The following issues were found
pandas/tests/indexes/period/test_period_range.py
17 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
NaT,
Period,
PeriodIndex,
date_range,
period_range,
Reported by Pylint.
Line: 26
Column: 20
@pytest.mark.parametrize("freq", ["D", "W", "M", "Q", "A"])
def test_construction_from_string(self, freq):
# non-empty
expected = date_range(
start="2017-01-01", periods=5, freq=freq, name="foo"
).to_period()
start, end = str(expected[0]), str(expected[-1])
result = period_range(start=start, end=end, freq=freq, name="foo")
Reported by Pylint.
Line: 26
Column: 20
@pytest.mark.parametrize("freq", ["D", "W", "M", "Q", "A"])
def test_construction_from_string(self, freq):
# non-empty
expected = date_range(
start="2017-01-01", periods=5, freq=freq, name="foo"
).to_period()
start, end = str(expected[0]), str(expected[-1])
result = period_range(start=start, end=end, freq=freq, name="foo")
Reported by Pylint.
Line: 55
Column: 20
def test_construction_from_period(self):
# upsampling
start, end = Period("2017Q1", freq="Q"), Period("2018Q1", freq="Q")
expected = date_range(
start="2017-03-31", end="2018-03-31", freq="M", name="foo"
).to_period()
result = period_range(start=start, end=end, freq="M", name="foo")
tm.assert_index_equal(result, expected)
Reported by Pylint.
Line: 55
Column: 20
def test_construction_from_period(self):
# upsampling
start, end = Period("2017Q1", freq="Q"), Period("2018Q1", freq="Q")
expected = date_range(
start="2017-03-31", end="2018-03-31", freq="M", name="foo"
).to_period()
result = period_range(start=start, end=end, freq="M", name="foo")
tm.assert_index_equal(result, expected)
Reported by Pylint.
Line: 63
Column: 20
# downsampling
start, end = Period("2017-1", freq="M"), Period("2019-12", freq="M")
expected = date_range(
start="2017-01-31", end="2019-12-31", freq="Q", name="foo"
).to_period()
result = period_range(start=start, end=end, freq="Q", name="foo")
tm.assert_index_equal(result, expected)
Reported by Pylint.
Line: 63
Column: 20
# downsampling
start, end = Period("2017-1", freq="M"), Period("2019-12", freq="M")
expected = date_range(
start="2017-01-31", end="2019-12-31", freq="Q", name="foo"
).to_period()
result = period_range(start=start, end=end, freq="Q", name="foo")
tm.assert_index_equal(result, expected)
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
NaT,
Period,
PeriodIndex,
date_range,
period_range,
Reported by Pylint.
Line: 14
Column: 1
import pandas._testing as tm
class TestPeriodRange:
def test_required_arguments(self):
msg = (
"Of the three parameters: start, end, and periods, exactly two "
"must be specified"
)
Reported by Pylint.
Line: 15
Column: 5
class TestPeriodRange:
def test_required_arguments(self):
msg = (
"Of the three parameters: start, end, and periods, exactly two "
"must be specified"
)
with pytest.raises(ValueError, match=msg):
Reported by Pylint.
pandas/tests/tseries/frequencies/test_freq_code.py
17 issues
Line: 1
Column: 1
import pytest
from pandas._libs.tslibs import (
Period,
Resolution,
to_offset,
)
from pandas._libs.tslibs.dtypes import _attrname_to_abbrevs
Reported by Pylint.
Line: 8
Column: 1
Resolution,
to_offset,
)
from pandas._libs.tslibs.dtypes import _attrname_to_abbrevs
@pytest.mark.parametrize(
"freqstr,exp_freqstr",
[("D", "D"), ("W", "D"), ("M", "D"), ("S", "S"), ("T", "S"), ("H", "S")],
Reported by Pylint.
Line: 17
Column: 11
)
def test_get_to_timestamp_base(freqstr, exp_freqstr):
off = to_offset(freqstr)
per = Period._from_ordinal(1, off)
exp_code = to_offset(exp_freqstr)._period_dtype_code
result_code = per._get_to_timestamp_base()
assert result_code == exp_code
Reported by Pylint.
