The following issues were found
pandas/tests/arrays/integer/test_repr.py
15 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas.core.arrays.integer import (
Int8Dtype,
Int16Dtype,
Int32Dtype,
Int64Dtype,
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas.core.arrays.integer import (
Int8Dtype,
Int16Dtype,
Int32Dtype,
Int64Dtype,
Reported by Pylint.
Line: 17
Column: 1
)
def test_dtypes(dtype):
# smoke tests on auto dtype construction
if dtype.is_signed_integer:
assert np.dtype(dtype.type).kind == "i"
else:
Reported by Pylint.
Line: 21
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# smoke tests on auto dtype construction
if dtype.is_signed_integer:
assert np.dtype(dtype.type).kind == "i"
else:
assert np.dtype(dtype.type).kind == "u"
assert dtype.name is not None
Reported by Bandit.
Line: 23
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
if dtype.is_signed_integer:
assert np.dtype(dtype.type).kind == "i"
else:
assert np.dtype(dtype.type).kind == "u"
assert dtype.name is not None
@pytest.mark.parametrize(
"dtype, expected",
Reported by Bandit.
Line: 24
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
assert np.dtype(dtype.type).kind == "i"
else:
assert np.dtype(dtype.type).kind == "u"
assert dtype.name is not None
@pytest.mark.parametrize(
"dtype, expected",
[
Reported by Bandit.
Line: 38
Column: 1
(UInt16Dtype(), "UInt16Dtype()"),
(UInt32Dtype(), "UInt32Dtype()"),
(UInt64Dtype(), "UInt64Dtype()"),
],
)
def test_repr_dtype(dtype, expected):
assert repr(dtype) == expected
Reported by Pylint.
Line: 41
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
],
)
def test_repr_dtype(dtype, expected):
assert repr(dtype) == expected
def test_repr_array():
result = repr(pd.array([1, None, 3]))
expected = "<IntegerArray>\n[1, <NA>, 3]\nLength: 3, dtype: Int64"
Reported by Bandit.
Line: 44
Column: 1
assert repr(dtype) == expected
def test_repr_array():
result = repr(pd.array([1, None, 3]))
expected = "<IntegerArray>\n[1, <NA>, 3]\nLength: 3, dtype: Int64"
assert result == expected
Reported by Pylint.
Line: 47
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
def test_repr_array():
result = repr(pd.array([1, None, 3]))
expected = "<IntegerArray>\n[1, <NA>, 3]\nLength: 3, dtype: Int64"
assert result == expected
def test_repr_array_long():
data = pd.array([1, 2, None] * 1000)
expected = (
Reported by Bandit.
pandas/tests/indexes/datetimes/methods/test_repeat.py
15 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
DatetimeIndex,
Timestamp,
date_range,
)
import pandas._testing as tm
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas import (
DatetimeIndex,
Timestamp,
date_range,
)
import pandas._testing as tm
Reported by Pylint.
Line: 12
Column: 1
import pandas._testing as tm
class TestRepeat:
def test_repeat_range(self, tz_naive_fixture):
tz = tz_naive_fixture
rng = date_range("1/1/2000", "1/1/2001")
result = rng.repeat(5)
Reported by Pylint.
Line: 13
Column: 5
class TestRepeat:
def test_repeat_range(self, tz_naive_fixture):
tz = tz_naive_fixture
rng = date_range("1/1/2000", "1/1/2001")
result = rng.repeat(5)
assert result.freq is None
Reported by Pylint.
Line: 13
Column: 5
class TestRepeat:
def test_repeat_range(self, tz_naive_fixture):
tz = tz_naive_fixture
rng = date_range("1/1/2000", "1/1/2001")
result = rng.repeat(5)
assert result.freq is None
Reported by Pylint.
Line: 14
Column: 9
class TestRepeat:
def test_repeat_range(self, tz_naive_fixture):
tz = tz_naive_fixture
rng = date_range("1/1/2000", "1/1/2001")
result = rng.repeat(5)
assert result.freq is None
assert len(result) == 5 * len(rng)
Reported by Pylint.
