self):
self.values_integer = np.array([1, 0, 1, 0])
self.data = np.array([1, 2, 3, 4], dtype="int64")
self.mask = np.array([False, False, True, False])
def time_constructor(self):
pd.arrays.IntegerArray(self.data, self.mask)
Reported by Pylint.
Line: 35
Column: 9
def setup(self):
self.values_integer = np.array([1, 0, 1, 0])
self.data = np.array([1, 2, 3, 4], dtype="int64")
self.mask = np.array([False, False, True, False])
def time_constructor(self):
pd.arrays.IntegerArray(self.data, self.mask)
def time_from_integer_array(self):
Reported by Pylint.
pandas/core/window/common.py
22 issues
Line: 138
Column: 12
mask = x < 0
if isinstance(x, ABCDataFrame):
if mask._values.any():
result[mask] = 0
else:
if mask.any():
result[mask] = 0
Reported by Pylint.
Line: 15
Column: 1
from pandas.core.indexes.api import MultiIndex
def flex_binary_moment(arg1, arg2, f, pairwise=False):
if isinstance(arg1, ABCSeries) and isinstance(arg2, ABCSeries):
X, Y = prep_binary(arg1, arg2)
return f(X, Y)
Reported by Pylint.
Line: 15
Column: 1
from pandas.core.indexes.api import MultiIndex
def flex_binary_moment(arg1, arg2, f, pairwise=False):
if isinstance(arg1, ABCSeries) and isinstance(arg2, ABCSeries):
X, Y = prep_binary(arg1, arg2)
return f(X, Y)
Reported by Pylint.
Line: 15
Column: 1
from pandas.core.indexes.api import MultiIndex
def flex_binary_moment(arg1, arg2, f, pairwise=False):
if isinstance(arg1, ABCSeries) and isinstance(arg2, ABCSeries):
X, Y = prep_binary(arg1, arg2)
return f(X, Y)
Reported by Pylint.
Line: 15
Column: 1
from pandas.core.indexes.api import MultiIndex
def flex_binary_moment(arg1, arg2, f, pairwise=False):
if isinstance(arg1, ABCSeries) and isinstance(arg2, ABCSeries):
X, Y = prep_binary(arg1, arg2)
return f(X, Y)
Reported by Pylint.
Line: 15
Column: 1
from pandas.core.indexes.api import MultiIndex
def flex_binary_moment(arg1, arg2, f, pairwise=False):
if isinstance(arg1, ABCSeries) and isinstance(arg2, ABCSeries):
X, Y = prep_binary(arg1, arg2)
return f(X, Y)
Reported by Pylint.
Line: 15
Column: 1
from pandas.core.indexes.api import MultiIndex
def flex_binary_moment(arg1, arg2, f, pairwise=False):
if isinstance(arg1, ABCSeries) and isinstance(arg2, ABCSeries):
X, Y = prep_binary(arg1, arg2)
return f(X, Y)
Reported by Pylint.
Line: 17
Column: 5
def flex_binary_moment(arg1, arg2, f, pairwise=False):
if isinstance(arg1, ABCSeries) and isinstance(arg2, ABCSeries):
X, Y = prep_binary(arg1, arg2)
return f(X, Y)
elif isinstance(arg1, ABCDataFrame):
from pandas import DataFrame
Reported by Pylint.
Line: 18
Column: 12
def flex_binary_moment(arg1, arg2, f, pairwise=False):
if isinstance(arg1, ABCSeries) and isinstance(arg2, ABCSeries):
X, Y = prep_binary(arg1, arg2)
return f(X, Y)
elif isinstance(arg1, ABCDataFrame):
from pandas import DataFrame
Reported by Pylint.
