The following issues were found
pandas/tests/indexes/multi/test_get_level_values.py
16 issues
Line: 114
Column: 40
idx2 = MultiIndex.from_arrays(
[idx._get_level_values(level) for level in range(idx.nlevels)]
)
assert all(x.is_monotonic for x in idx2.levels)
Reported by Pylint.
Line: 112
Column: 10
[PeriodIndex([Period("2019Q1"), Period("2019Q2")], name="b")]
)
idx2 = MultiIndex.from_arrays(
[idx._get_level_values(level) for level in range(idx.nlevels)]
)
assert all(x.is_monotonic for x in idx2.levels)
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pandas as pd
from pandas import (
CategoricalIndex,
Index,
MultiIndex,
Timestamp,
date_range,
Reported by Pylint.
Line: 14
Column: 1
import pandas._testing as tm
class TestGetLevelValues:
def test_get_level_values_box_datetime64(self):
dates = date_range("1/1/2000", periods=4)
levels = [dates, [0, 1]]
codes = [[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]]
Reported by Pylint.
Line: 14
Column: 1
import pandas._testing as tm
class TestGetLevelValues:
def test_get_level_values_box_datetime64(self):
dates = date_range("1/1/2000", periods=4)
levels = [dates, [0, 1]]
codes = [[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]]
Reported by Pylint.
Line: 15
Column: 5
class TestGetLevelValues:
def test_get_level_values_box_datetime64(self):
dates = date_range("1/1/2000", periods=4)
levels = [dates, [0, 1]]
codes = [[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]]
Reported by Pylint.
Line: 15
Column: 5
class TestGetLevelValues:
def test_get_level_values_box_datetime64(self):
dates = date_range("1/1/2000", periods=4)
levels = [dates, [0, 1]]
codes = [[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]]
Reported by Pylint.
Line: 23
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
index = MultiIndex(levels=levels, codes=codes)
assert isinstance(index.get_level_values(0)[0], Timestamp)
def test_get_level_values(idx):
result = idx.get_level_values(0)
expected = Index(["foo", "foo", "bar", "baz", "qux", "qux"], name="first")
Reported by Bandit.
Line: 26
Column: 1
assert isinstance(index.get_level_values(0)[0], Timestamp)
def test_get_level_values(idx):
result = idx.get_level_values(0)
expected = Index(["foo", "foo", "bar", "baz", "qux", "qux"], name="first")
tm.assert_index_equal(result, expected)
assert result.name == "first"
Reported by Pylint.
Line: 30
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = idx.get_level_values(0)
expected = Index(["foo", "foo", "bar", "baz", "qux", "qux"], name="first")
tm.assert_index_equal(result, expected)
assert result.name == "first"
result = idx.get_level_values("first")
expected = idx.get_level_values(0)
tm.assert_index_equal(result, expected)
Reported by Bandit.
asv_bench/benchmarks/tslibs/tz_convert.py
16 issues
Line: 2
Column: 1
import numpy as np
from pytz import UTC
from pandas._libs.tslibs.tzconversion import tz_localize_to_utc
from .tslib import (
_sizes,
_tzs,
tzlocal_obj,
Reported by Pylint.
Line: 4
Column: 1
import numpy as np
from pytz import UTC
from pandas._libs.tslibs.tzconversion import tz_localize_to_utc
from .tslib import (
_sizes,
_tzs,
tzlocal_obj,
Reported by Pylint.
Line: 6
Column: 1
from pandas._libs.tslibs.tzconversion import tz_localize_to_utc
from .tslib import (
_sizes,
_tzs,
tzlocal_obj,
)
Reported by Pylint.
Line: 33
Column: 9
raise NotImplementedError
arr = np.random.randint(0, 10, size=size, dtype="i8")
self.i8data = arr
def time_tz_convert_from_utc(self, size, tz):
# effectively:
# dti = DatetimeIndex(self.i8data, tz=tz)
# dti.tz_localize(None)
Reported by Pylint.
