The following issues were found
pandas/tests/series/methods/test_rename_axis.py
14 issues
Line: 1
Column: 1
import pytest
from pandas import (
Index,
MultiIndex,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import pytest
from pandas import (
Index,
MultiIndex,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 11
Column: 1
import pandas._testing as tm
class TestSeriesRenameAxis:
def test_rename_axis_mapper(self):
# GH 19978
mi = MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"])
ser = Series(list(range(len(mi))), index=mi)
Reported by Pylint.
Line: 12
Column: 5
class TestSeriesRenameAxis:
def test_rename_axis_mapper(self):
# GH 19978
mi = MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"])
ser = Series(list(range(len(mi))), index=mi)
result = ser.rename_axis(index={"ll": "foo"})
Reported by Pylint.
Line: 12
Column: 5
class TestSeriesRenameAxis:
def test_rename_axis_mapper(self):
# GH 19978
mi = MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"])
ser = Series(list(range(len(mi))), index=mi)
result = ser.rename_axis(index={"ll": "foo"})
Reported by Pylint.
Line: 14
Column: 9
class TestSeriesRenameAxis:
def test_rename_axis_mapper(self):
# GH 19978
mi = MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"])
ser = Series(list(range(len(mi))), index=mi)
result = ser.rename_axis(index={"ll": "foo"})
assert result.index.names == ["foo", "nn"]
Reported by Pylint.
Line: 18
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
ser = Series(list(range(len(mi))), index=mi)
result = ser.rename_axis(index={"ll": "foo"})
assert result.index.names == ["foo", "nn"]
result = ser.rename_axis(index=str.upper, axis=0)
assert result.index.names == ["LL", "NN"]
result = ser.rename_axis(index=["foo", "goo"])
Reported by Bandit.
Line: 21
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
assert result.index.names == ["foo", "nn"]
result = ser.rename_axis(index=str.upper, axis=0)
assert result.index.names == ["LL", "NN"]
result = ser.rename_axis(index=["foo", "goo"])
assert result.index.names == ["foo", "goo"]
with pytest.raises(TypeError, match="unexpected"):
Reported by Bandit.
Line: 24
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
assert result.index.names == ["LL", "NN"]
result = ser.rename_axis(index=["foo", "goo"])
assert result.index.names == ["foo", "goo"]
with pytest.raises(TypeError, match="unexpected"):
ser.rename_axis(columns="wrong")
def test_rename_axis_inplace(self, datetime_series):
Reported by Bandit.
Line: 29
Column: 5
with pytest.raises(TypeError, match="unexpected"):
ser.rename_axis(columns="wrong")
def test_rename_axis_inplace(self, datetime_series):
# GH 15704
expected = datetime_series.rename_axis("foo")
result = datetime_series
no_return = result.rename_axis("foo", inplace=True)
Reported by Pylint.
pandas/util/_test_decorators.py
14 issues
Line: 34
Column: 1
import warnings
import numpy as np
import pytest
from pandas._config import get_option
from pandas.compat import (
IS64,
Reported by Pylint.
Line: 125
Column: 3
)
# TODO: return type, _pytest.mark.structures.MarkDecorator is not public
# https://github.com/pytest-dev/pytest/issues/7469
def skip_if_installed(package: str):
"""
Skip a test if a package is installed.
Reported by Pylint.
Line: 141
Column: 3
)
# TODO: return type, _pytest.mark.structures.MarkDecorator is not public
# https://github.com/pytest-dev/pytest/issues/7469
def skip_if_no(package: str, min_version: str | None = None):
"""
Generic function to help skip tests when required packages are not
present on the testing system.
Reported by Pylint.
Line: 205
Column: 3
)
# TODO: return type, _pytest.mark.structures.MarkDecorator is not public
# https://github.com/pytest-dev/pytest/issues/7469
def skip_if_np_lt(ver_str: str, *args, reason: str | None = None):
if reason is None:
reason = f"NumPy {ver_str} or greater required"
return pytest.mark.skipif(
Reported by Pylint.