Line: 18
Column: 9
def flex_binary_moment(arg1, arg2, f, pairwise=False):
if isinstance(arg1, ABCSeries) and isinstance(arg2, ABCSeries):
X, Y = prep_binary(arg1, arg2)
return f(X, Y)
elif isinstance(arg1, ABCDataFrame):
from pandas import DataFrame
Reported by Pylint.
pandas/_libs/tslibs/__init__.py
22 issues
Line: 31
Column: 1
]
from pandas._libs.tslibs import dtypes
from pandas._libs.tslibs.conversion import (
OutOfBoundsTimedelta,
localize_pydatetime,
)
from pandas._libs.tslibs.dtypes import Resolution
from pandas._libs.tslibs.nattype import (
Reported by Pylint.
Line: 31
Column: 1
]
from pandas._libs.tslibs import dtypes
from pandas._libs.tslibs.conversion import (
OutOfBoundsTimedelta,
localize_pydatetime,
)
from pandas._libs.tslibs.dtypes import Resolution
from pandas._libs.tslibs.nattype import (
Reported by Pylint.
Line: 35
Column: 1
OutOfBoundsTimedelta,
localize_pydatetime,
)
from pandas._libs.tslibs.dtypes import Resolution
from pandas._libs.tslibs.nattype import (
NaT,
NaTType,
iNaT,
is_null_datetimelike,
Reported by Pylint.
Line: 36
Column: 1
localize_pydatetime,
)
from pandas._libs.tslibs.dtypes import Resolution
from pandas._libs.tslibs.nattype import (
NaT,
NaTType,
iNaT,
is_null_datetimelike,
nat_strings,
Reported by Pylint.
Line: 36
Column: 1
localize_pydatetime,
)
from pandas._libs.tslibs.dtypes import Resolution
from pandas._libs.tslibs.nattype import (
NaT,
NaTType,
iNaT,
is_null_datetimelike,
nat_strings,
Reported by Pylint.
Line: 43
Column: 1
is_null_datetimelike,
nat_strings,
)
from pandas._libs.tslibs.np_datetime import OutOfBoundsDatetime
from pandas._libs.tslibs.offsets import (
BaseOffset,
Tick,
to_offset,
)
Reported by Pylint.
Line: 43
Column: 1
is_null_datetimelike,
nat_strings,
)
from pandas._libs.tslibs.np_datetime import OutOfBoundsDatetime
from pandas._libs.tslibs.offsets import (
BaseOffset,
Tick,
to_offset,
)
Reported by Pylint.
Line: 44
Column: 1
nat_strings,
)
from pandas._libs.tslibs.np_datetime import OutOfBoundsDatetime
from pandas._libs.tslibs.offsets import (
BaseOffset,
Tick,
to_offset,
)
from pandas._libs.tslibs.period import (
Reported by Pylint.
Line: 44
Column: 1
nat_strings,
)
from pandas._libs.tslibs.np_datetime import OutOfBoundsDatetime
from pandas._libs.tslibs.offsets import (
BaseOffset,
Tick,
to_offset,
)
from pandas._libs.tslibs.period import (
Reported by Pylint.
Line: 49
Column: 1
Tick,
to_offset,
)
from pandas._libs.tslibs.period import (
IncompatibleFrequency,
Period,
)
from pandas._libs.tslibs.timedeltas import (
Timedelta,
Reported by Pylint.
pandas/_libs/src/ujson/python/objToJSON.c
21 issues
Line: 1332
Column: 21
CWE codes:
134
Suggestion:
Use a constant for the format specification
} else {
int size_of_cLabel = 21; // 21 chars for int 64
cLabel = PyObject_Malloc(size_of_cLabel);
snprintf(cLabel, size_of_cLabel, "%" NPY_DATETIME_FMT,
NpyDateTimeToEpoch(nanosecVal, base));
len = strlen(cLabel);
}
}
} else { // Fallback to string representation
Reported by FlawFinder.