Line: 35
Column: 40
arr = np.random.randint(0, 10, size=size, dtype="i8")
self.i8data = arr
def time_tz_convert_from_utc(self, size, tz):
# effectively:
# dti = DatetimeIndex(self.i8data, tz=tz)
# dti.tz_localize(None)
if old_sig:
tz_convert_from_utc(self.i8data, UTC, tz)
Reported by Pylint.
Line: 44
Column: 39
else:
tz_convert_from_utc(self.i8data, tz)
def time_tz_localize_to_utc(self, size, tz):
# effectively:
# dti = DatetimeIndex(self.i8data)
# dti.tz_localize(tz, ambiguous="NaT", nonexistent="NaT")
tz_localize_to_utc(self.i8data, tz, ambiguous="NaT", nonexistent="NaT")
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
from pytz import UTC
from pandas._libs.tslibs.tzconversion import tz_localize_to_utc
from .tslib import (
_sizes,
_tzs,
tzlocal_obj,
Reported by Pylint.
Line: 13
Column: 5
)
try:
old_sig = False
from pandas._libs.tslibs.tzconversion import tz_convert_from_utc
except ImportError:
old_sig = True
from pandas._libs.tslibs.tzconversion import tz_convert as tz_convert_from_utc
Reported by Pylint.
Line: 16
Column: 5
old_sig = False
from pandas._libs.tslibs.tzconversion import tz_convert_from_utc
except ImportError:
old_sig = True
from pandas._libs.tslibs.tzconversion import tz_convert as tz_convert_from_utc
class TimeTZConvert:
params = [
Reported by Pylint.
Line: 20
Column: 1
from pandas._libs.tslibs.tzconversion import tz_convert as tz_convert_from_utc
class TimeTZConvert:
params = [
_sizes,
[x for x in _tzs if x is not None],
]
param_names = ["size", "tz"]
Reported by Pylint.
pandas/tests/arrays/sparse/test_combine_concat.py
16 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays.sparse import SparseArray
class TestSparseArrayConcat:
Reported by Pylint.
Line: 15
Column: 18
a = SparseArray([1, 0, 0, 2], kind=kind)
b = SparseArray([1, 0, 2, 2], kind=kind)
result = SparseArray._concat_same_type([a, b])
# Can't make any assertions about the sparse index itself
# since we aren't don't merge sparse blocs across arrays
# in to_concat
expected = np.array([1, 2, 1, 2, 2], dtype="int64")
tm.assert_numpy_array_equal(result.sp_values, expected)
Reported by Pylint.
Line: 29
Column: 18
a = SparseArray([1, 0, 0, 2], kind=kind)
b = SparseArray([1, 0, 2, 2], kind=other)
result = SparseArray._concat_same_type([a, b])
expected = np.array([1, 2, 1, 2, 2], dtype="int64")
tm.assert_numpy_array_equal(result.sp_values, expected)
assert result.kind == kind
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays.sparse import SparseArray
class TestSparseArrayConcat:
Reported by Pylint.
Line: 9
Column: 1
from pandas.core.arrays.sparse import SparseArray
class TestSparseArrayConcat:
@pytest.mark.parametrize("kind", ["integer", "block"])
def test_basic(self, kind):
a = SparseArray([1, 0, 0, 2], kind=kind)
b = SparseArray([1, 0, 2, 2], kind=kind)
Reported by Pylint.
Line: 11
Column: 5
class TestSparseArrayConcat:
@pytest.mark.parametrize("kind", ["integer", "block"])
def test_basic(self, kind):
a = SparseArray([1, 0, 0, 2], kind=kind)
b = SparseArray([1, 0, 2, 2], kind=kind)
result = SparseArray._concat_same_type([a, b])
# Can't make any assertions about the sparse index itself
Reported by Pylint.
Line: 11
Column: 5
class TestSparseArrayConcat:
@pytest.mark.parametrize("kind", ["integer", "block"])
def test_basic(self, kind):
a = SparseArray([1, 0, 0, 2], kind=kind)
b = SparseArray([1, 0, 2, 2], kind=kind)
result = SparseArray._concat_same_type([a, b])
# Can't make any assertions about the sparse index itself
Reported by Pylint.