Line: 281
Column: 9
def async_mark():
try:
import_optional_dependency("pytest_asyncio")
async_mark = pytest.mark.asyncio
except ImportError:
async_mark = pytest.mark.skip(reason="Missing dependency pytest-asyncio")
return async_mark
Reported by Pylint.
Line: 80
Column: 5
except ImportError:
return False
if not min_version:
return mod
else:
import sys
try:
Reported by Pylint.
Line: 83
Column: 9
if not min_version:
return mod
else:
import sys
try:
version = getattr(sys.modules[mod_name], "__version__")
except AttributeError:
# xlrd uses a capitalized attribute name
Reported by Pylint.
Line: 96
Column: 1
return False
def _skip_if_no_mpl():
mod = safe_import("matplotlib")
if mod:
mod.use("Agg")
else:
return True
Reported by Pylint.
Line: 104
Column: 1
return True
def _skip_if_has_locale():
lang, _ = locale.getlocale()
if lang is not None:
return True
Reported by Pylint.
Line: 110
Column: 1
return True
def _skip_if_not_us_locale():
lang, _ = locale.getlocale()
if lang != "en_US":
return True
Reported by Pylint.
pandas/tests/reshape/concat/test_sort.py
14 issues
Line: 1
Column: 1
import pandas as pd
from pandas import DataFrame
import pandas._testing as tm
class TestConcatSort:
def test_concat_sorts_columns(self, sort):
# GH-4588
df1 = DataFrame({"a": [1, 2], "b": [1, 2]}, columns=["b", "a"])
Reported by Pylint.
Line: 6
Column: 1
import pandas._testing as tm
class TestConcatSort:
def test_concat_sorts_columns(self, sort):
# GH-4588
df1 = DataFrame({"a": [1, 2], "b": [1, 2]}, columns=["b", "a"])
df2 = DataFrame({"a": [3, 4], "c": [5, 6]})
Reported by Pylint.
Line: 7
Column: 5
class TestConcatSort:
def test_concat_sorts_columns(self, sort):
# GH-4588
df1 = DataFrame({"a": [1, 2], "b": [1, 2]}, columns=["b", "a"])
df2 = DataFrame({"a": [3, 4], "c": [5, 6]})
# for sort=True/None
Reported by Pylint.
Line: 7
Column: 5
class TestConcatSort:
def test_concat_sorts_columns(self, sort):
# GH-4588
df1 = DataFrame({"a": [1, 2], "b": [1, 2]}, columns=["b", "a"])
df2 = DataFrame({"a": [3, 4], "c": [5, 6]})
# for sort=True/None
Reported by Pylint.
Line: 26
Column: 5
result = pd.concat([df1, df2], ignore_index=True, sort=sort)
tm.assert_frame_equal(result, expected)
def test_concat_sorts_index(self, sort):
df1 = DataFrame({"a": [1, 2, 3]}, index=["c", "a", "b"])
df2 = DataFrame({"b": [1, 2]}, index=["a", "b"])
# For True/None
expected = DataFrame(
Reported by Pylint.
Line: 26
Column: 5
result = pd.concat([df1, df2], ignore_index=True, sort=sort)
tm.assert_frame_equal(result, expected)
def test_concat_sorts_index(self, sort):
df1 = DataFrame({"a": [1, 2, 3]}, index=["c", "a", "b"])
df2 = DataFrame({"b": [1, 2]}, index=["a", "b"])
# For True/None
expected = DataFrame(
Reported by Pylint.
Line: 44
Column: 5
result = pd.concat([df1, df2], axis=1, sort=sort)
tm.assert_frame_equal(result, expected)
def test_concat_inner_sort(self, sort):
# https://github.com/pandas-dev/pandas/pull/20613
df1 = DataFrame(
{"a": [1, 2], "b": [1, 2], "c": [1, 2]}, columns=["b", "a", "c"]
)
df2 = DataFrame({"a": [1, 2], "b": [3, 4]}, index=[3, 4])
Reported by Pylint.