Line: 1008
Column: 9
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
index = GET_TC(tc)->index;
Py_XDECREF(GET_TC(tc)->itemValue);
if (index == 0) {
memcpy(GET_TC(tc)->cStr, "name", sizeof(char) * 5);
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "name");
} else if (index == 1) {
memcpy(GET_TC(tc)->cStr, "data", sizeof(char) * 5);
GET_TC(tc)->itemValue = get_values(obj);
if (!GET_TC(tc)->itemValue) {
Reported by FlawFinder.
Line: 1011
Column: 9
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
memcpy(GET_TC(tc)->cStr, "name", sizeof(char) * 5);
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "name");
} else if (index == 1) {
memcpy(GET_TC(tc)->cStr, "data", sizeof(char) * 5);
GET_TC(tc)->itemValue = get_values(obj);
if (!GET_TC(tc)->itemValue) {
return 0;
}
} else {
Reported by FlawFinder.
Line: 1058
Column: 9
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
index = GET_TC(tc)->index;
Py_XDECREF(GET_TC(tc)->itemValue);
if (index == 0) {
memcpy(GET_TC(tc)->cStr, "name", sizeof(char) * 5);
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "name");
} else if (index == 1) {
memcpy(GET_TC(tc)->cStr, "index", sizeof(char) * 6);
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "index");
} else if (index == 2) {
Reported by FlawFinder.
Line: 1061
Column: 9
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
memcpy(GET_TC(tc)->cStr, "name", sizeof(char) * 5);
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "name");
} else if (index == 1) {
memcpy(GET_TC(tc)->cStr, "index", sizeof(char) * 6);
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "index");
} else if (index == 2) {
memcpy(GET_TC(tc)->cStr, "data", sizeof(char) * 5);
GET_TC(tc)->itemValue = get_values(obj);
if (!GET_TC(tc)->itemValue) {
Reported by FlawFinder.
Line: 1064
Column: 9
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
memcpy(GET_TC(tc)->cStr, "index", sizeof(char) * 6);
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "index");
} else if (index == 2) {
memcpy(GET_TC(tc)->cStr, "data", sizeof(char) * 5);
GET_TC(tc)->itemValue = get_values(obj);
if (!GET_TC(tc)->itemValue) {
return 0;
}
} else {
Reported by FlawFinder.
Line: 1114
Column: 9
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
index = GET_TC(tc)->index;
Py_XDECREF(GET_TC(tc)->itemValue);
if (index == 0) {
memcpy(GET_TC(tc)->cStr, "columns", sizeof(char) * 8);
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "columns");
} else if (index == 1) {
memcpy(GET_TC(tc)->cStr, "index", sizeof(char) * 6);
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "index");
} else if (index == 2) {
Reported by FlawFinder.
Line: 1117
Column: 9
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
memcpy(GET_TC(tc)->cStr, "columns", sizeof(char) * 8);
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "columns");
} else if (index == 1) {
memcpy(GET_TC(tc)->cStr, "index", sizeof(char) * 6);
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "index");
} else if (index == 2) {
memcpy(GET_TC(tc)->cStr, "data", sizeof(char) * 5);
if (is_simple_frame(obj)) {
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "values");
Reported by FlawFinder.
Line: 1120
Column: 9
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
memcpy(GET_TC(tc)->cStr, "index", sizeof(char) * 6);
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "index");
} else if (index == 2) {
memcpy(GET_TC(tc)->cStr, "data", sizeof(char) * 5);
if (is_simple_frame(obj)) {
GET_TC(tc)->itemValue = PyObject_GetAttrString(obj, "values");
if (!GET_TC(tc)->itemValue) {
return 0;
}
Reported by FlawFinder.
Line: 1352
Column: 9
CWE codes:
120
Suggestion:
Make sure destination can always hold the source data
// Add 1 to include NULL terminator
ret[i] = PyObject_Malloc(len + 1);
memcpy(ret[i], cLabel, len + 1);
Py_DECREF(item);
if (is_datetimelike) {
PyObject_Free(cLabel);
}
Reported by FlawFinder.
asv_bench/benchmarks/tslibs/offsets.py
21 issues
Line: 9
Column: 1
import numpy as np
from pandas import offsets
try:
import pandas.tseries.holiday
except ImportError:
pass
Reported by Pylint.