Line: 18
Column: 16
def test_get_to_timestamp_base(freqstr, exp_freqstr):
off = to_offset(freqstr)
per = Period._from_ordinal(1, off)
exp_code = to_offset(exp_freqstr)._period_dtype_code
result_code = per._get_to_timestamp_base()
assert result_code == exp_code
Reported by Pylint.
Line: 20
Column: 19
per = Period._from_ordinal(1, off)
exp_code = to_offset(exp_freqstr)._period_dtype_code
result_code = per._get_to_timestamp_base()
assert result_code == exp_code
@pytest.mark.parametrize(
"freqstr,expected",
Reported by Pylint.
Line: 65
Column: 12
# see gh-14378
off = to_offset(str(args[0]) + args[1])
assert off.n == expected[0]
assert off._prefix == expected[1]
@pytest.mark.parametrize(
"args",
[
Reported by Pylint.
Line: 1
Column: 1
import pytest
from pandas._libs.tslibs import (
Period,
Resolution,
to_offset,
)
from pandas._libs.tslibs.dtypes import _attrname_to_abbrevs
Reported by Pylint.
Line: 14
Column: 1
@pytest.mark.parametrize(
"freqstr,exp_freqstr",
[("D", "D"), ("W", "D"), ("M", "D"), ("S", "S"), ("T", "S"), ("H", "S")],
)
def test_get_to_timestamp_base(freqstr, exp_freqstr):
off = to_offset(freqstr)
per = Period._from_ordinal(1, off)
exp_code = to_offset(exp_freqstr)._period_dtype_code
Reported by Pylint.
Line: 21
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
exp_code = to_offset(exp_freqstr)._period_dtype_code
result_code = per._get_to_timestamp_base()
assert result_code == exp_code
@pytest.mark.parametrize(
"freqstr,expected",
[
Reported by Bandit.
Line: 37
Column: 1
("L", "millisecond"),
("U", "microsecond"),
("N", "nanosecond"),
],
)
def test_get_attrname_from_abbrev(freqstr, expected):
assert Resolution.get_reso_from_freq(freqstr).attrname == expected
Reported by Pylint.
pandas/tests/indexes/multi/test_join.py
17 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
Index,
MultiIndex,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
Index,
MultiIndex,
)
import pandas._testing as tm
Reported by Pylint.
Line: 13
Column: 1
@pytest.mark.parametrize(
"other", [Index(["three", "one", "two"]), Index(["one"]), Index(["one", "three"])]
)
def test_join_level(idx, other, join_type):
join_index, lidx, ridx = other.join(
idx, how=join_type, level="second", return_indexers=True
)
Reported by Pylint.
Line: 20
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
)
exp_level = other.join(idx.levels[1], how=join_type)
assert join_index.levels[0].equals(idx.levels[0])
assert join_index.levels[1].equals(exp_level)
# pare down levels
mask = np.array([x[1] in exp_level for x in idx], dtype=bool)
exp_values = idx.values[mask]
Reported by Bandit.
Line: 21
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
exp_level = other.join(idx.levels[1], how=join_type)
assert join_index.levels[0].equals(idx.levels[0])
assert join_index.levels[1].equals(exp_level)
# pare down levels
mask = np.array([x[1] in exp_level for x in idx], dtype=bool)
exp_values = idx.values[mask]
tm.assert_numpy_array_equal(join_index.values, exp_values)
Reported by Bandit.
Line: 33
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
other, how=join_type, level="second", return_indexers=True
)
assert join_index.equals(join_index2)
tm.assert_numpy_array_equal(lidx, lidx2)
tm.assert_numpy_array_equal(ridx, ridx2)
tm.assert_numpy_array_equal(join_index2.values, exp_values)
Reported by Bandit.
Line: 39
Column: 1
tm.assert_numpy_array_equal(join_index2.values, exp_values)
def test_join_level_corner_case(idx):
# some corner cases
index = Index(["three", "one", "two"])
result = index.join(idx, level="second")
assert isinstance(result, MultiIndex)
Reported by Pylint.
Line: 43
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# some corner cases
index = Index(["three", "one", "two"])
result = index.join(idx, level="second")
assert isinstance(result, MultiIndex)
with pytest.raises(TypeError, match="Join.*MultiIndex.*ambiguous"):
idx.join(idx, level=1)
Reported by Bandit.