Line: 44
Column: 5
result = pd.concat([df1, df2], axis=1, sort=sort)
tm.assert_frame_equal(result, expected)
def test_concat_inner_sort(self, sort):
# https://github.com/pandas-dev/pandas/pull/20613
df1 = DataFrame(
{"a": [1, 2], "b": [1, 2], "c": [1, 2]}, columns=["b", "a", "c"]
)
df2 = DataFrame({"a": [1, 2], "b": [3, 4]}, index=[3, 4])
Reported by Pylint.
Line: 61
Column: 5
expected = expected[["a", "b"]]
tm.assert_frame_equal(result, expected)
def test_concat_aligned_sort(self):
# GH-4588
df = DataFrame({"c": [1, 2], "b": [3, 4], "a": [5, 6]}, columns=["c", "b", "a"])
result = pd.concat([df, df], sort=True, ignore_index=True)
expected = DataFrame(
{"a": [5, 6, 5, 6], "b": [3, 4, 3, 4], "c": [1, 2, 1, 2]},
Reported by Pylint.
Line: 61
Column: 5
expected = expected[["a", "b"]]
tm.assert_frame_equal(result, expected)
def test_concat_aligned_sort(self):
# GH-4588
df = DataFrame({"c": [1, 2], "b": [3, 4], "a": [5, 6]}, columns=["c", "b", "a"])
result = pd.concat([df, df], sort=True, ignore_index=True)
expected = DataFrame(
{"a": [5, 6, 5, 6], "b": [3, 4, 3, 4], "c": [1, 2, 1, 2]},
Reported by Pylint.
pandas/tests/indexes/period/test_scalar_compat.py
14 issues
Line: 16
Column: 31
# GH#17157
index = period_range(freq="M", start="2016-01-01", end="2016-05-31")
expected_index = date_range("2016-01-01", end="2016-05-31", freq="MS")
tm.assert_index_equal(index.start_time, expected_index)
def test_end_time(self):
# GH#17157
index = period_range(freq="M", start="2016-01-01", end="2016-05-31")
expected_index = date_range("2016-01-01", end="2016-05-31", freq="M")
Reported by Pylint.
Line: 23
Column: 31
index = period_range(freq="M", start="2016-01-01", end="2016-05-31")
expected_index = date_range("2016-01-01", end="2016-05-31", freq="M")
expected_index += Timedelta(1, "D") - Timedelta(1, "ns")
tm.assert_index_equal(index.end_time, expected_index)
def test_end_time_business_friday(self):
# GH#34449
pi = period_range("1990-01-05", freq="B", periods=1)
result = pi.end_time
Reported by Pylint.
Line: 28
Column: 18
def test_end_time_business_friday(self):
# GH#34449
pi = period_range("1990-01-05", freq="B", periods=1)
result = pi.end_time
dti = date_range("1990-01-05", freq="D", periods=1)._with_freq(None)
expected = dti + Timedelta(days=1, nanoseconds=-1)
tm.assert_index_equal(result, expected)
Reported by Pylint.
Line: 30
Column: 15
pi = period_range("1990-01-05", freq="B", periods=1)
result = pi.end_time
dti = date_range("1990-01-05", freq="D", periods=1)._with_freq(None)
expected = dti + Timedelta(days=1, nanoseconds=-1)
tm.assert_index_equal(result, expected)
Reported by Pylint.
Line: 30
Column: 15
pi = period_range("1990-01-05", freq="B", periods=1)
result = pi.end_time
dti = date_range("1990-01-05", freq="D", periods=1)._with_freq(None)
expected = dti + Timedelta(days=1, nanoseconds=-1)
tm.assert_index_equal(result, expected)
Reported by Pylint.
Line: 30
Column: 15
pi = period_range("1990-01-05", freq="B", periods=1)
result = pi.end_time
dti = date_range("1990-01-05", freq="D", periods=1)._with_freq(None)
expected = dti + Timedelta(days=1, nanoseconds=-1)
tm.assert_index_equal(result, expected)
Reported by Pylint.