Line: 18
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
rng = date_range("1/1/2000", "1/1/2001")
result = rng.repeat(5)
assert result.freq is None
assert len(result) == 5 * len(rng)
index = date_range("2001-01-01", periods=2, freq="D", tz=tz)
exp = DatetimeIndex(
["2001-01-01", "2001-01-01", "2001-01-02", "2001-01-02"], tz=tz
Reported by Bandit.
Line: 19
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = rng.repeat(5)
assert result.freq is None
assert len(result) == 5 * len(rng)
index = date_range("2001-01-01", periods=2, freq="D", tz=tz)
exp = DatetimeIndex(
["2001-01-01", "2001-01-01", "2001-01-02", "2001-01-02"], tz=tz
)
Reported by Bandit.
Line: 27
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
)
for res in [index.repeat(2), np.repeat(index, 2)]:
tm.assert_index_equal(res, exp)
assert res.freq is None
index = date_range("2001-01-01", periods=2, freq="2D", tz=tz)
exp = DatetimeIndex(
["2001-01-01", "2001-01-01", "2001-01-03", "2001-01-03"], tz=tz
)
Reported by Bandit.
Line: 35
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
)
for res in [index.repeat(2), np.repeat(index, 2)]:
tm.assert_index_equal(res, exp)
assert res.freq is None
index = DatetimeIndex(["2001-01-01", "NaT", "2003-01-01"], tz=tz)
exp = DatetimeIndex(
[
"2001-01-01",
Reported by Bandit.
pandas/core/computation/eval.py
15 issues
Line: 9
Column: 1
import tokenize
import warnings
from pandas._libs.lib import no_default
from pandas.util._validators import validate_bool_kwarg
from pandas.core.computation.engines import ENGINES
from pandas.core.computation.expr import (
PARSERS,
Reported by Pylint.
Line: 9
Column: 1
import tokenize
import warnings
from pandas._libs.lib import no_default
from pandas.util._validators import validate_bool_kwarg
from pandas.core.computation.engines import ENGINES
from pandas.core.computation.expr import (
PARSERS,
Reported by Pylint.
Line: 57
Column: 3
f"Invalid engine '{engine}' passed, valid engines are {valid_engines}"
)
# TODO: validate this in a more general way (thinking of future engines
# that won't necessarily be import-able)
# Could potentially be done on engine instantiation
if engine == "numexpr" and not NUMEXPR_INSTALLED:
raise ImportError(
"'numexpr' is not installed or an unsupported version. Cannot use "
Reported by Pylint.
Line: 165
Column: 1
raise SyntaxError(msg)
def eval(
expr: str | BinOp, # we leave BinOp out of the docstr bc it isn't for users
parser: str = "pandas",
engine: str | None = None,
truediv=no_default,
local_dict=None,
Reported by Pylint.
Line: 385
Column: 3
# to use a non-numeric indexer
try:
with warnings.catch_warnings(record=True):
# TODO: Filter the warnings we actually care about here.
target[assigner] = ret
except (TypeError, IndexError) as err:
raise ValueError("Cannot assign expression output to target") from err
if not resolvers:
Reported by Pylint.
Line: 45
Column: 5
str
Engine name.
"""
from pandas.core.computation.check import NUMEXPR_INSTALLED
from pandas.core.computation.expressions import USE_NUMEXPR
if engine is None:
engine = "numexpr" if USE_NUMEXPR else "python"
Reported by Pylint.
Line: 46
Column: 5
Engine name.
"""
from pandas.core.computation.check import NUMEXPR_INSTALLED
from pandas.core.computation.expressions import USE_NUMEXPR
if engine is None:
engine = "numexpr" if USE_NUMEXPR else "python"
if engine not in ENGINES:
Reported by Pylint.
Line: 141
Column: 5
ValueError
* If the expression is empty.
"""
s = pprint_thing(expr)
_check_expression(s)
return s
def _check_for_locals(expr: str, stack_level: int, parser: str):
Reported by Pylint.
Line: 165
Column: 1
raise SyntaxError(msg)
def eval(
expr: str | BinOp, # we leave BinOp out of the docstr bc it isn't for users
parser: str = "pandas",
engine: str | None = None,
truediv=no_default,
local_dict=None,
Reported by Pylint.
