The following issues were found
pandas/tests/indexing/multiindex/test_indexing_slow.py
20 issues
Line: 8
Column: 1
import warnings
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
Reported by Pylint.
Line: 47
Column: 18
b = df.drop_duplicates(subset=cols[:-1])
def validate(mi, df, key):
# check indexing into a multi-index before & past the lexsort depth
mask = np.ones(len(df)).astype("bool")
# test for all partials of this key
Reported by Pylint.
Line: 91
Column: 13
with warnings.catch_warnings(record=True):
if lexsort_depth == 0:
df = frame.copy()
else:
df = frame.sort_values(by=cols[:lexsort_depth])
mi = df.set_index(cols[:-1])
assert not mi.index._lexsort_depth < lexsort_depth
Reported by Pylint.
Line: 96
Column: 20
df = frame.sort_values(by=cols[:lexsort_depth])
mi = df.set_index(cols[:-1])
assert not mi.index._lexsort_depth < lexsort_depth
validate(mi, df, key)
Reported by Pylint.
Line: 1
Column: 1
from typing import (
Any,
List,
)
import warnings
import numpy as np
import pytest
Reported by Pylint.
Line: 17
Column: 1
)
import pandas._testing as tm
m = 50
n = 1000
cols = ["jim", "joe", "jolie", "joline", "jolia"]
vals: List[Any] = [
np.random.randint(0, 10, n),
Reported by Pylint.
Line: 18
Column: 1
import pandas._testing as tm
m = 50
n = 1000
cols = ["jim", "joe", "jolie", "joline", "jolia"]
vals: List[Any] = [
np.random.randint(0, 10, n),
np.random.choice(list("abcdefghij"), n),
Reported by Pylint.
Line: 47
Column: 1
b = df.drop_duplicates(subset=cols[:-1])
def validate(mi, df, key):
# check indexing into a multi-index before & past the lexsort depth
mask = np.ones(len(df)).astype("bool")
# test for all partials of this key
Reported by Pylint.
Line: 47
Column: 1
b = df.drop_duplicates(subset=cols[:-1])
def validate(mi, df, key):
# check indexing into a multi-index before & past the lexsort depth
mask = np.ones(len(df)).astype("bool")
# test for all partials of this key
Reported by Pylint.
Line: 47
Column: 1
b = df.drop_duplicates(subset=cols[:-1])
def validate(mi, df, key):
# check indexing into a multi-index before & past the lexsort depth
mask = np.ones(len(df)).astype("bool")
# test for all partials of this key
Reported by Pylint.
pandas/tests/series/test_reductions.py
20 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
MultiIndex,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
MultiIndex,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 12
Column: 1
import pandas._testing as tm
def test_reductions_td64_with_nat():
# GH#8617
ser = Series([0, pd.NaT], dtype="m8[ns]")
exp = ser[0]
assert ser.median() == exp
assert ser.min() == exp
Reported by Pylint.
Line: 16
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# GH#8617
ser = Series([0, pd.NaT], dtype="m8[ns]")
exp = ser[0]
assert ser.median() == exp
assert ser.min() == exp
assert ser.max() == exp
@pytest.mark.parametrize("skipna", [True, False])
Reported by Bandit.
Line: 17
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
ser = Series([0, pd.NaT], dtype="m8[ns]")
exp = ser[0]
assert ser.median() == exp
assert ser.min() == exp
assert ser.max() == exp
@pytest.mark.parametrize("skipna", [True, False])
def test_td64_sum_empty(skipna):
Reported by Bandit.
Line: 18
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
exp = ser[0]
assert ser.median() == exp
assert ser.min() == exp
assert ser.max() == exp
@pytest.mark.parametrize("skipna", [True, False])
def test_td64_sum_empty(skipna):
# GH#37151
Reported by Bandit.
Line: 22
Column: 1
@pytest.mark.parametrize("skipna", [True, False])
def test_td64_sum_empty(skipna):
# GH#37151
ser = Series([], dtype="timedelta64[ns]")
result = ser.sum(skipna=skipna)
assert isinstance(result, pd.Timedelta)
Reported by Pylint.