Line: 11
Column: 1
import pandas._testing as tm
class TestPeriodIndexOps:
def test_start_time(self):
# GH#17157
index = period_range(freq="M", start="2016-01-01", end="2016-05-31")
expected_index = date_range("2016-01-01", end="2016-05-31", freq="MS")
tm.assert_index_equal(index.start_time, expected_index)
Reported by Pylint.
Line: 12
Column: 5
class TestPeriodIndexOps:
def test_start_time(self):
# GH#17157
index = period_range(freq="M", start="2016-01-01", end="2016-05-31")
expected_index = date_range("2016-01-01", end="2016-05-31", freq="MS")
tm.assert_index_equal(index.start_time, expected_index)
Reported by Pylint.
Line: 12
Column: 5
class TestPeriodIndexOps:
def test_start_time(self):
# GH#17157
index = period_range(freq="M", start="2016-01-01", end="2016-05-31")
expected_index = date_range("2016-01-01", end="2016-05-31", freq="MS")
tm.assert_index_equal(index.start_time, expected_index)
Reported by Pylint.
Line: 18
Column: 5
expected_index = date_range("2016-01-01", end="2016-05-31", freq="MS")
tm.assert_index_equal(index.start_time, expected_index)
def test_end_time(self):
# GH#17157
index = period_range(freq="M", start="2016-01-01", end="2016-05-31")
expected_index = date_range("2016-01-01", end="2016-05-31", freq="M")
expected_index += Timedelta(1, "D") - Timedelta(1, "ns")
tm.assert_index_equal(index.end_time, expected_index)
Reported by Pylint.
pandas/util/_validators.py
14 issues
Line: 288
Column: 3
... 'mapper', 'rename')
{'columns': <function id>, 'index': <method 'upper' of 'str' objects>}
"""
# TODO: Change to keyword-only args and remove all this
out = {}
# Goal: fill 'out' with index/columns-style arguments
# like out = {'index': foo, 'columns': bar}
Reported by Pylint.
Line: 295
Column: 54
# like out = {'index': foo, 'columns': bar}
# Start by validating for consistency
if "axis" in kwargs and any(x in kwargs for x in data._AXIS_TO_AXIS_NUMBER):
msg = "Cannot specify both 'axis' and any of 'index' or 'columns'."
raise TypeError(msg)
# First fill with explicit values provided by the user...
if arg_name in kwargs:
Reported by Pylint.
Line: 305
Column: 16
msg = f"{method_name} got multiple values for argument '{arg_name}'"
raise TypeError(msg)
axis = data._get_axis_name(kwargs.get("axis", 0))
out[axis] = kwargs[arg_name]
# More user-provided arguments, now from kwargs
for k, v in kwargs.items():
try:
Reported by Pylint.
Line: 311
Column: 18
# More user-provided arguments, now from kwargs
for k, v in kwargs.items():
try:
ax = data._get_axis_name(k)
except ValueError:
pass
else:
out[ax] = v
Reported by Pylint.
Line: 324
Column: 16
if len(args) == 0:
pass # It's up to the function to decide if this is valid
elif len(args) == 1:
axis = data._get_axis_name(kwargs.get("axis", 0))
out[axis] = args[0]
elif len(args) == 2:
if "axis" in kwargs:
# Unambiguously wrong
msg = "Cannot specify both 'axis' and any of 'index' or 'columns'"
Reported by Pylint.
Line: 340
Column: 13
"a 'TypeError'."
)
warnings.warn(msg, FutureWarning, stacklevel=4)
out[data._get_axis_name(0)] = args[0]
out[data._get_axis_name(1)] = args[1]
else:
msg = f"Cannot specify all of '{arg_name}', 'index', 'columns'."
raise TypeError(msg)
return out
Reported by Pylint.
Line: 341
Column: 13
)
warnings.warn(msg, FutureWarning, stacklevel=4)
out[data._get_axis_name(0)] = args[0]
out[data._get_axis_name(1)] = args[1]
else:
msg = f"Cannot specify all of '{arg_name}', 'index', 'columns'."
raise TypeError(msg)
return out
Reported by Pylint.