Line: 12
Column: 9
class TestSparseArrayConcat:
@pytest.mark.parametrize("kind", ["integer", "block"])
def test_basic(self, kind):
a = SparseArray([1, 0, 0, 2], kind=kind)
b = SparseArray([1, 0, 2, 2], kind=kind)
result = SparseArray._concat_same_type([a, b])
# Can't make any assertions about the sparse index itself
# since we aren't don't merge sparse blocs across arrays
Reported by Pylint.
Line: 13
Column: 9
@pytest.mark.parametrize("kind", ["integer", "block"])
def test_basic(self, kind):
a = SparseArray([1, 0, 0, 2], kind=kind)
b = SparseArray([1, 0, 2, 2], kind=kind)
result = SparseArray._concat_same_type([a, b])
# Can't make any assertions about the sparse index itself
# since we aren't don't merge sparse blocs across arrays
# in to_concat
Reported by Pylint.
Line: 21
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# in to_concat
expected = np.array([1, 2, 1, 2, 2], dtype="int64")
tm.assert_numpy_array_equal(result.sp_values, expected)
assert result.kind == kind
@pytest.mark.parametrize("kind", ["integer", "block"])
def test_uses_first_kind(self, kind):
other = "integer" if kind == "block" else "block"
a = SparseArray([1, 0, 0, 2], kind=kind)
Reported by Bandit.
pandas/tests/arrays/interval/test_ops.py
16 issues
Line: 3
Column: 1
"""Tests for Interval-Interval operations, such as overlaps, contains, etc."""
import numpy as np
import pytest
from pandas import (
Interval,
IntervalIndex,
Timedelta,
Timestamp,
Reported by Pylint.
Line: 40
Column: 38
class TestOverlaps:
def test_overlaps_interval(self, constructor, start_shift, closed, other_closed):
start, shift = start_shift
interval = Interval(start, start + 3 * shift, other_closed)
# intervals: identical, nested, spanning, partial, adjacent, disjoint
tuples = [
Reported by Pylint.
Line: 40
Column: 51
class TestOverlaps:
def test_overlaps_interval(self, constructor, start_shift, closed, other_closed):
start, shift = start_shift
interval = Interval(start, start + 3 * shift, other_closed)
# intervals: identical, nested, spanning, partial, adjacent, disjoint
tuples = [
Reported by Pylint.
Line: 61
Column: 48
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("other_constructor", [IntervalArray, IntervalIndex])
def test_overlaps_interval_container(self, constructor, other_constructor):
# TODO: modify this test when implemented
interval_container = constructor.from_breaks(range(5))
other_container = other_constructor.from_breaks(range(5))
with pytest.raises(NotImplementedError, match="^$"):
interval_container.overlaps(other_container)
Reported by Pylint.
Line: 62
Column: 3
@pytest.mark.parametrize("other_constructor", [IntervalArray, IntervalIndex])
def test_overlaps_interval_container(self, constructor, other_constructor):
# TODO: modify this test when implemented
interval_container = constructor.from_breaks(range(5))
other_container = other_constructor.from_breaks(range(5))
with pytest.raises(NotImplementedError, match="^$"):
interval_container.overlaps(other_container)
Reported by Pylint.
Line: 68
Column: 32
with pytest.raises(NotImplementedError, match="^$"):
interval_container.overlaps(other_container)
def test_overlaps_na(self, constructor, start_shift):
"""NA values are marked as False"""
start, shift = start_shift
interval = Interval(start, start + shift)
tuples = [
Reported by Pylint.
Line: 68
Column: 45
with pytest.raises(NotImplementedError, match="^$"):
interval_container.overlaps(other_container)
def test_overlaps_na(self, constructor, start_shift):
"""NA values are marked as False"""
start, shift = start_shift
interval = Interval(start, start + shift)
tuples = [
Reported by Pylint.