Line: 49
Column: 1
idx.join(idx, level=1)
def test_join_self(idx, join_type):
joined = idx.join(idx, how=join_type)
tm.assert_index_equal(joined, idx)
def test_join_multi():
Reported by Pylint.
Line: 54
Column: 1
tm.assert_index_equal(joined, idx)
def test_join_multi():
# GH 10665
midx = MultiIndex.from_product([np.arange(4), np.arange(4)], names=["a", "b"])
idx = Index([1, 2, 5], name="b")
# inner
Reported by Pylint.
pandas/tests/indexes/timedeltas/methods/test_shift.py
17 issues
Line: 1
Column: 1
import pytest
from pandas.errors import NullFrequencyError
import pandas as pd
from pandas import TimedeltaIndex
import pandas._testing as tm
Reported by Pylint.
Line: 42
Column: 18
def test_tdi_shift_int(self):
# GH#8083
tdi = pd.to_timedelta(range(5), unit="d")
trange = tdi._with_freq("infer") + pd.offsets.Hour(1)
result = trange.shift(1)
expected = TimedeltaIndex(
[
"1 days 01:00:00",
"2 days 01:00:00",
Reported by Pylint.
Line: 59
Column: 18
def test_tdi_shift_nonstandard_freq(self):
# GH#8083
tdi = pd.to_timedelta(range(5), unit="d")
trange = tdi._with_freq("infer") + pd.offsets.Hour(1)
result = trange.shift(3, freq="2D 1s")
expected = TimedeltaIndex(
[
"6 days 01:00:03",
"7 days 01:00:03",
Reported by Pylint.
Line: 1
Column: 1
import pytest
from pandas.errors import NullFrequencyError
import pandas as pd
from pandas import TimedeltaIndex
import pandas._testing as tm
Reported by Pylint.
Line: 10
Column: 1
import pandas._testing as tm
class TestTimedeltaIndexShift:
# -------------------------------------------------------------
# TimedeltaIndex.shift is used by __add__/__sub__
def test_tdi_shift_empty(self):
Reported by Pylint.
Line: 15
Column: 5
# -------------------------------------------------------------
# TimedeltaIndex.shift is used by __add__/__sub__
def test_tdi_shift_empty(self):
# GH#9903
idx = TimedeltaIndex([], name="xxx")
tm.assert_index_equal(idx.shift(0, freq="H"), idx)
tm.assert_index_equal(idx.shift(3, freq="H"), idx)
Reported by Pylint.
Line: 15
Column: 5
# -------------------------------------------------------------
# TimedeltaIndex.shift is used by __add__/__sub__
def test_tdi_shift_empty(self):
# GH#9903
idx = TimedeltaIndex([], name="xxx")
tm.assert_index_equal(idx.shift(0, freq="H"), idx)
tm.assert_index_equal(idx.shift(3, freq="H"), idx)
Reported by Pylint.
Line: 21
Column: 5
tm.assert_index_equal(idx.shift(0, freq="H"), idx)
tm.assert_index_equal(idx.shift(3, freq="H"), idx)
def test_tdi_shift_hours(self):
# GH#9903
idx = TimedeltaIndex(["5 hours", "6 hours", "9 hours"], name="xxx")
tm.assert_index_equal(idx.shift(0, freq="H"), idx)
exp = TimedeltaIndex(["8 hours", "9 hours", "12 hours"], name="xxx")
tm.assert_index_equal(idx.shift(3, freq="H"), exp)
Reported by Pylint.
Line: 21
Column: 5
tm.assert_index_equal(idx.shift(0, freq="H"), idx)
tm.assert_index_equal(idx.shift(3, freq="H"), idx)
def test_tdi_shift_hours(self):
# GH#9903
idx = TimedeltaIndex(["5 hours", "6 hours", "9 hours"], name="xxx")
tm.assert_index_equal(idx.shift(0, freq="H"), idx)
exp = TimedeltaIndex(["8 hours", "9 hours", "12 hours"], name="xxx")
tm.assert_index_equal(idx.shift(3, freq="H"), exp)
Reported by Pylint.