Line: 165
Column: 1
raise SyntaxError(msg)
def eval(
expr: str | BinOp, # we leave BinOp out of the docstr bc it isn't for users
parser: str = "pandas",
engine: str | None = None,
truediv=no_default,
local_dict=None,
Reported by Pylint.
pandas/core/indexes/timedeltas.py
15 issues
Line: 4
Column: 1
""" implement the TimedeltaIndex """
from __future__ import annotations
from pandas._libs import (
index as libindex,
lib,
)
from pandas._libs.tslibs import (
Timedelta,
Reported by Pylint.
Line: 4
Column: 1
""" implement the TimedeltaIndex """
from __future__ import annotations
from pandas._libs import (
index as libindex,
lib,
)
from pandas._libs.tslibs import (
Timedelta,
Reported by Pylint.
Line: 33
Column: 7
@inherit_names(
["__neg__", "__pos__", "__abs__", "total_seconds", "round", "floor", "ceil"]
+ TimedeltaArray._field_ops,
TimedeltaArray,
wrap=True,
)
@inherit_names(
[
Reported by Pylint.
Line: 48
Column: 1
],
TimedeltaArray,
)
class TimedeltaIndex(DatetimeTimedeltaMixin):
"""
Immutable ndarray of timedelta64 data, represented internally as int64, and
which can be boxed to timedelta objects.
Parameters
Reported by Pylint.
Line: 109
Column: 25
_data: TimedeltaArray
# Use base class method instead of DatetimeTimedeltaMixin._get_string_slice
_get_string_slice = Index._get_string_slice
# -------------------------------------------------------------------
# Constructors
def __new__(
Reported by Pylint.
Line: 114
Column: 5
# -------------------------------------------------------------------
# Constructors
def __new__(
cls,
data=None,
unit=None,
freq=lib.no_default,
closed=None,
Reported by Pylint.
Line: 119
Column: 9
data=None,
unit=None,
freq=lib.no_default,
closed=None,
dtype=TD64NS_DTYPE,
copy=False,
name=None,
):
name = maybe_extract_name(name, data, cls)
Reported by Pylint.
Line: 175
Column: 19
self._check_indexing_error(key)
try:
key = self._data._validate_scalar(key, unbox=False)
except TypeError as err:
raise KeyError(key) from err
return Index.get_loc(self, key, method, tolerance)
Reported by Pylint.
Line: 195
Column: 5
# -------------------------------------------------------------------
@property
def inferred_type(self) -> str:
return "timedelta64"
def timedelta_range(
start=None,
Reported by Pylint.
Line: 275
Column: 13
freq = "D"
freq, _ = dtl.maybe_infer_freq(freq)
tdarr = TimedeltaArray._generate_range(start, end, periods, freq, closed=closed)
return TimedeltaIndex._simple_new(tdarr, name=name)
Reported by Pylint.
pandas/tests/io/test_orc.py
15 issues
Line: 6
Column: 1
import os
import numpy as np
import pytest
import pandas as pd
from pandas import read_orc
import pandas._testing as tm
Reported by Pylint.
Line: 24
Column: 27
return datapath("io", "data", "orc")
def test_orc_reader_empty(dirpath):
columns = [
"boolean1",
"byte1",
"short1",
"int1",
Reported by Pylint.
Line: 57
Column: 27
tm.assert_equal(expected, got)
def test_orc_reader_basic(dirpath):
data = {
"boolean1": np.array([False, True], dtype="bool"),
"byte1": np.array([1, 100], dtype="int8"),
"short1": np.array([1024, 2048], dtype="int16"),
"int1": np.array([65536, 65536], dtype="int32"),
Reported by Pylint.
Line: 77
Column: 29
tm.assert_equal(expected, got)
def test_orc_reader_decimal(dirpath):
from decimal import Decimal
# Only testing the first 10 rows of data
data = {
"_col0": np.array(
Reported by Pylint.
Line: 106
Column: 30
tm.assert_equal(expected, got)
def test_orc_reader_date_low(dirpath):
data = {
"time": np.array(
[
"1900-05-05 12:34:56.100000",
"1900-05-05 12:34:56.100100",
Reported by Pylint.
Line: 147
Column: 31
tm.assert_equal(expected, got)
def test_orc_reader_date_high(dirpath):
data = {
"time": np.array(
[
"2038-05-05 12:34:56.100000",
"2038-05-05 12:34:56.100100",
Reported by Pylint.