Line: 89
Column: 42
[10, True, "foo", Timedelta("1 day"), Timestamp("2018-01-01")],
ids=lambda x: type(x).__name__,
)
def test_overlaps_invalid_type(self, constructor, other):
interval_container = constructor.from_breaks(range(5))
msg = f"`other` must be Interval-like, got {type(other).__name__}"
with pytest.raises(TypeError, match=msg):
interval_container.overlaps(other)
Reported by Pylint.
Line: 39
Column: 1
return request.param
class TestOverlaps:
def test_overlaps_interval(self, constructor, start_shift, closed, other_closed):
start, shift = start_shift
interval = Interval(start, start + 3 * shift, other_closed)
# intervals: identical, nested, spanning, partial, adjacent, disjoint
Reported by Pylint.
Line: 40
Column: 5
class TestOverlaps:
def test_overlaps_interval(self, constructor, start_shift, closed, other_closed):
start, shift = start_shift
interval = Interval(start, start + 3 * shift, other_closed)
# intervals: identical, nested, spanning, partial, adjacent, disjoint
tuples = [
Reported by Pylint.
pandas/core/array_algos/quantile.py
16 issues
Line: 133
Column: 3
-------
ExtensionArray
"""
# TODO(EA2D): make-believe not needed with 2D EAs
orig = values
# asarray needed for Sparse, see GH#24600
mask = np.asarray(values.isna())
mask = np.atleast_2d(mask)
Reported by Pylint.
Line: 140
Column: 23
mask = np.asarray(values.isna())
mask = np.atleast_2d(mask)
arr, fill_value = values._values_for_factorize()
arr = np.atleast_2d(arr)
result = _quantile_with_mask(arr, mask, fill_value, qs, interpolation)
if not is_sparse(orig.dtype):
Reported by Pylint.
Line: 150
Column: 22
if orig.ndim == 2:
# i.e. DatetimeArray
result = type(orig)._from_factorized(result, orig)
else:
assert result.shape == (1, len(qs)), result.shape
result = type(orig)._from_factorized(result[0], orig)
Reported by Pylint.
Line: 154
Column: 22
else:
assert result.shape == (1, len(qs)), result.shape
result = type(orig)._from_factorized(result[0], orig)
# error: Incompatible return value type (got "ndarray", expected "ExtensionArray")
return result # type: ignore[return-value]
Reported by Pylint.
Line: 185
Column: 15
assert res.shape[0] == 1
res = res[0]
try:
out = type(values)._from_sequence(res, dtype=values.dtype)
except TypeError:
# GH#42626: not able to safely cast Int64
# for floating point output
out = np.atleast_2d(np.asarray(res, dtype=np.float64))
return out
Reported by Pylint.
Line: 1
Column: 1
from __future__ import annotations
from typing import TYPE_CHECKING
import numpy as np
from pandas._typing import ArrayLike
from pandas.core.dtypes.common import is_sparse
Reported by Pylint.
Line: 21
Column: 1
from pandas.core.arrays import ExtensionArray
def quantile_compat(values: ArrayLike, qs: np.ndarray, interpolation: str) -> ArrayLike:
"""
Compute the quantiles of the given values for each quantile in `qs`.
Parameters
----------
Reported by Pylint.
Line: 35
Column: 5
-------
np.ndarray or ExtensionArray
"""
if isinstance(values, np.ndarray):
fill_value = na_value_for_dtype(values.dtype, compat=False)
mask = isna(values)
return _quantile_with_mask(values, mask, fill_value, qs, interpolation)
else:
# In general we don't want to import from arrays here;
Reported by Pylint.
Line: 42
Column: 9
else:
# In general we don't want to import from arrays here;
# this is temporary pending discussion in GH#41428
from pandas.core.arrays import BaseMaskedArray
if isinstance(values, BaseMaskedArray):
# e.g. IntegerArray, does not implement _from_factorized
out = _quantile_ea_fallback(values, qs, interpolation)
Reported by Pylint.