Line: 30
Column: 5
exp = TimedeltaIndex(["2 hours", "3 hours", "6 hours"], name="xxx")
tm.assert_index_equal(idx.shift(-3, freq="H"), exp)
def test_tdi_shift_minutes(self):
# GH#9903
idx = TimedeltaIndex(["5 hours", "6 hours", "9 hours"], name="xxx")
tm.assert_index_equal(idx.shift(0, freq="T"), idx)
exp = TimedeltaIndex(["05:03:00", "06:03:00", "9:03:00"], name="xxx")
tm.assert_index_equal(idx.shift(3, freq="T"), exp)
Reported by Pylint.
pandas/tests/indexes/timedeltas/test_delete.py
17 issues
Line: 1
Column: 1
from pandas import (
TimedeltaIndex,
timedelta_range,
)
import pandas._testing as tm
class TestTimedeltaIndexDelete:
def test_delete(self):
Reported by Pylint.
Line: 8
Column: 1
import pandas._testing as tm
class TestTimedeltaIndexDelete:
def test_delete(self):
idx = timedelta_range(start="1 Days", periods=5, freq="D", name="idx")
# preserve freq
expected_0 = timedelta_range(start="2 Days", periods=4, freq="D", name="idx")
Reported by Pylint.
Line: 9
Column: 5
class TestTimedeltaIndexDelete:
def test_delete(self):
idx = timedelta_range(start="1 Days", periods=5, freq="D", name="idx")
# preserve freq
expected_0 = timedelta_range(start="2 Days", periods=4, freq="D", name="idx")
expected_4 = timedelta_range(start="1 Days", periods=4, freq="D", name="idx")
Reported by Pylint.
Line: 9
Column: 5
class TestTimedeltaIndexDelete:
def test_delete(self):
idx = timedelta_range(start="1 Days", periods=5, freq="D", name="idx")
# preserve freq
expected_0 = timedelta_range(start="2 Days", periods=4, freq="D", name="idx")
expected_4 = timedelta_range(start="1 Days", periods=4, freq="D", name="idx")
Reported by Pylint.
Line: 28
Column: 13
4: expected_4,
1: expected_1,
}
for n, expected in cases.items():
result = idx.delete(n)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
Reported by Pylint.
Line: 31
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
for n, expected in cases.items():
result = idx.delete(n)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
with tm.external_error_raised((IndexError, ValueError)):
# either depending on numpy version
idx.delete(5)
Reported by Bandit.
Line: 32
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = idx.delete(n)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
with tm.external_error_raised((IndexError, ValueError)):
# either depending on numpy version
idx.delete(5)
Reported by Bandit.
Line: 38
Column: 5
# either depending on numpy version
idx.delete(5)
def test_delete_slice(self):
idx = timedelta_range(start="1 days", periods=10, freq="D", name="idx")
# preserve freq
expected_0_2 = timedelta_range(start="4 days", periods=7, freq="D", name="idx")
expected_7_9 = timedelta_range(start="1 days", periods=7, freq="D", name="idx")
Reported by Pylint.
Line: 38
Column: 5
# either depending on numpy version
idx.delete(5)
def test_delete_slice(self):
idx = timedelta_range(start="1 days", periods=10, freq="D", name="idx")
# preserve freq
expected_0_2 = timedelta_range(start="4 days", periods=7, freq="D", name="idx")
expected_7_9 = timedelta_range(start="1 days", periods=7, freq="D", name="idx")
Reported by Pylint.
Line: 55
Column: 13
(7, 8, 9): expected_7_9,
(3, 4, 5): expected_3_5,
}
for n, expected in cases.items():
result = idx.delete(n)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
Reported by Pylint.
pandas/tests/series/methods/test_argsort.py
17 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
Series,
Timestamp,
isna,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
Series,
Timestamp,
isna,
)
import pandas._testing as tm
Reported by Pylint.
Line: 12
Column: 1
import pandas._testing as tm
class TestSeriesArgsort:
def _check_accum_op(self, name, ser, check_dtype=True):
func = getattr(np, name)
tm.assert_numpy_array_equal(
func(ser).values, func(np.array(ser)), check_dtype=check_dtype
)
Reported by Pylint.
Line: 13
Column: 5
class TestSeriesArgsort:
def _check_accum_op(self, name, ser, check_dtype=True):
func = getattr(np, name)
tm.assert_numpy_array_equal(
func(ser).values, func(np.array(ser)), check_dtype=check_dtype
)
Reported by Pylint.