Line: 51
Column: 13
# as comparison may have been overridden for the left
# hand object
try:
v1 = arg_val_dict[key]
v2 = compat_args[key]
# check for None-ness otherwise we could end up
# comparing a numpy array vs None
if (v1 is not None and v2 is None) or (v1 is None and v2 is not None):
Reported by Pylint.
Line: 52
Column: 13
# hand object
try:
v1 = arg_val_dict[key]
v2 = compat_args[key]
# check for None-ness otherwise we could end up
# comparing a numpy array vs None
if (v1 is not None and v2 is None) or (v1 is None and v2 is not None):
match = False
Reported by Pylint.
Line: 309
Column: 12
out[axis] = kwargs[arg_name]
# More user-provided arguments, now from kwargs
for k, v in kwargs.items():
try:
ax = data._get_axis_name(k)
except ValueError:
pass
else:
Reported by Pylint.
asv_bench/benchmarks/tslibs/normalize.py
14 issues
Line: 12
Column: 1
is_date_array_normalized,
)
import pandas as pd
from .tslib import (
_sizes,
_tzs,
tzlocal_obj,
Reported by Pylint.
Line: 14
Column: 1
import pandas as pd
from .tslib import (
_sizes,
_tzs,
tzlocal_obj,
)
Reported by Pylint.
Line: 32
Column: 9
# use an array that will have is_date_array_normalized give True,
# so we do not short-circuit early.
dti = pd.date_range("2016-01-01", periods=10, tz=tz).repeat(size // 10)
self.i8data = dti.asi8
if size == 10 ** 6 and tz is tzlocal_obj:
# tzlocal is cumbersomely slow, so skip to keep runtime in check
raise NotImplementedError
Reported by Pylint.
Line: 38
Column: 44
# tzlocal is cumbersomely slow, so skip to keep runtime in check
raise NotImplementedError
def time_normalize_i8_timestamps(self, size, tz):
normalize_i8_timestamps(self.i8data, tz)
def time_is_date_array_normalized(self, size, tz):
# TODO: cases with different levels of short-circuiting
is_date_array_normalized(self.i8data, tz)
Reported by Pylint.
Line: 41
Column: 45
def time_normalize_i8_timestamps(self, size, tz):
normalize_i8_timestamps(self.i8data, tz)
def time_is_date_array_normalized(self, size, tz):
# TODO: cases with different levels of short-circuiting
is_date_array_normalized(self.i8data, tz)
Reported by Pylint.
Line: 42
Column: 3
normalize_i8_timestamps(self.i8data, tz)
def time_is_date_array_normalized(self, size, tz):
# TODO: cases with different levels of short-circuiting
is_date_array_normalized(self.i8data, tz)
Reported by Pylint.
Line: 1
Column: 1
try:
from pandas._libs.tslibs import (
is_date_array_normalized,
normalize_i8_timestamps,
)
except ImportError:
from pandas._libs.tslibs.conversion import (
normalize_i8_timestamps,
is_date_array_normalized,
Reported by Pylint.
Line: 21
Column: 1
)
class Normalize:
params = [
_sizes,
_tzs,
]
param_names = ["size", "tz"]
Reported by Pylint.
Line: 28
Column: 5
]
param_names = ["size", "tz"]
def setup(self, size, tz):
# use an array that will have is_date_array_normalized give True,
# so we do not short-circuit early.
dti = pd.date_range("2016-01-01", periods=10, tz=tz).repeat(size // 10)
self.i8data = dti.asi8
Reported by Pylint.
Line: 28
Column: 5
]
param_names = ["size", "tz"]
def setup(self, size, tz):
# use an array that will have is_date_array_normalized give True,
# so we do not short-circuit early.
dti = pd.date_range("2016-01-01", periods=10, tz=tz).repeat(size // 10)
self.i8data = dti.asi8
Reported by Pylint.
pandas/tests/indexes/datetimes/test_map.py
14 issues
Line: 1
Column: 1
import pytest
from pandas import (
DatetimeIndex,
Index,
MultiIndex,
Period,
date_range,
)
Reported by Pylint.