Line: 52
Column: 21
params = offset_objs
param_names = ["offset"]
def setup(self, offset):
self.dates = [
datetime(2016, m, d)
for m in [10, 11, 12]
for d in [1, 2, 3, 28, 29, 30, 31]
if not (m == 11 and d == 31)
Reported by Pylint.
Line: 53
Column: 9
param_names = ["offset"]
def setup(self, offset):
self.dates = [
datetime(2016, m, d)
for m in [10, 11, 12]
for d in [1, 2, 3, 28, 29, 30, 31]
if not (m == 11 and d == 31)
]
Reported by Pylint.
Line: 70
Column: 21
params = offset_objs
param_names = ["offset"]
def setup(self, offset):
self.date = datetime(2011, 1, 1)
self.dt64 = np.datetime64("2011-01-01 09:00Z")
def time_apply(self, offset):
offset.apply(self.date)
Reported by Pylint.
Line: 71
Column: 9
param_names = ["offset"]
def setup(self, offset):
self.date = datetime(2011, 1, 1)
self.dt64 = np.datetime64("2011-01-01 09:00Z")
def time_apply(self, offset):
offset.apply(self.date)
Reported by Pylint.
Line: 72
Column: 9
def setup(self, offset):
self.date = datetime(2011, 1, 1)
self.dt64 = np.datetime64("2011-01-01 09:00Z")
def time_apply(self, offset):
offset.apply(self.date)
def time_apply_np_dt64(self, offset):
Reported by Pylint.
Line: 81
Column: 9
offset.apply(self.dt64)
def time_add(self, offset):
self.date + offset
def time_add_10(self, offset):
self.date + (10 * offset)
def time_subtract(self, offset):
Reported by Pylint.
Line: 84
Column: 9
self.date + offset
def time_add_10(self, offset):
self.date + (10 * offset)
def time_subtract(self, offset):
self.date - offset
def time_subtract_10(self, offset):
Reported by Pylint.
Line: 87
Column: 9
self.date + (10 * offset)
def time_subtract(self, offset):
self.date - offset
def time_subtract_10(self, offset):
self.date - (10 * offset)
Reported by Pylint.
Line: 90
Column: 9
self.date - offset
def time_subtract_10(self, offset):
self.date - (10 * offset)
Reported by Pylint.
pandas/tests/frame/methods/test_convert.py
21 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 15
Column: 21
def test_convert_objects(self, float_string_frame):
oops = float_string_frame.T.T
converted = oops._convert(datetime=True)
tm.assert_frame_equal(converted, float_string_frame)
assert converted["A"].dtype == np.float64
# force numeric conversion
float_string_frame["H"] = "1."
Reported by Pylint.
Line: 28
Column: 21
float_string_frame["J"] = "1."
float_string_frame["K"] = "1"
float_string_frame.loc[float_string_frame.index[0:5], ["J", "K"]] = "garbled"
converted = float_string_frame._convert(datetime=True, numeric=True)
assert converted["H"].dtype == "float64"
assert converted["I"].dtype == "int64"
assert converted["J"].dtype == "float64"
assert converted["K"].dtype == "float64"
assert len(converted["J"].dropna()) == length - 5
Reported by Pylint.
Line: 50
Column: 18
# mixed in a single column
df = DataFrame({"s": Series([1, "na", 3, 4])})
result = df._convert(datetime=True, numeric=True)
expected = DataFrame({"s": Series([1, np.nan, 3, 4])})
tm.assert_frame_equal(result, expected)
def test_convert_objects_no_conversion(self):
mixed1 = DataFrame({"a": [1, 2, 3], "b": [4.0, 5, 6], "c": ["x", "y", "z"]})
Reported by Pylint.