Line: 20
Column: 9
)
# with missing values
ts = ser.copy()
ts[::2] = np.NaN
result = func(ts)[1::2]
expected = func(np.array(ts.dropna()))
Reported by Pylint.
Line: 28
Column: 5
tm.assert_numpy_array_equal(result.values, expected, check_dtype=False)
def test_argsort(self, datetime_series):
self._check_accum_op("argsort", datetime_series, check_dtype=False)
argsorted = datetime_series.argsort()
assert issubclass(argsorted.dtype.type, np.integer)
# GH#2967 (introduced bug in 0.11-dev I think)
Reported by Pylint.
Line: 31
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
def test_argsort(self, datetime_series):
self._check_accum_op("argsort", datetime_series, check_dtype=False)
argsorted = datetime_series.argsort()
assert issubclass(argsorted.dtype.type, np.integer)
# GH#2967 (introduced bug in 0.11-dev I think)
s = Series([Timestamp(f"201301{i:02d}") for i in range(1, 6)])
assert s.dtype == "datetime64[ns]"
shifted = s.shift(-1)
Reported by Bandit.
Line: 34
Column: 9
assert issubclass(argsorted.dtype.type, np.integer)
# GH#2967 (introduced bug in 0.11-dev I think)
s = Series([Timestamp(f"201301{i:02d}") for i in range(1, 6)])
assert s.dtype == "datetime64[ns]"
shifted = s.shift(-1)
assert shifted.dtype == "datetime64[ns]"
assert isna(shifted[4])
Reported by Pylint.
Line: 35
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# GH#2967 (introduced bug in 0.11-dev I think)
s = Series([Timestamp(f"201301{i:02d}") for i in range(1, 6)])
assert s.dtype == "datetime64[ns]"
shifted = s.shift(-1)
assert shifted.dtype == "datetime64[ns]"
assert isna(shifted[4])
result = s.argsort()
Reported by Bandit.
Line: 37
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
s = Series([Timestamp(f"201301{i:02d}") for i in range(1, 6)])
assert s.dtype == "datetime64[ns]"
shifted = s.shift(-1)
assert shifted.dtype == "datetime64[ns]"
assert isna(shifted[4])
result = s.argsort()
expected = Series(range(5), dtype="int64")
tm.assert_series_equal(result, expected)
Reported by Bandit.
scripts/validate_docstrings.py
17 issues
Line: 31
Column: 1
import matplotlib
import matplotlib.pyplot as plt
import numpy
from numpydoc.validate import (
Docstring,
validate,
)
import pandas
Reported by Pylint.
Line: 178
Column: 24
file.write(content)
file.flush()
cmd = ["python", "-m", "flake8", "--quiet", "--statistics", file.name]
response = subprocess.run(cmd, capture_output=True, text=True)
stdout = response.stdout
stdout = stdout.replace(file.name, "")
messages = stdout.strip("\n")
if messages:
error_messages.append(messages)
Reported by Pylint.
Line: 24
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_imports.html#b404-import-subprocess
import io
import json
import pathlib
import subprocess
import sys
import tempfile
import matplotlib
import matplotlib.pyplot as plt
Reported by Bandit.
Line: 136
Column: 1
previous_line = line
class PandasDocstring(Docstring):
@property
def mentioned_private_classes(self):
return [klass for klass in PRIVATE_CLASSES if klass in self.raw_doc]
@property
Reported by Pylint.
Line: 138
Column: 5
class PandasDocstring(Docstring):
@property
def mentioned_private_classes(self):
return [klass for klass in PRIVATE_CLASSES if klass in self.raw_doc]
@property
def examples_errors(self):
flags = doctest.NORMALIZE_WHITESPACE | doctest.IGNORE_EXCEPTION_DETAIL
Reported by Pylint.
Line: 142
Column: 5
return [klass for klass in PRIVATE_CLASSES if klass in self.raw_doc]
@property
def examples_errors(self):
flags = doctest.NORMALIZE_WHITESPACE | doctest.IGNORE_EXCEPTION_DETAIL
finder = doctest.DocTestFinder()
runner = doctest.DocTestRunner(optionflags=flags)
context = {"np": numpy, "pd": pandas}
error_msgs = ""
Reported by Pylint.