Line: 27
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
ser = Series([], dtype="timedelta64[ns]")
result = ser.sum(skipna=skipna)
assert isinstance(result, pd.Timedelta)
assert result == pd.Timedelta(0)
def test_td64_summation_overflow():
# GH#9442
Reported by Bandit.
Line: 28
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = ser.sum(skipna=skipna)
assert isinstance(result, pd.Timedelta)
assert result == pd.Timedelta(0)
def test_td64_summation_overflow():
# GH#9442
ser = Series(pd.date_range("20130101", periods=100000, freq="H"))
Reported by Bandit.
Line: 31
Column: 1
assert result == pd.Timedelta(0)
def test_td64_summation_overflow():
# GH#9442
ser = Series(pd.date_range("20130101", periods=100000, freq="H"))
ser[0] += pd.Timedelta("1s 1ms")
# mean
Reported by Pylint.
pandas/tests/reshape/merge/test_merge_index_as_string.py
20 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import DataFrame
import pandas._testing as tm
@pytest.fixture
def df1():
Reported by Pylint.
Line: 31
Column: 22
@pytest.fixture(params=[[], ["outer"], ["outer", "inner"]])
def left_df(request, df1):
"""Construct left test DataFrame with specified levels
(any of 'outer', 'inner', and 'v1')
"""
levels = request.param
if levels:
Reported by Pylint.
Line: 43
Column: 23
@pytest.fixture(params=[[], ["outer"], ["outer", "inner"]])
def right_df(request, df2):
"""Construct right test DataFrame with specified levels
(any of 'outer', 'inner', and 'v2')
"""
levels = request.param
Reported by Pylint.
Line: 133
Column: 39
(["inner", "outer"], "outer"),
],
)
def test_merge_indexes_and_columns_on(left_df, right_df, on, how):
# Construct expected result
expected = compute_expected(left_df, right_df, on=on, how=how)
# Perform merge
Reported by Pylint.
Line: 133
Column: 48
(["inner", "outer"], "outer"),
],
)
def test_merge_indexes_and_columns_on(left_df, right_df, on, how):
# Construct expected result
expected = compute_expected(left_df, right_df, on=on, how=how)
# Perform merge
Reported by Pylint.
Line: 153
Column: 5
],
)
def test_merge_indexes_and_columns_lefton_righton(
left_df, right_df, left_on, right_on, how
):
# Construct expected result
expected = compute_expected(
left_df, right_df, left_on=left_on, right_on=right_on, how=how
Reported by Pylint.
Line: 153
Column: 14
],
)
def test_merge_indexes_and_columns_lefton_righton(
left_df, right_df, left_on, right_on, how
):
# Construct expected result
expected = compute_expected(
left_df, right_df, left_on=left_on, right_on=right_on, how=how
Reported by Pylint.
Line: 167
Column: 43
@pytest.mark.parametrize("left_index", ["inner", ["inner", "outer"]])
def test_join_indexes_and_columns_on(df1, df2, left_index, join_type):
# Construct left_df
left_df = df1.set_index(left_index)
# Construct right_df
Reported by Pylint.
Line: 167
Column: 38
@pytest.mark.parametrize("left_index", ["inner", ["inner", "outer"]])
def test_join_indexes_and_columns_on(df1, df2, left_index, join_type):
# Construct left_df
left_df = df1.set_index(left_index)
# Construct right_df
Reported by Pylint.
Line: 170
Column: 5
def test_join_indexes_and_columns_on(df1, df2, left_index, join_type):
# Construct left_df
left_df = df1.set_index(left_index)
# Construct right_df
right_df = df2.set_index(["outer", "inner"])
# Result
Reported by Pylint.
pandas/tests/io/pytables/test_categorical.py
20 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
Categorical,
DataFrame,
Series,
_testing as tm,
concat,
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
Categorical,
DataFrame,
Series,
_testing as tm,
concat,
Reported by Pylint.
Line: 27
Column: 1
]
def test_categorical(setup_path):
with ensure_clean_store(setup_path) as store:
# Basic
_maybe_remove(store, "s")
Reported by Pylint.