Line: 54
Column: 1
return out
def _quantile_with_mask(
values: np.ndarray,
mask: np.ndarray,
fill_value,
qs: np.ndarray,
interpolation: str,
Reported by Pylint.
pandas/tests/arrays/categorical/test_sorting.py
16 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
Categorical,
Index,
)
import pandas._testing as tm
Reported by Pylint.
Line: 72
Column: 22
# sort (inplace order)
cat1 = cat.copy()
orig_codes = cat1._codes
cat1.sort_values(inplace=True)
assert cat1._codes is orig_codes
exp = np.array(["a", "b", "c", "d"], dtype=object)
tm.assert_numpy_array_equal(cat1.__array__(), exp)
tm.assert_index_equal(res.categories, cat.categories)
Reported by Pylint.
Line: 74
Column: 16
cat1 = cat.copy()
orig_codes = cat1._codes
cat1.sort_values(inplace=True)
assert cat1._codes is orig_codes
exp = np.array(["a", "b", "c", "d"], dtype=object)
tm.assert_numpy_array_equal(cat1.__array__(), exp)
tm.assert_index_equal(res.categories, cat.categories)
# reverse
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
Categorical,
Index,
)
import pandas._testing as tm
Reported by Pylint.
Line: 11
Column: 1
import pandas._testing as tm
class TestCategoricalSort:
def test_argsort(self):
c = Categorical([5, 3, 1, 4, 2], ordered=True)
expected = np.array([2, 4, 1, 3, 0])
tm.assert_numpy_array_equal(
Reported by Pylint.
Line: 12
Column: 5
class TestCategoricalSort:
def test_argsort(self):
c = Categorical([5, 3, 1, 4, 2], ordered=True)
expected = np.array([2, 4, 1, 3, 0])
tm.assert_numpy_array_equal(
c.argsort(ascending=True), expected, check_dtype=False
Reported by Pylint.
Line: 12
Column: 5
class TestCategoricalSort:
def test_argsort(self):
c = Categorical([5, 3, 1, 4, 2], ordered=True)
expected = np.array([2, 4, 1, 3, 0])
tm.assert_numpy_array_equal(
c.argsort(ascending=True), expected, check_dtype=False
Reported by Pylint.
Line: 13
Column: 9
class TestCategoricalSort:
def test_argsort(self):
c = Categorical([5, 3, 1, 4, 2], ordered=True)
expected = np.array([2, 4, 1, 3, 0])
tm.assert_numpy_array_equal(
c.argsort(ascending=True), expected, check_dtype=False
)
Reported by Pylint.
Line: 25
Column: 5
c.argsort(ascending=False), expected, check_dtype=False
)
def test_numpy_argsort(self):
c = Categorical([5, 3, 1, 4, 2], ordered=True)
expected = np.array([2, 4, 1, 3, 0])
tm.assert_numpy_array_equal(np.argsort(c), expected, check_dtype=False)
Reported by Pylint.
Line: 25
Column: 5
c.argsort(ascending=False), expected, check_dtype=False
)
def test_numpy_argsort(self):
c = Categorical([5, 3, 1, 4, 2], ordered=True)
expected = np.array([2, 4, 1, 3, 0])
tm.assert_numpy_array_equal(np.argsort(c), expected, check_dtype=False)
Reported by Pylint.
pandas/tests/indexes/datetimes/test_unique.py
16 issues
Line: 6
Column: 1
timedelta,
)
import pytest
from pandas import (
DatetimeIndex,
NaT,
Timestamp,
Reported by Pylint.
Line: 1
Column: 1
from datetime import (
datetime,
timedelta,
)
import pytest
from pandas import (
DatetimeIndex,
Reported by Pylint.
Line: 23
Column: 1
(
DatetimeIndex(["2017", "2017"], tz="US/Eastern"),
DatetimeIndex(["2017"], tz="US/Eastern"),
),
],
)
def test_unique(arr, expected):
result = arr.unique()
tm.assert_index_equal(result, expected)
Reported by Pylint.