Line: 149
Column: 13
context = {"np": numpy, "pd": pandas}
error_msgs = ""
for test in finder.find(self.raw_doc, self.name, globs=context):
f = io.StringIO()
runner.run(test, out=f.write)
error_msgs += f.getvalue()
return error_msgs
@property
Reported by Pylint.
Line: 155
Column: 5
return error_msgs
@property
def examples_source_code(self):
lines = doctest.DocTestParser().get_examples(self.raw_doc)
return [line.source for line in lines]
def validate_pep8(self):
if not self.examples:
Reported by Pylint.
Line: 159
Column: 5
lines = doctest.DocTestParser().get_examples(self.raw_doc)
return [line.source for line in lines]
def validate_pep8(self):
if not self.examples:
return
# F401 is needed to not generate flake8 errors in examples
# that do not user numpy or pandas
Reported by Pylint.
Line: 178
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b603_subprocess_without_shell_equals_true.html
file.write(content)
file.flush()
cmd = ["python", "-m", "flake8", "--quiet", "--statistics", file.name]
response = subprocess.run(cmd, capture_output=True, text=True)
stdout = response.stdout
stdout = stdout.replace(file.name, "")
messages = stdout.strip("\n")
if messages:
error_messages.append(messages)
Reported by Bandit.
pandas/tests/indexes/timedeltas/methods/test_factorize.py
16 issues
Line: 21
Column: 28
arr, idx = idx1.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq
arr, idx = idx1.factorize(sort=True)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq
Reported by Pylint.
Line: 26
Column: 28
arr, idx = idx1.factorize(sort=True)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, exp_idx)
assert idx.freq == exp_idx.freq
def test_factorize_preserves_freq(self):
# GH#38120 freq should be preserved
idx3 = timedelta_range("1 day", periods=4, freq="s")
exp_arr = np.array([0, 1, 2, 3], dtype=np.intp)
Reported by Pylint.
Line: 35
Column: 28
arr, idx = idx3.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
arr, idx = factorize(idx3)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
Reported by Pylint.
Line: 35
Column: 28
arr, idx = idx3.factorize()
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
arr, idx = factorize(idx3)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
Reported by Pylint.
Line: 40
Column: 28
arr, idx = factorize(idx3)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
Reported by Pylint.
Line: 40
Column: 28
arr, idx = factorize(idx3)
tm.assert_numpy_array_equal(arr, exp_arr)
tm.assert_index_equal(idx, idx3)
assert idx.freq == idx3.freq
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
from pandas import (
TimedeltaIndex,
factorize,
timedelta_range,
)
import pandas._testing as tm
Reported by Pylint.
Line: 11
Column: 1
import pandas._testing as tm
class TestTimedeltaIndexFactorize:
def test_factorize(self):
idx1 = TimedeltaIndex(["1 day", "1 day", "2 day", "2 day", "3 day", "3 day"])
exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp)
exp_idx = TimedeltaIndex(["1 day", "2 day", "3 day"])
Reported by Pylint.
Line: 12
Column: 5
class TestTimedeltaIndexFactorize:
def test_factorize(self):
idx1 = TimedeltaIndex(["1 day", "1 day", "2 day", "2 day", "3 day", "3 day"])
exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp)
exp_idx = TimedeltaIndex(["1 day", "2 day", "3 day"])
Reported by Pylint.
Line: 12
Column: 5
class TestTimedeltaIndexFactorize:
def test_factorize(self):
idx1 = TimedeltaIndex(["1 day", "1 day", "2 day", "2 day", "3 day", "3 day"])
exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp)
exp_idx = TimedeltaIndex(["1 day", "2 day", "3 day"])
Reported by Pylint.
pandas/tests/util/test_doc.py
16 issues
Line: 7
Column: 12
@doc(method="cumsum", operation="sum")
def cumsum(whatever):
"""
This is the {method} method.
It computes the cumulative {operation}.
"""
Reported by Pylint.
Line: 29
Column: 12
method="cumavg",
operation="average",
)
def cumavg(whatever):
pass
@doc(cumsum, method="cummax", operation="maximum")
def cummax(whatever):
Reported by Pylint.
Line: 34
Column: 12
@doc(cumsum, method="cummax", operation="maximum")
def cummax(whatever):
pass
@doc(cummax, method="cummin", operation="minimum")
def cummin(whatever):
Reported by Pylint.