Line: 56
Column: 18
def test_convert_objects_no_conversion(self):
mixed1 = DataFrame({"a": [1, 2, 3], "b": [4.0, 5, 6], "c": ["x", "y", "z"]})
mixed2 = mixed1._convert(datetime=True)
tm.assert_frame_equal(mixed1, mixed2)
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 11
Column: 1
import pandas._testing as tm
class TestConvert:
def test_convert_objects(self, float_string_frame):
oops = float_string_frame.T.T
converted = oops._convert(datetime=True)
tm.assert_frame_equal(converted, float_string_frame)
Reported by Pylint.
Line: 12
Column: 5
class TestConvert:
def test_convert_objects(self, float_string_frame):
oops = float_string_frame.T.T
converted = oops._convert(datetime=True)
tm.assert_frame_equal(converted, float_string_frame)
assert converted["A"].dtype == np.float64
Reported by Pylint.
Line: 12
Column: 5
class TestConvert:
def test_convert_objects(self, float_string_frame):
oops = float_string_frame.T.T
converted = oops._convert(datetime=True)
tm.assert_frame_equal(converted, float_string_frame)
assert converted["A"].dtype == np.float64
Reported by Pylint.
Line: 17
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
oops = float_string_frame.T.T
converted = oops._convert(datetime=True)
tm.assert_frame_equal(converted, float_string_frame)
assert converted["A"].dtype == np.float64
# force numeric conversion
float_string_frame["H"] = "1."
float_string_frame["I"] = "1"
Reported by Bandit.
pandas/tests/frame/methods/test_dot.py
21 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 11
Column: 1
import pandas._testing as tm
class DotSharedTests:
@pytest.fixture
def obj(self):
raise NotImplementedError
@pytest.fixture
Reported by Pylint.
Line: 13
Column: 5
class DotSharedTests:
@pytest.fixture
def obj(self):
raise NotImplementedError
@pytest.fixture
def other(self) -> DataFrame:
"""
Reported by Pylint.
Line: 37
Column: 5
"""
raise NotImplementedError
def test_dot_equiv_values_dot(self, obj, other, expected):
# `expected` is constructed from obj.values.dot(other.values)
result = obj.dot(other)
tm.assert_equal(result, expected)
def test_dot_2d_ndarray(self, obj, other, expected):
Reported by Pylint.
Line: 37
Column: 5
"""
raise NotImplementedError
def test_dot_equiv_values_dot(self, obj, other, expected):
# `expected` is constructed from obj.values.dot(other.values)
result = obj.dot(other)
tm.assert_equal(result, expected)
def test_dot_2d_ndarray(self, obj, other, expected):
Reported by Pylint.
Line: 42
Column: 5
result = obj.dot(other)
tm.assert_equal(result, expected)
def test_dot_2d_ndarray(self, obj, other, expected):
# Check ndarray argument; in this case we get matching values,
# but index/columns may not match
result = obj.dot(other.values)
assert np.all(result == expected.values)
Reported by Pylint.
Line: 42
Column: 5
result = obj.dot(other)
tm.assert_equal(result, expected)
def test_dot_2d_ndarray(self, obj, other, expected):
# Check ndarray argument; in this case we get matching values,
# but index/columns may not match
result = obj.dot(other.values)
assert np.all(result == expected.values)
Reported by Pylint.
Line: 46
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# Check ndarray argument; in this case we get matching values,
# but index/columns may not match
result = obj.dot(other.values)
assert np.all(result == expected.values)
def test_dot_1d_ndarray(self, obj, expected):
# can pass correct-length array
row = obj.iloc[0] if obj.ndim == 2 else obj
Reported by Bandit.
Line: 48
Column: 5
result = obj.dot(other.values)
assert np.all(result == expected.values)
def test_dot_1d_ndarray(self, obj, expected):
# can pass correct-length array
row = obj.iloc[0] if obj.ndim == 2 else obj
result = obj.dot(row.values)
expected = obj.dot(row)
Reported by Pylint.
pandas/tests/indexes/categorical/test_astype.py
21 issues
Line: 4
Column: 1
from datetime import date
import numpy as np
import pytest
from pandas import (
Categorical,
CategoricalDtype,
CategoricalIndex,
Reported by Pylint.