Line: 27
Column: 1
]
def test_categorical(setup_path):
with ensure_clean_store(setup_path) as store:
# Basic
_maybe_remove(store, "s")
Reported by Pylint.
Line: 33
Column: 9
# Basic
_maybe_remove(store, "s")
s = Series(
Categorical(
["a", "b", "b", "a", "a", "c"],
categories=["a", "b", "c", "d"],
ordered=False,
)
Reported by Pylint.
Line: 45
Column: 9
tm.assert_series_equal(s, result)
_maybe_remove(store, "s_ordered")
s = Series(
Categorical(
["a", "b", "b", "a", "a", "c"],
categories=["a", "b", "c", "d"],
ordered=True,
)
Reported by Pylint.
Line: 57
Column: 9
tm.assert_series_equal(s, result)
_maybe_remove(store, "df")
df = DataFrame({"s": s, "vals": [1, 2, 3, 4, 5, 6]})
store.append("df", df, format="table")
result = store.select("df")
tm.assert_frame_equal(result, df)
# Dtypes
Reported by Pylint.
Line: 64
Column: 9
# Dtypes
_maybe_remove(store, "si")
s = Series([1, 1, 2, 2, 3, 4, 5]).astype("category")
store.append("si", s)
result = store.select("si")
tm.assert_series_equal(result, s)
_maybe_remove(store, "si2")
Reported by Pylint.
Line: 70
Column: 9
tm.assert_series_equal(result, s)
_maybe_remove(store, "si2")
s = Series([1, 1, np.nan, 2, 3, 4, 5]).astype("category")
store.append("si2", s)
result = store.select("si2")
tm.assert_series_equal(result, s)
# Multiple
Reported by Pylint.
Line: 85
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# Make sure the metadata is OK
info = store.info()
assert "/df2 " in info
# assert '/df2/meta/values_block_0/meta' in info
assert "/df2/meta/values_block_1/meta" in info
# unordered
_maybe_remove(store, "s2")
Reported by Bandit.
pandas/tests/io/excel/test_xlsxwriter.py
20 issues
Line: 4
Column: 1
import re
import warnings
import pytest
from pandas import DataFrame
import pandas._testing as tm
from pandas.io.excel import ExcelWriter
Reported by Pylint.
Line: 27
Column: 14
with tm.ensure_clean(ext) as path:
frame = DataFrame({"A": [123456, 123456], "B": [123456, 123456]})
with ExcelWriter(path) as writer:
frame.to_excel(writer)
# Add a number format to col B and ensure it is applied to cells.
num_format = "#,##0"
write_workbook = writer.book
Reported by Pylint.
Line: 32
Column: 30
# Add a number format to col B and ensure it is applied to cells.
num_format = "#,##0"
write_workbook = writer.book
write_worksheet = write_workbook.worksheets()[0]
col_format = write_workbook.add_format({"num_format": num_format})
write_worksheet.set_column("B:B", None, col_format)
read_workbook = openpyxl.load_workbook(path)
Reported by Pylint.
Line: 64
Column: 13
with tm.ensure_clean(ext) as f:
with pytest.raises(ValueError, match=msg):
ExcelWriter(f, engine="xlsxwriter", mode="a")
@pytest.mark.parametrize("nan_inf_to_errors", [True, False])
def test_kwargs(ext, nan_inf_to_errors):
# GH 42286
Reported by Pylint.
Line: 74
Column: 18
with tm.ensure_clean(ext) as f:
msg = re.escape("Use of **kwargs is deprecated")
with tm.assert_produces_warning(FutureWarning, match=msg):
with ExcelWriter(f, engine="xlsxwriter", **kwargs) as writer:
assert writer.book.nan_inf_to_errors == nan_inf_to_errors
@pytest.mark.parametrize("nan_inf_to_errors", [True, False])
def test_engine_kwargs(ext, nan_inf_to_errors):
Reported by Pylint.