Line: 1
Column: 1
import pytest
from pandas import (
DatetimeIndex,
Index,
MultiIndex,
Period,
date_range,
)
Reported by Pylint.
Line: 13
Column: 1
import pandas._testing as tm
class TestMap:
def test_map(self):
rng = date_range("1/1/2000", periods=10)
f = lambda x: x.strftime("%Y%m%d")
result = rng.map(f)
Reported by Pylint.
Line: 14
Column: 5
class TestMap:
def test_map(self):
rng = date_range("1/1/2000", periods=10)
f = lambda x: x.strftime("%Y%m%d")
result = rng.map(f)
exp = Index([f(x) for x in rng], dtype="<U8")
Reported by Pylint.
Line: 14
Column: 5
class TestMap:
def test_map(self):
rng = date_range("1/1/2000", periods=10)
f = lambda x: x.strftime("%Y%m%d")
result = rng.map(f)
exp = Index([f(x) for x in rng], dtype="<U8")
Reported by Pylint.
Line: 17
Column: 9
def test_map(self):
rng = date_range("1/1/2000", periods=10)
f = lambda x: x.strftime("%Y%m%d")
result = rng.map(f)
exp = Index([f(x) for x in rng], dtype="<U8")
tm.assert_index_equal(result, exp)
def test_map_fallthrough(self, capsys):
Reported by Pylint.
Line: 22
Column: 5
exp = Index([f(x) for x in rng], dtype="<U8")
tm.assert_index_equal(result, exp)
def test_map_fallthrough(self, capsys):
# GH#22067, check we don't get warnings about silently ignored errors
dti = date_range("2017-01-01", "2018-01-01", freq="B")
dti.map(lambda x: Period(year=x.year, month=x.month, freq="M"))
Reported by Pylint.
Line: 22
Column: 5
exp = Index([f(x) for x in rng], dtype="<U8")
tm.assert_index_equal(result, exp)
def test_map_fallthrough(self, capsys):
# GH#22067, check we don't get warnings about silently ignored errors
dti = date_range("2017-01-01", "2018-01-01", freq="B")
dti.map(lambda x: Period(year=x.year, month=x.month, freq="M"))
Reported by Pylint.
Line: 29
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
dti.map(lambda x: Period(year=x.year, month=x.month, freq="M"))
captured = capsys.readouterr()
assert captured.err == ""
def test_map_bug_1677(self):
index = DatetimeIndex(["2012-04-25 09:30:00.393000"])
f = index.asof
Reported by Bandit.
Line: 31
Column: 5
captured = capsys.readouterr()
assert captured.err == ""
def test_map_bug_1677(self):
index = DatetimeIndex(["2012-04-25 09:30:00.393000"])
f = index.asof
result = index.map(f)
expected = Index([f(index[0])])
Reported by Pylint.
pandas/tests/indexes/datetimes/methods/test_to_series.py
14 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
DatetimeIndex,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
DatetimeIndex,
Series,
)
import pandas._testing as tm
Reported by Pylint.
Line: 11
Column: 1
import pandas._testing as tm
class TestToSeries:
@pytest.fixture
def idx_expected(self):
naive = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B")
idx = naive.tz_localize("US/Pacific")
Reported by Pylint.
Line: 13
Column: 5
class TestToSeries:
@pytest.fixture
def idx_expected(self):
naive = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B")
idx = naive.tz_localize("US/Pacific")
expected = Series(np.array(idx.tolist(), dtype="object"), name="B")
Reported by Pylint.
Line: 13
Column: 5
class TestToSeries:
@pytest.fixture
def idx_expected(self):
naive = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B")
idx = naive.tz_localize("US/Pacific")
expected = Series(np.array(idx.tolist(), dtype="object"), name="B")
Reported by Pylint.