Line: 81
Column: 16
v = date.today()
obj = Index([v, v])
assert obj.dtype == object
cat = obj.astype("category")
rtrip = cat.astype(object)
assert rtrip.dtype == object
Reported by Pylint.
Line: 1
Column: 1
from datetime import date
import numpy as np
import pytest
from pandas import (
Categorical,
CategoricalDtype,
CategoricalIndex,
Reported by Pylint.
Line: 16
Column: 1
import pandas._testing as tm
class TestAstype:
def test_astype(self):
ci = CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False)
result = ci.astype(object)
tm.assert_index_equal(result, Index(np.array(ci)))
Reported by Pylint.
Line: 17
Column: 5
class TestAstype:
def test_astype(self):
ci = CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False)
result = ci.astype(object)
tm.assert_index_equal(result, Index(np.array(ci)))
Reported by Pylint.
Line: 17
Column: 5
class TestAstype:
def test_astype(self):
ci = CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False)
result = ci.astype(object)
tm.assert_index_equal(result, Index(np.array(ci)))
Reported by Pylint.
Line: 18
Column: 9
class TestAstype:
def test_astype(self):
ci = CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False)
result = ci.astype(object)
tm.assert_index_equal(result, Index(np.array(ci)))
# this IS equal, but not the same class
Reported by Pylint.
Line: 24
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
tm.assert_index_equal(result, Index(np.array(ci)))
# this IS equal, but not the same class
assert result.equals(ci)
assert isinstance(result, Index)
assert not isinstance(result, CategoricalIndex)
# interval
ii = IntervalIndex.from_arrays(left=[-0.001, 2.0], right=[2, 4], closed="right")
Reported by Bandit.
Line: 25
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# this IS equal, but not the same class
assert result.equals(ci)
assert isinstance(result, Index)
assert not isinstance(result, CategoricalIndex)
# interval
ii = IntervalIndex.from_arrays(left=[-0.001, 2.0], right=[2, 4], closed="right")
Reported by Bandit.
Line: 26
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# this IS equal, but not the same class
assert result.equals(ci)
assert isinstance(result, Index)
assert not isinstance(result, CategoricalIndex)
# interval
ii = IntervalIndex.from_arrays(left=[-0.001, 2.0], right=[2, 4], closed="right")
ci = CategoricalIndex(
Reported by Bandit.
pandas/tests/frame/methods/test_set_axis.py
21 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 11
Column: 1
import pandas._testing as tm
class SharedSetAxisTests:
@pytest.fixture
def obj(self):
raise NotImplementedError("Implemented by subclasses")
def test_set_axis(self, obj):
Reported by Pylint.
Line: 13
Column: 5
class SharedSetAxisTests:
@pytest.fixture
def obj(self):
raise NotImplementedError("Implemented by subclasses")
def test_set_axis(self, obj):
# GH14636; this tests setting index for both Series and DataFrame
new_index = list("abcd")[: len(obj)]
Reported by Pylint.
Line: 16
Column: 5
def obj(self):
raise NotImplementedError("Implemented by subclasses")
def test_set_axis(self, obj):
# GH14636; this tests setting index for both Series and DataFrame
new_index = list("abcd")[: len(obj)]
expected = obj.copy()
expected.index = new_index
Reported by Pylint.
Line: 16
Column: 5
def obj(self):
raise NotImplementedError("Implemented by subclasses")
def test_set_axis(self, obj):
# GH14636; this tests setting index for both Series and DataFrame
new_index = list("abcd")[: len(obj)]
expected = obj.copy()
expected.index = new_index
Reported by Pylint.