Line: 75
Column: 24
msg = re.escape("Use of **kwargs is deprecated")
with tm.assert_produces_warning(FutureWarning, match=msg):
with ExcelWriter(f, engine="xlsxwriter", **kwargs) as writer:
assert writer.book.nan_inf_to_errors == nan_inf_to_errors
@pytest.mark.parametrize("nan_inf_to_errors", [True, False])
def test_engine_kwargs(ext, nan_inf_to_errors):
# GH 42286
Reported by Pylint.
Line: 83
Column: 14
# GH 42286
engine_kwargs = {"options": {"nan_inf_to_errors": nan_inf_to_errors}}
with tm.ensure_clean(ext) as f:
with ExcelWriter(f, engine="xlsxwriter", engine_kwargs=engine_kwargs) as writer:
assert writer.book.nan_inf_to_errors == nan_inf_to_errors
Reported by Pylint.
Line: 84
Column: 20
engine_kwargs = {"options": {"nan_inf_to_errors": nan_inf_to_errors}}
with tm.ensure_clean(ext) as f:
with ExcelWriter(f, engine="xlsxwriter", engine_kwargs=engine_kwargs) as writer:
assert writer.book.nan_inf_to_errors == nan_inf_to_errors
Reported by Pylint.
Line: 54
Column: 31
try:
read_num_format = cell.number_format
except AttributeError:
read_num_format = cell.style.number_format._format_code
assert read_num_format == num_format
def test_write_append_mode_raises(ext):
Reported by Pylint.
Line: 1
Column: 1
import re
import warnings
import pytest
from pandas import DataFrame
import pandas._testing as tm
from pandas.io.excel import ExcelWriter
Reported by Pylint.
pandas/tests/scalar/interval/test_ops.py
20 issues
Line: 2
Column: 1
"""Tests for Interval-Interval operations, such as overlaps, contains, etc."""
import pytest
from pandas import (
Interval,
Timedelta,
Timestamp,
)
Reported by Pylint.
Line: 28
Column: 34
class TestOverlaps:
def test_overlaps_self(self, start_shift, closed):
start, shift = start_shift
interval = Interval(start, start + shift, closed)
assert interval.overlaps(interval)
def test_overlaps_nested(self, start_shift, closed, other_closed):
Reported by Pylint.
Line: 33
Column: 36
interval = Interval(start, start + shift, closed)
assert interval.overlaps(interval)
def test_overlaps_nested(self, start_shift, closed, other_closed):
start, shift = start_shift
interval1 = Interval(start, start + 3 * shift, other_closed)
interval2 = Interval(start + shift, start + 2 * shift, closed)
# nested intervals should always overlap
Reported by Pylint.
Line: 41
Column: 38
# nested intervals should always overlap
assert interval1.overlaps(interval2)
def test_overlaps_disjoint(self, start_shift, closed, other_closed):
start, shift = start_shift
interval1 = Interval(start, start + shift, other_closed)
interval2 = Interval(start + 2 * shift, start + 3 * shift, closed)
# disjoint intervals should never overlap
Reported by Pylint.
Line: 49
Column: 38
# disjoint intervals should never overlap
assert not interval1.overlaps(interval2)
def test_overlaps_endpoint(self, start_shift, closed, other_closed):
start, shift = start_shift
interval1 = Interval(start, start + shift, other_closed)
interval2 = Interval(start + shift, start + 2 * shift, closed)
# overlap if shared endpoint is closed for both (overlap at a point)
Reported by Pylint.
Line: 27
Column: 1
return request.param
class TestOverlaps:
def test_overlaps_self(self, start_shift, closed):
start, shift = start_shift
interval = Interval(start, start + shift, closed)
assert interval.overlaps(interval)
Reported by Pylint.
Line: 28
Column: 5
class TestOverlaps:
def test_overlaps_self(self, start_shift, closed):
start, shift = start_shift
interval = Interval(start, start + shift, closed)
assert interval.overlaps(interval)
def test_overlaps_nested(self, start_shift, closed, other_closed):
Reported by Pylint.
Line: 28
Column: 5
class TestOverlaps:
def test_overlaps_self(self, start_shift, closed):
start, shift = start_shift
interval = Interval(start, start + shift, closed)
assert interval.overlaps(interval)
def test_overlaps_nested(self, start_shift, closed, other_closed):
Reported by Pylint.