Line: 31
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
tm.assert_index_equal(result, expected)
# GH#21737
# Ensure the underlying data is consistent
assert result[0] == expected[0]
def test_index_unique(rand_series_with_duplicate_datetimeindex):
dups = rand_series_with_duplicate_datetimeindex
index = dups.index
Reported by Bandit.
Line: 34
Column: 1
assert result[0] == expected[0]
def test_index_unique(rand_series_with_duplicate_datetimeindex):
dups = rand_series_with_duplicate_datetimeindex
index = dups.index
uniques = index.unique()
expected = DatetimeIndex(
Reported by Pylint.
Line: 47
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
datetime(2000, 1, 5),
]
)
assert uniques.dtype == "M8[ns]" # sanity
tm.assert_index_equal(uniques, expected)
assert index.nunique() == 4
# GH#2563
assert isinstance(uniques, DatetimeIndex)
Reported by Bandit.
Line: 49
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
)
assert uniques.dtype == "M8[ns]" # sanity
tm.assert_index_equal(uniques, expected)
assert index.nunique() == 4
# GH#2563
assert isinstance(uniques, DatetimeIndex)
dups_local = index.tz_localize("US/Eastern")
Reported by Bandit.
Line: 52
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
assert index.nunique() == 4
# GH#2563
assert isinstance(uniques, DatetimeIndex)
dups_local = index.tz_localize("US/Eastern")
dups_local.name = "foo"
result = dups_local.unique()
expected = DatetimeIndex(expected, name="foo")
Reported by Bandit.
Line: 59
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = dups_local.unique()
expected = DatetimeIndex(expected, name="foo")
expected = expected.tz_localize("US/Eastern")
assert result.tz is not None
assert result.name == "foo"
tm.assert_index_equal(result, expected)
# NaT, note this is excluded
arr = [1370745748 + t for t in range(20)] + [NaT.value]
Reported by Bandit.
Line: 60
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
expected = DatetimeIndex(expected, name="foo")
expected = expected.tz_localize("US/Eastern")
assert result.tz is not None
assert result.name == "foo"
tm.assert_index_equal(result, expected)
# NaT, note this is excluded
arr = [1370745748 + t for t in range(20)] + [NaT.value]
idx = DatetimeIndex(arr * 3)
Reported by Bandit.
pandas/io/formats/latex.py
16 issues
Line: 162
Column: 56
for pad in reversed(x):
if pad:
break
return [x[0]] + [i if i else " " * len(pad) for i in x[1:]]
gen = (pad_empties(i) for i in out)
# Add empty spaces for each column level
clevels = self.frame.columns.nlevels
Reported by Pylint.
Line: 779
Column: 18
return "r"
return "l"
dtypes = self.frame.dtypes._values
return "".join(map(get_col_type, dtypes))
def _get_index_format(self) -> str:
"""Get index column format."""
return "l" * self.frame.index.nlevels if self.fmt.index else ""
Reported by Pylint.
Line: 55
Column: 1
return full_caption, short_caption
class RowStringConverter(ABC):
r"""Converter for dataframe rows into LaTeX strings.
Parameters
----------
formatter : `DataFrameFormatter`
Reported by Pylint.
Line: 130
Column: 5
return self.frame.index.nlevels
@property
def column_levels(self) -> int:
return self.frame.columns.nlevels
@property
def header_levels(self) -> int:
nlevels = self.column_levels
Reported by Pylint.
Line: 134
Column: 5
return self.frame.columns.nlevels
@property
def header_levels(self) -> int:
nlevels = self.column_levels
if self.fmt.has_index_names and self.fmt.show_index_names:
nlevels += 1
return nlevels
Reported by Pylint.
Line: 158
Column: 13
# index.format will sparsify repeated entries with empty strings
# so pad these with some empty space
def pad_empties(x):
for pad in reversed(x):
if pad:
break
return [x[0]] + [i if i else " " * len(pad) for i in x[1:]]
Reported by Pylint.
Line: 223
Column: 13
else:
row2.append(coltext)
for c in row[self.index_levels :]:
# if next col has text, write the previous
if c.strip():
if coltext:
append_col()
coltext = c
Reported by Pylint.