Line: 188
Column: 39
tm.assert_equal(expected, got)
def test_orc_reader_snappy_compressed(dirpath):
data = {
"int1": np.array(
[
-1160101563,
1181413113,
Reported by Pylint.
Line: 20
Column: 1
@pytest.fixture
def dirpath(datapath):
return datapath("io", "data", "orc")
def test_orc_reader_empty(dirpath):
columns = [
Reported by Pylint.
Line: 24
Column: 1
return datapath("io", "data", "orc")
def test_orc_reader_empty(dirpath):
columns = [
"boolean1",
"byte1",
"short1",
"int1",
Reported by Pylint.
Line: 57
Column: 1
tm.assert_equal(expected, got)
def test_orc_reader_basic(dirpath):
data = {
"boolean1": np.array([False, True], dtype="bool"),
"byte1": np.array([1, 100], dtype="int8"),
"short1": np.array([1024, 2048], dtype="int16"),
"int1": np.array([65536, 65536], dtype="int32"),
Reported by Pylint.
pandas/tests/indexes/period/test_searchsorted.py
15 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs import IncompatibleFrequency
from pandas import (
NaT,
Period,
PeriodIndex,
Reported by Pylint.
Line: 50
Column: 18
expected = np.arange(len(pidx), dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
result = pidx._data.searchsorted(klass(pidx))
tm.assert_numpy_array_equal(result, expected)
def test_searchsorted_invalid(self):
pidx = PeriodIndex(
["2014-01-01", "2014-01-02", "2014-01-03", "2014-01-04", "2014-01-05"],
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs import IncompatibleFrequency
from pandas import (
NaT,
Period,
PeriodIndex,
Reported by Pylint.
Line: 16
Column: 1
import pandas._testing as tm
class TestSearchsorted:
@pytest.mark.parametrize("freq", ["D", "2D"])
def test_searchsorted(self, freq):
pidx = PeriodIndex(
["2014-01-01", "2014-01-02", "2014-01-03", "2014-01-04", "2014-01-05"],
freq=freq,
Reported by Pylint.
Line: 18
Column: 5
class TestSearchsorted:
@pytest.mark.parametrize("freq", ["D", "2D"])
def test_searchsorted(self, freq):
pidx = PeriodIndex(
["2014-01-01", "2014-01-02", "2014-01-03", "2014-01-04", "2014-01-05"],
freq=freq,
)
Reported by Pylint.
Line: 18
Column: 5
class TestSearchsorted:
@pytest.mark.parametrize("freq", ["D", "2D"])
def test_searchsorted(self, freq):
pidx = PeriodIndex(
["2014-01-01", "2014-01-02", "2014-01-03", "2014-01-04", "2014-01-05"],
freq=freq,
)
Reported by Pylint.
Line: 24
Column: 9
freq=freq,
)
p1 = Period("2014-01-01", freq=freq)
assert pidx.searchsorted(p1) == 0
p2 = Period("2014-01-04", freq=freq)
assert pidx.searchsorted(p2) == 3
Reported by Pylint.
Line: 25
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
)
p1 = Period("2014-01-01", freq=freq)
assert pidx.searchsorted(p1) == 0
p2 = Period("2014-01-04", freq=freq)
assert pidx.searchsorted(p2) == 3
assert pidx.searchsorted(NaT) == 5
Reported by Bandit.
Line: 27
Column: 9
p1 = Period("2014-01-01", freq=freq)
assert pidx.searchsorted(p1) == 0
p2 = Period("2014-01-04", freq=freq)
assert pidx.searchsorted(p2) == 3
assert pidx.searchsorted(NaT) == 5
msg = "Input has different freq=H from PeriodArray"
Reported by Pylint.
Line: 28
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
assert pidx.searchsorted(p1) == 0
p2 = Period("2014-01-04", freq=freq)
assert pidx.searchsorted(p2) == 3
assert pidx.searchsorted(NaT) == 5
msg = "Input has different freq=H from PeriodArray"
with pytest.raises(IncompatibleFrequency, match=msg):
Reported by Bandit.
pandas/tests/io/test_spss.py
15 issues
Line: 4
Column: 1
from pathlib import Path
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
pyreadstat = pytest.importorskip("pyreadstat")
Reported by Pylint.