Line: 31
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
def test_overlaps_self(self, start_shift, closed):
start, shift = start_shift
interval = Interval(start, start + shift, closed)
assert interval.overlaps(interval)
def test_overlaps_nested(self, start_shift, closed, other_closed):
start, shift = start_shift
interval1 = Interval(start, start + 3 * shift, other_closed)
interval2 = Interval(start + shift, start + 2 * shift, closed)
Reported by Bandit.
Line: 33
Column: 5
interval = Interval(start, start + shift, closed)
assert interval.overlaps(interval)
def test_overlaps_nested(self, start_shift, closed, other_closed):
start, shift = start_shift
interval1 = Interval(start, start + 3 * shift, other_closed)
interval2 = Interval(start + shift, start + 2 * shift, closed)
# nested intervals should always overlap
Reported by Pylint.
pandas/tests/extension/test_common.py
20 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas.core.dtypes import dtypes
from pandas.core.dtypes.common import is_extension_array_dtype
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import ExtensionArray
Reported by Pylint.
Line: 16
Column: 1
pass
class DummyArray(ExtensionArray):
def __init__(self, data):
self.data = data
def __array__(self, dtype):
return self.data
Reported by Pylint.
Line: 20
Column: 25
def __init__(self, data):
self.data = data
def __array__(self, dtype):
return self.data
@property
def dtype(self):
return DummyDtype()
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas.core.dtypes import dtypes
from pandas.core.dtypes.common import is_extension_array_dtype
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import ExtensionArray
Reported by Pylint.
Line: 12
Column: 1
from pandas.core.arrays import ExtensionArray
class DummyDtype(dtypes.ExtensionDtype):
pass
class DummyArray(ExtensionArray):
def __init__(self, data):
Reported by Pylint.
Line: 16
Column: 1
pass
class DummyArray(ExtensionArray):
def __init__(self, data):
self.data = data
def __array__(self, dtype):
return self.data
Reported by Pylint.
Line: 37
Column: 1
return np.array(self, dtype=dtype, copy=copy)
class TestExtensionArrayDtype:
@pytest.mark.parametrize(
"values",
[
pd.Categorical([]),
pd.Categorical([]).dtype,
Reported by Pylint.
Line: 46
Column: 5
pd.Series(pd.Categorical([])),
DummyDtype(),
DummyArray(np.array([1, 2])),
],
)
def test_is_extension_array_dtype(self, values):
assert is_extension_array_dtype(values)
@pytest.mark.parametrize("values", [np.array([]), pd.Series(np.array([]))])
Reported by Pylint.
Line: 46
Column: 5
pd.Series(pd.Categorical([])),
DummyDtype(),
DummyArray(np.array([1, 2])),
],
)
def test_is_extension_array_dtype(self, values):
assert is_extension_array_dtype(values)
@pytest.mark.parametrize("values", [np.array([]), pd.Series(np.array([]))])
Reported by Pylint.
Line: 49
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
],
)
def test_is_extension_array_dtype(self, values):
assert is_extension_array_dtype(values)
@pytest.mark.parametrize("values", [np.array([]), pd.Series(np.array([]))])
def test_is_not_extension_array_dtype(self, values):
assert not is_extension_array_dtype(values)
Reported by Bandit.
pandas/tests/frame/indexing/test_lookup.py
20 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 11
Column: 1
import pandas._testing as tm
class TestLookup:
def test_lookup_float(self, float_frame):
df = float_frame
rows = list(df.index) * len(df.columns)
cols = list(df.columns) * len(df.index)
with tm.assert_produces_warning(FutureWarning):
Reported by Pylint.
Line: 12
Column: 5
class TestLookup:
def test_lookup_float(self, float_frame):
df = float_frame
rows = list(df.index) * len(df.columns)
cols = list(df.columns) * len(df.index)
with tm.assert_produces_warning(FutureWarning):
result = df.lookup(rows, cols)
Reported by Pylint.