Line: 28
Column: 5
tm.assert_equal(expected, result)
@pytest.mark.parametrize("axis", [0, "index", 1, "columns"])
def test_set_axis_inplace_axis(self, axis, obj):
# GH#14636
if obj.ndim == 1 and axis in [1, "columns"]:
# Series only has [0, "index"]
return
Reported by Pylint.
Line: 28
Column: 5
tm.assert_equal(expected, result)
@pytest.mark.parametrize("axis", [0, "index", 1, "columns"])
def test_set_axis_inplace_axis(self, axis, obj):
# GH#14636
if obj.ndim == 1 and axis in [1, "columns"]:
# Series only has [0, "index"]
return
Reported by Pylint.
Line: 46
Column: 5
result.set_axis(new_index, axis=axis, inplace=True)
tm.assert_equal(result, expected)
def test_set_axis_unnamed_kwarg_warns(self, obj):
# omitting the "axis" parameter
new_index = list("abcd")[: len(obj)]
expected = obj.copy()
expected.index = new_index
Reported by Pylint.
Line: 46
Column: 5
result.set_axis(new_index, axis=axis, inplace=True)
tm.assert_equal(result, expected)
def test_set_axis_unnamed_kwarg_warns(self, obj):
# omitting the "axis" parameter
new_index = list("abcd")[: len(obj)]
expected = obj.copy()
expected.index = new_index
Reported by Pylint.
pandas/tests/extension/base/printing.py
21 issues
Line: 3
Column: 1
import io
import pytest
import pandas as pd
from pandas.tests.extension.base.base import BaseExtensionTests
class BasePrintingTests(BaseExtensionTests):
Reported by Pylint.
Line: 17
Column: 20
if size == "small":
data = data[:5]
else:
data = type(data)._concat_same_type([data] * 5)
result = repr(data)
assert type(data).__name__ in result
assert f"Length: {len(data)}" in result
assert str(data.dtype) in result
Reported by Pylint.
Line: 1
Column: 1
import io
import pytest
import pandas as pd
from pandas.tests.extension.base.base import BaseExtensionTests
class BasePrintingTests(BaseExtensionTests):
Reported by Pylint.
Line: 13
Column: 5
"""Tests checking the formatting of your EA when printed."""
@pytest.mark.parametrize("size", ["big", "small"])
def test_array_repr(self, data, size):
if size == "small":
data = data[:5]
else:
data = type(data)._concat_same_type([data] * 5)
Reported by Pylint.
Line: 13
Column: 5
"""Tests checking the formatting of your EA when printed."""
@pytest.mark.parametrize("size", ["big", "small"])
def test_array_repr(self, data, size):
if size == "small":
data = data[:5]
else:
data = type(data)._concat_same_type([data] * 5)
Reported by Pylint.
Line: 20
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
data = type(data)._concat_same_type([data] * 5)
result = repr(data)
assert type(data).__name__ in result
assert f"Length: {len(data)}" in result
assert str(data.dtype) in result
if size == "big":
assert "..." in result
Reported by Bandit.
Line: 21
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = repr(data)
assert type(data).__name__ in result
assert f"Length: {len(data)}" in result
assert str(data.dtype) in result
if size == "big":
assert "..." in result
def test_array_repr_unicode(self, data):
Reported by Bandit.
Line: 22
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = repr(data)
assert type(data).__name__ in result
assert f"Length: {len(data)}" in result
assert str(data.dtype) in result
if size == "big":
assert "..." in result
def test_array_repr_unicode(self, data):
result = str(data)
Reported by Bandit.
Line: 24
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
assert f"Length: {len(data)}" in result
assert str(data.dtype) in result
if size == "big":
assert "..." in result
def test_array_repr_unicode(self, data):
result = str(data)
assert isinstance(result, str)
Reported by Bandit.
Line: 26
Column: 5
if size == "big":
assert "..." in result
def test_array_repr_unicode(self, data):
result = str(data)
assert isinstance(result, str)
def test_series_repr(self, data):
ser = pd.Series(data)
Reported by Pylint.