Line: 19
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
expected = Series(np.array(idx.tolist(), dtype="object"), name="B")
assert expected.dtype == idx.dtype
return idx, expected
def test_to_series_keep_tz_deprecated_true(self, idx_expected):
# convert to series while keeping the timezone
idx, expected = idx_expected
Reported by Bandit.
Line: 22
Column: 5
assert expected.dtype == idx.dtype
return idx, expected
def test_to_series_keep_tz_deprecated_true(self, idx_expected):
# convert to series while keeping the timezone
idx, expected = idx_expected
msg = "stop passing 'keep_tz'"
with tm.assert_produces_warning(FutureWarning) as m:
Reported by Pylint.
Line: 22
Column: 5
assert expected.dtype == idx.dtype
return idx, expected
def test_to_series_keep_tz_deprecated_true(self, idx_expected):
# convert to series while keeping the timezone
idx, expected = idx_expected
msg = "stop passing 'keep_tz'"
with tm.assert_produces_warning(FutureWarning) as m:
Reported by Pylint.
Line: 27
Column: 59
idx, expected = idx_expected
msg = "stop passing 'keep_tz'"
with tm.assert_produces_warning(FutureWarning) as m:
result = idx.to_series(keep_tz=True, index=[0, 1])
assert msg in str(m[0].message)
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 29
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
msg = "stop passing 'keep_tz'"
with tm.assert_produces_warning(FutureWarning) as m:
result = idx.to_series(keep_tz=True, index=[0, 1])
assert msg in str(m[0].message)
tm.assert_series_equal(result, expected)
def test_to_series_keep_tz_deprecated_false(self, idx_expected):
idx, expected = idx_expected
Reported by Bandit.
pandas/tests/indexes/datetimelike_/test_value_counts.py
14 issues
Line: 35
Column: 23
def _check_value_counts_with_repeats(self, orig):
# create repeated values, 'n'th element is repeated by n+1 times
idx = type(orig)(
np.repeat(orig._values, range(1, len(orig) + 1)), dtype=orig.dtype
)
exp_idx = orig[::-1]
if not isinstance(exp_idx, PeriodIndex):
exp_idx = exp_idx._with_freq(None)
Reported by Pylint.
Line: 40
Column: 23
exp_idx = orig[::-1]
if not isinstance(exp_idx, PeriodIndex):
exp_idx = exp_idx._with_freq(None)
expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64")
for obj in [idx, Series(idx)]:
tm.assert_series_equal(obj.value_counts(), expected)
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
from pandas import (
DatetimeIndex,
NaT,
PeriodIndex,
Series,
TimedeltaIndex,
date_range,
Reported by Pylint.
Line: 16
Column: 1
import pandas._testing as tm
class TestValueCounts:
# GH#7735
def test_value_counts_unique_datetimeindex(self, tz_naive_fixture):
tz = tz_naive_fixture
orig = date_range("2011-01-01 09:00", freq="H", periods=10, tz=tz)
Reported by Pylint.
Line: 19
Column: 5
class TestValueCounts:
# GH#7735
def test_value_counts_unique_datetimeindex(self, tz_naive_fixture):
tz = tz_naive_fixture
orig = date_range("2011-01-01 09:00", freq="H", periods=10, tz=tz)
self._check_value_counts_with_repeats(orig)
def test_value_counts_unique_timedeltaindex(self):
Reported by Pylint.
Line: 20
Column: 9
# GH#7735
def test_value_counts_unique_datetimeindex(self, tz_naive_fixture):
tz = tz_naive_fixture
orig = date_range("2011-01-01 09:00", freq="H", periods=10, tz=tz)
self._check_value_counts_with_repeats(orig)
def test_value_counts_unique_timedeltaindex(self):
orig = timedelta_range("1 days 09:00:00", freq="H", periods=10)
Reported by Pylint.