Line: 12
Column: 5
class TestLookup:
def test_lookup_float(self, float_frame):
df = float_frame
rows = list(df.index) * len(df.columns)
cols = list(df.columns) * len(df.index)
with tm.assert_produces_warning(FutureWarning):
result = df.lookup(rows, cols)
Reported by Pylint.
Line: 13
Column: 9
class TestLookup:
def test_lookup_float(self, float_frame):
df = float_frame
rows = list(df.index) * len(df.columns)
cols = list(df.columns) * len(df.index)
with tm.assert_produces_warning(FutureWarning):
result = df.lookup(rows, cols)
Reported by Pylint.
Line: 22
Column: 5
expected = np.array([df.loc[r, c] for r, c in zip(rows, cols)])
tm.assert_numpy_array_equal(result, expected)
def test_lookup_mixed(self, float_string_frame):
df = float_string_frame
rows = list(df.index) * len(df.columns)
cols = list(df.columns) * len(df.index)
with tm.assert_produces_warning(FutureWarning):
result = df.lookup(rows, cols)
Reported by Pylint.
Line: 22
Column: 5
expected = np.array([df.loc[r, c] for r, c in zip(rows, cols)])
tm.assert_numpy_array_equal(result, expected)
def test_lookup_mixed(self, float_string_frame):
df = float_string_frame
rows = list(df.index) * len(df.columns)
cols = list(df.columns) * len(df.index)
with tm.assert_produces_warning(FutureWarning):
result = df.lookup(rows, cols)
Reported by Pylint.
Line: 23
Column: 9
tm.assert_numpy_array_equal(result, expected)
def test_lookup_mixed(self, float_string_frame):
df = float_string_frame
rows = list(df.index) * len(df.columns)
cols = list(df.columns) * len(df.index)
with tm.assert_produces_warning(FutureWarning):
result = df.lookup(rows, cols)
Reported by Pylint.
Line: 34
Column: 5
)
tm.assert_almost_equal(result, expected)
def test_lookup_bool(self):
df = DataFrame(
{
"label": ["a", "b", "a", "c"],
"mask_a": [True, True, False, True],
"mask_b": [True, False, False, False],
Reported by Pylint.
pandas/tests/frame/methods/test_to_period.py
20 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
DatetimeIndex,
PeriodIndex,
Series,
date_range,
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
DataFrame,
DatetimeIndex,
PeriodIndex,
Series,
date_range,
Reported by Pylint.
Line: 15
Column: 1
import pandas._testing as tm
class TestToPeriod:
def test_to_period(self, frame_or_series):
K = 5
dr = date_range("1/1/2000", "1/1/2001", freq="D")
obj = DataFrame(
Reported by Pylint.
Line: 16
Column: 5
class TestToPeriod:
def test_to_period(self, frame_or_series):
K = 5
dr = date_range("1/1/2000", "1/1/2001", freq="D")
obj = DataFrame(
np.random.randn(len(dr), K), index=dr, columns=["A", "B", "C", "D", "E"]
Reported by Pylint.
Line: 16
Column: 5
class TestToPeriod:
def test_to_period(self, frame_or_series):
K = 5
dr = date_range("1/1/2000", "1/1/2001", freq="D")
obj = DataFrame(
np.random.randn(len(dr), K), index=dr, columns=["A", "B", "C", "D", "E"]
Reported by Pylint.
Line: 17
Column: 9
class TestToPeriod:
def test_to_period(self, frame_or_series):
K = 5
dr = date_range("1/1/2000", "1/1/2001", freq="D")
obj = DataFrame(
np.random.randn(len(dr), K), index=dr, columns=["A", "B", "C", "D", "E"]
)
Reported by Pylint.
Line: 19
Column: 9
def test_to_period(self, frame_or_series):
K = 5
dr = date_range("1/1/2000", "1/1/2001", freq="D")
obj = DataFrame(
np.random.randn(len(dr), K), index=dr, columns=["A", "B", "C", "D", "E"]
)
obj["mix"] = "a"
if frame_or_series is Series:
Reported by Pylint.