Line: 251
Column: 21
for j in range(self.index_levels):
if row[j].strip():
nrow = 1
for r in self.strrows[i + 1 :]:
if not r[j].strip():
nrow += 1
else:
break
if nrow > 1:
Reported by Pylint.
Line: 268
Column: 13
Create clines after multirow-blocks are finished.
"""
lst = []
for cl in self.clinebuf:
if cl[0] == i:
lst.append(f"\n\\cline{{{cl[1]:d}-{icol:d}}}")
# remove entries that have been written to buffer
self.clinebuf = [x for x in self.clinebuf if x[0] != i]
return "".join(lst)
Reported by Pylint.
Line: 302
Column: 1
yield self.get_strrow(row_num)
class TableBuilderAbstract(ABC):
"""
Abstract table builder producing string representation of LaTeX table.
Parameters
----------
Reported by Pylint.
pandas/plotting/_misc.py
16 issues
Line: 6
Column: 37
from pandas.plotting._core import _get_plot_backend
def table(ax, data, rowLabels=None, colLabels=None, **kwargs):
"""
Helper function to convert DataFrame and Series to matplotlib.table.
Parameters
----------
Reported by Pylint.
Line: 6
Column: 21
from pandas.plotting._core import _get_plot_backend
def table(ax, data, rowLabels=None, colLabels=None, **kwargs):
"""
Helper function to convert DataFrame and Series to matplotlib.table.
Parameters
----------
Reported by Pylint.
Line: 501
Column: 5
_ALIASES = {"x_compat": "xaxis.compat"}
_DEFAULT_KEYS = ["xaxis.compat"]
def __init__(self, deprecated=False):
self._deprecated = deprecated
super().__setitem__("xaxis.compat", False)
def __getitem__(self, key):
key = self._get_canonical_key(key)
Reported by Pylint.
Line: 1
Column: 1
from contextlib import contextmanager
from pandas.plotting._core import _get_plot_backend
def table(ax, data, rowLabels=None, colLabels=None, **kwargs):
"""
Helper function to convert DataFrame and Series to matplotlib.table.
Reported by Pylint.
Line: 6
Column: 1
from pandas.plotting._core import _get_plot_backend
def table(ax, data, rowLabels=None, colLabels=None, **kwargs):
"""
Helper function to convert DataFrame and Series to matplotlib.table.
Parameters
----------
Reported by Pylint.
Line: 6
Column: 1
from pandas.plotting._core import _get_plot_backend
def table(ax, data, rowLabels=None, colLabels=None, **kwargs):
"""
Helper function to convert DataFrame and Series to matplotlib.table.
Parameters
----------
Reported by Pylint.
Line: 6
Column: 1
from pandas.plotting._core import _get_plot_backend
def table(ax, data, rowLabels=None, colLabels=None, **kwargs):
"""
Helper function to convert DataFrame and Series to matplotlib.table.
Parameters
----------
Reported by Pylint.
Line: 72
Column: 1
plot_backend.deregister()
def scatter_matrix(
frame,
alpha=0.5,
figsize=None,
ax=None,
grid=False,
Reported by Pylint.
Line: 72
Column: 1
plot_backend.deregister()
def scatter_matrix(
frame,
alpha=0.5,
figsize=None,
ax=None,
grid=False,
Reported by Pylint.
Line: 143
Column: 1
)
def radviz(frame, class_column, ax=None, color=None, colormap=None, **kwds):
"""
Plot a multidimensional dataset in 2D.
Each Series in the DataFrame is represented as a evenly distributed
slice on a circle. Each data point is rendered in the circle according to
Reported by Pylint.
pandas/tests/indexes/base_class/test_indexing.py
16 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import Index
import pandas._testing as tm
class TestGetSliceBounds:
@pytest.mark.parametrize("kind", ["getitem", "loc", None])
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import Index
import pandas._testing as tm
class TestGetSliceBounds:
@pytest.mark.parametrize("kind", ["getitem", "loc", None])
Reported by Pylint.