Line: 39
Column: 12
@doc(cummax, method="cummin", operation="minimum")
def cummin(whatever):
pass
def test_docstring_formatting():
docstr = dedent(
Reported by Pylint.
Line: 1
Column: 1
from textwrap import dedent
from pandas.util._decorators import doc
@doc(method="cumsum", operation="sum")
def cumsum(whatever):
"""
This is the {method} method.
Reported by Pylint.
Line: 28
Column: 1
),
method="cumavg",
operation="average",
)
def cumavg(whatever):
pass
@doc(cumsum, method="cummax", operation="maximum")
Reported by Pylint.
Line: 34
Column: 1
@doc(cumsum, method="cummax", operation="maximum")
def cummax(whatever):
pass
@doc(cummax, method="cummin", operation="minimum")
def cummin(whatever):
Reported by Pylint.
Line: 39
Column: 1
@doc(cummax, method="cummin", operation="minimum")
def cummin(whatever):
pass
def test_docstring_formatting():
docstr = dedent(
Reported by Pylint.
Line: 43
Column: 1
pass
def test_docstring_formatting():
docstr = dedent(
"""
This is the cumsum method.
It computes the cumulative sum.
Reported by Pylint.
Line: 51
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
It computes the cumulative sum.
"""
)
assert cumsum.__doc__ == docstr
def test_docstring_appending():
docstr = dedent(
"""
Reported by Bandit.
pandas/tests/series/methods/test_between.py
16 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
Series,
bdate_range,
date_range,
period_range,
)
Reported by Pylint.
Line: 15
Column: 3
class TestBetween:
# TODO: redundant with test_between_datetime_values?
def test_between(self):
series = Series(date_range("1/1/2000", periods=10))
left, right = series[[2, 7]]
result = series.between(left, right)
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
Series,
bdate_range,
date_range,
period_range,
)
Reported by Pylint.
Line: 13
Column: 1
import pandas._testing as tm
class TestBetween:
# TODO: redundant with test_between_datetime_values?
def test_between(self):
series = Series(date_range("1/1/2000", periods=10))
left, right = series[[2, 7]]
Reported by Pylint.
Line: 16
Column: 5
class TestBetween:
# TODO: redundant with test_between_datetime_values?
def test_between(self):
series = Series(date_range("1/1/2000", periods=10))
left, right = series[[2, 7]]
result = series.between(left, right)
expected = (series >= left) & (series <= right)
Reported by Pylint.
Line: 16
Column: 5
class TestBetween:
# TODO: redundant with test_between_datetime_values?
def test_between(self):
series = Series(date_range("1/1/2000", periods=10))
left, right = series[[2, 7]]
result = series.between(left, right)
expected = (series >= left) & (series <= right)
Reported by Pylint.
Line: 24
Column: 5
expected = (series >= left) & (series <= right)
tm.assert_series_equal(result, expected)
def test_between_datetime_values(self):
ser = Series(bdate_range("1/1/2000", periods=20).astype(object))
ser[::2] = np.nan
result = ser[ser.between(ser[3], ser[17])]
expected = ser[3:18].dropna()
Reported by Pylint.
Line: 24
Column: 5
expected = (series >= left) & (series <= right)
tm.assert_series_equal(result, expected)
def test_between_datetime_values(self):
ser = Series(bdate_range("1/1/2000", periods=20).astype(object))
ser[::2] = np.nan
result = ser[ser.between(ser[3], ser[17])]
expected = ser[3:18].dropna()
Reported by Pylint.
Line: 36
Column: 5
expected = ser[5:16].dropna()
tm.assert_series_equal(result, expected)
def test_between_period_values(self):
ser = Series(period_range("2000-01-01", periods=10, freq="D"))
left, right = ser[[2, 7]]
result = ser.between(left, right)
expected = (ser >= left) & (ser <= right)
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 36
Column: 5
expected = ser[5:16].dropna()
tm.assert_series_equal(result, expected)
def test_between_period_values(self):
ser = Series(period_range("2000-01-01", periods=10, freq="D"))
left, right = ser[[2, 7]]
result = ser.between(left, right)
expected = (ser >= left) & (ser <= right)
tm.assert_series_equal(result, expected)
Reported by Pylint.