Line: 36
Column: 5
exp.index = exp.index.asfreq("M")
tm.assert_equal(pts, exp)
def test_to_period_without_freq(self, frame_or_series):
# GH#7606 without freq
idx = DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03", "2011-01-04"])
exp_idx = PeriodIndex(
["2011-01-01", "2011-01-02", "2011-01-03", "2011-01-04"], freq="D"
)
Reported by Pylint.
Line: 36
Column: 5
exp.index = exp.index.asfreq("M")
tm.assert_equal(pts, exp)
def test_to_period_without_freq(self, frame_or_series):
# GH#7606 without freq
idx = DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03", "2011-01-04"])
exp_idx = PeriodIndex(
["2011-01-01", "2011-01-02", "2011-01-03", "2011-01-04"], freq="D"
)
Reported by Pylint.
Line: 55
Column: 5
expected.columns = exp_idx
tm.assert_frame_equal(obj.to_period(axis=1), expected)
def test_to_period_columns(self):
dr = date_range("1/1/2000", "1/1/2001")
df = DataFrame(np.random.randn(len(dr), 5), index=dr)
df["mix"] = "a"
df = df.T
Reported by Pylint.
pandas/core/indexes/accessors.py
20 issues
Line: 77
Column: 5
f"cannot convert an object of type {type(data)} to a datetimelike index"
)
def _delegate_property_get(self, name):
from pandas import Series
values = self._get_values()
result = getattr(values, name)
Reported by Pylint.
Line: 101
Column: 9
result = Series(result, index=index, name=self.name).__finalize__(self._parent)
# setting this object will show a SettingWithCopyWarning/Error
result._is_copy = (
"modifications to a property of a datetimelike "
"object are not supported and are discarded. "
"Change values on the original."
)
Reported by Pylint.
Line: 131
Column: 9
)
# setting this object will show a SettingWithCopyWarning/Error
result._is_copy = (
"modifications to a method of a datetimelike "
"object are not supported and are discarded. "
"Change values on the original."
)
Reported by Pylint.
Line: 141
Column: 39
@delegate_names(
delegate=DatetimeArray, accessors=DatetimeArray._datetimelike_ops, typ="property"
)
@delegate_names(
delegate=DatetimeArray, accessors=DatetimeArray._datetimelike_methods, typ="method"
)
class DatetimeProperties(Properties):
Reported by Pylint.
Line: 144
Column: 39
delegate=DatetimeArray, accessors=DatetimeArray._datetimelike_ops, typ="property"
)
@delegate_names(
delegate=DatetimeArray, accessors=DatetimeArray._datetimelike_methods, typ="method"
)
class DatetimeProperties(Properties):
"""
Accessor object for datetimelike properties of the Series values.
Reported by Pylint.
Line: 301
Column: 40
@delegate_names(
delegate=TimedeltaArray, accessors=TimedeltaArray._datetimelike_ops, typ="property"
)
@delegate_names(
delegate=TimedeltaArray,
accessors=TimedeltaArray._datetimelike_methods,
typ="method",
Reported by Pylint.
Line: 305
Column: 15
)
@delegate_names(
delegate=TimedeltaArray,
accessors=TimedeltaArray._datetimelike_methods,
typ="method",
)
class TimedeltaProperties(Properties):
"""
Accessor object for datetimelike properties of the Series values.
Reported by Pylint.
Line: 408
Column: 37
@delegate_names(
delegate=PeriodArray, accessors=PeriodArray._datetimelike_ops, typ="property"
)
@delegate_names(
delegate=PeriodArray, accessors=PeriodArray._datetimelike_methods, typ="method"
)
class PeriodProperties(Properties):
Reported by Pylint.
Line: 411
Column: 37
delegate=PeriodArray, accessors=PeriodArray._datetimelike_ops, typ="property"
)
@delegate_names(
delegate=PeriodArray, accessors=PeriodArray._datetimelike_methods, typ="method"
)
class PeriodProperties(Properties):
"""
Accessor object for datetimelike properties of the Series values.
Reported by Pylint.
Line: 42
Column: 1
from pandas import Series
class Properties(PandasDelegate, PandasObject, NoNewAttributesMixin):
_hidden_attrs = PandasObject._hidden_attrs | {
"orig",
"name",
}
Reported by Pylint.