Line: 8
Column: 1
import pandas._testing as tm
class TestGetSliceBounds:
@pytest.mark.parametrize("kind", ["getitem", "loc", None])
@pytest.mark.parametrize("side, expected", [("left", 4), ("right", 5)])
def test_get_slice_bounds_within(self, kind, side, expected):
index = Index(list("abcdef"))
with tm.assert_produces_warning(FutureWarning, match="'kind' argument"):
Reported by Pylint.
Line: 11
Column: 5
class TestGetSliceBounds:
@pytest.mark.parametrize("kind", ["getitem", "loc", None])
@pytest.mark.parametrize("side, expected", [("left", 4), ("right", 5)])
def test_get_slice_bounds_within(self, kind, side, expected):
index = Index(list("abcdef"))
with tm.assert_produces_warning(FutureWarning, match="'kind' argument"):
result = index.get_slice_bound("e", kind=kind, side=side)
assert result == expected
Reported by Pylint.
Line: 11
Column: 5
class TestGetSliceBounds:
@pytest.mark.parametrize("kind", ["getitem", "loc", None])
@pytest.mark.parametrize("side, expected", [("left", 4), ("right", 5)])
def test_get_slice_bounds_within(self, kind, side, expected):
index = Index(list("abcdef"))
with tm.assert_produces_warning(FutureWarning, match="'kind' argument"):
result = index.get_slice_bound("e", kind=kind, side=side)
assert result == expected
Reported by Pylint.
Line: 15
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
index = Index(list("abcdef"))
with tm.assert_produces_warning(FutureWarning, match="'kind' argument"):
result = index.get_slice_bound("e", kind=kind, side=side)
assert result == expected
@pytest.mark.parametrize("kind", ["getitem", "loc", None])
@pytest.mark.parametrize("side", ["left", "right"])
@pytest.mark.parametrize(
"data, bound, expected", [(list("abcdef"), "x", 6), (list("bcdefg"), "a", 0)]
Reported by Bandit.
Line: 21
Column: 5
@pytest.mark.parametrize("side", ["left", "right"])
@pytest.mark.parametrize(
"data, bound, expected", [(list("abcdef"), "x", 6), (list("bcdefg"), "a", 0)]
)
def test_get_slice_bounds_outside(self, kind, side, expected, data, bound):
index = Index(data)
with tm.assert_produces_warning(FutureWarning, match="'kind' argument"):
result = index.get_slice_bound(bound, kind=kind, side=side)
assert result == expected
Reported by Pylint.
Line: 21
Column: 5
@pytest.mark.parametrize("side", ["left", "right"])
@pytest.mark.parametrize(
"data, bound, expected", [(list("abcdef"), "x", 6), (list("bcdefg"), "a", 0)]
)
def test_get_slice_bounds_outside(self, kind, side, expected, data, bound):
index = Index(data)
with tm.assert_produces_warning(FutureWarning, match="'kind' argument"):
result = index.get_slice_bound(bound, kind=kind, side=side)
assert result == expected
Reported by Pylint.
Line: 21
Column: 5
@pytest.mark.parametrize("side", ["left", "right"])
@pytest.mark.parametrize(
"data, bound, expected", [(list("abcdef"), "x", 6), (list("bcdefg"), "a", 0)]
)
def test_get_slice_bounds_outside(self, kind, side, expected, data, bound):
index = Index(data)
with tm.assert_produces_warning(FutureWarning, match="'kind' argument"):
result = index.get_slice_bound(bound, kind=kind, side=side)
assert result == expected
Reported by Pylint.
Line: 26
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
index = Index(data)
with tm.assert_produces_warning(FutureWarning, match="'kind' argument"):
result = index.get_slice_bound(bound, kind=kind, side=side)
assert result == expected
def test_get_slice_bounds_invalid_side(self):
with pytest.raises(ValueError, match="Invalid value for side kwarg"):
Index([]).get_slice_bound("a", side="middle")
Reported by Bandit.