Line: 24
Column: 5
orig = date_range("2011-01-01 09:00", freq="H", periods=10, tz=tz)
self._check_value_counts_with_repeats(orig)
def test_value_counts_unique_timedeltaindex(self):
orig = timedelta_range("1 days 09:00:00", freq="H", periods=10)
self._check_value_counts_with_repeats(orig)
def test_value_counts_unique_periodindex(self):
orig = period_range("2011-01-01 09:00", freq="H", periods=10)
Reported by Pylint.
Line: 28
Column: 5
orig = timedelta_range("1 days 09:00:00", freq="H", periods=10)
self._check_value_counts_with_repeats(orig)
def test_value_counts_unique_periodindex(self):
orig = period_range("2011-01-01 09:00", freq="H", periods=10)
self._check_value_counts_with_repeats(orig)
def _check_value_counts_with_repeats(self, orig):
# create repeated values, 'n'th element is repeated by n+1 times
Reported by Pylint.
Line: 32
Column: 5
orig = period_range("2011-01-01 09:00", freq="H", periods=10)
self._check_value_counts_with_repeats(orig)
def _check_value_counts_with_repeats(self, orig):
# create repeated values, 'n'th element is repeated by n+1 times
idx = type(orig)(
np.repeat(orig._values, range(1, len(orig) + 1)), dtype=orig.dtype
)
Reported by Pylint.
Line: 48
Column: 5
tm.assert_index_equal(idx.unique(), orig)
def test_value_counts_unique_datetimeindex2(self, tz_naive_fixture):
tz = tz_naive_fixture
idx = DatetimeIndex(
[
"2013-01-01 09:00",
"2013-01-01 09:00",
Reported by Pylint.
pandas/io/excel/_xlwt.py
14 issues
Line: 8
Column: 1
Any,
)
import pandas._libs.json as json
from pandas._typing import StorageOptions
from pandas.io.excel._base import ExcelWriter
from pandas.io.excel._util import (
combine_kwargs,
Reported by Pylint.
Line: 8
Column: 1
Any,
)
import pandas._libs.json as json
from pandas._typing import StorageOptions
from pandas.io.excel._base import ExcelWriter
from pandas.io.excel._util import (
combine_kwargs,
Reported by Pylint.
Line: 18
Column: 5
)
if TYPE_CHECKING:
from xlwt import XFStyle
class XlwtWriter(ExcelWriter):
engine = "xlwt"
supported_extensions = (".xls",)
Reported by Pylint.
Line: 39
Column: 9
**kwargs,
):
# Use the xlwt module as the Excel writer.
import xlwt
engine_kwargs = combine_kwargs(engine_kwargs, kwargs)
if mode == "a":
raise ValueError("Append mode is not supported with xlwt!")
Reported by Pylint.
Line: 162
Column: 9
style_dict : style dictionary to convert
num_format_str : optional number format string
"""
import xlwt
if style_dict:
xlwt_stylestr = cls._style_to_xlwt(style_dict)
style = xlwt.easyxf(xlwt_stylestr, field_sep=",", line_sep=";")
else:
Reported by Pylint.
Line: 1
Column: 1
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
)
import pandas._libs.json as json
from pandas._typing import StorageOptions
Reported by Pylint.
Line: 21
Column: 1
from xlwt import XFStyle
class XlwtWriter(ExcelWriter):
engine = "xlwt"
supported_extensions = (".xls",)
def __init__(
self,
Reported by Pylint.
Line: 25
Column: 5
engine = "xlwt"
supported_extensions = (".xls",)
def __init__(
self,
path,
engine=None,
date_format=None,
datetime_format=None,
Reported by Pylint.
Line: 39
Column: 9
**kwargs,
):
# Use the xlwt module as the Excel writer.
import xlwt
engine_kwargs = combine_kwargs(engine_kwargs, kwargs)
if mode == "a":
raise ValueError("Append mode is not supported with xlwt!")
Reported by Pylint.
Line: 68
Column: 5
# fails when the ExcelWriter is just opened and then closed
self.book.save(self.handles.handle)
def write_cells(
self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None
):
sheet_name = self._get_sheet_name(sheet_name)
Reported by Pylint.