Line: 1
Column: 1
from pathlib import Path
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
pyreadstat = pytest.importorskip("pyreadstat")
Reported by Pylint.
Line: 13
Column: 1
@pytest.mark.parametrize("path_klass", [lambda p: p, Path])
def test_spss_labelled_num(path_klass, datapath):
# test file from the Haven project (https://haven.tidyverse.org/)
fname = path_klass(datapath("io", "data", "spss", "labelled-num.sav"))
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame({"VAR00002": "This is one"}, index=[0])
Reported by Pylint.
Line: 17
Column: 5
# test file from the Haven project (https://haven.tidyverse.org/)
fname = path_klass(datapath("io", "data", "spss", "labelled-num.sav"))
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame({"VAR00002": "This is one"}, index=[0])
expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
tm.assert_frame_equal(df, expected)
df = pd.read_spss(fname, convert_categoricals=False)
Reported by Pylint.
Line: 22
Column: 5
expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
tm.assert_frame_equal(df, expected)
df = pd.read_spss(fname, convert_categoricals=False)
expected = pd.DataFrame({"VAR00002": 1.0}, index=[0])
tm.assert_frame_equal(df, expected)
def test_spss_labelled_num_na(datapath):
Reported by Pylint.
Line: 27
Column: 1
tm.assert_frame_equal(df, expected)
def test_spss_labelled_num_na(datapath):
# test file from the Haven project (https://haven.tidyverse.org/)
fname = datapath("io", "data", "spss", "labelled-num-na.sav")
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame({"VAR00002": ["This is one", None]})
Reported by Pylint.
Line: 31
Column: 5
# test file from the Haven project (https://haven.tidyverse.org/)
fname = datapath("io", "data", "spss", "labelled-num-na.sav")
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame({"VAR00002": ["This is one", None]})
expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
tm.assert_frame_equal(df, expected)
df = pd.read_spss(fname, convert_categoricals=False)
Reported by Pylint.
Line: 36
Column: 5
expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
tm.assert_frame_equal(df, expected)
df = pd.read_spss(fname, convert_categoricals=False)
expected = pd.DataFrame({"VAR00002": [1.0, np.nan]})
tm.assert_frame_equal(df, expected)
def test_spss_labelled_str(datapath):
Reported by Pylint.
Line: 41
Column: 1
tm.assert_frame_equal(df, expected)
def test_spss_labelled_str(datapath):
# test file from the Haven project (https://haven.tidyverse.org/)
fname = datapath("io", "data", "spss", "labelled-str.sav")
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame({"gender": ["Male", "Female"]})
Reported by Pylint.
Line: 45
Column: 5
# test file from the Haven project (https://haven.tidyverse.org/)
fname = datapath("io", "data", "spss", "labelled-str.sav")
df = pd.read_spss(fname, convert_categoricals=True)
expected = pd.DataFrame({"gender": ["Male", "Female"]})
expected["gender"] = pd.Categorical(expected["gender"])
tm.assert_frame_equal(df, expected)
df = pd.read_spss(fname, convert_categoricals=False)
Reported by Pylint.
pandas/tests/tslibs/test_ccalendar.py
15 issues
Line: 6
Column: 1
datetime,
)
from hypothesis import (
given,
strategies as st,
)
import numpy as np
import pytest
Reported by Pylint.
Line: 11
Column: 1
strategies as st,
)
import numpy as np
import pytest
from pandas._libs.tslibs import ccalendar
import pandas as pd
Reported by Pylint.
Line: 13
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs import ccalendar
import pandas as pd
@pytest.mark.parametrize(
Reported by Pylint.
Line: 1
Column: 1
from datetime import (
date,
datetime,
)
from hypothesis import (
given,
strategies as st,
)
Reported by Pylint.
Line: 25
Column: 1
((2004, 3, 1), 61),
((1907, 12, 31), 365), # End-of-year, non-leap year.
((2004, 12, 31), 366), # End-of-year, leap year.
],
)
def test_get_day_of_year_numeric(date_tuple, expected):
assert ccalendar.get_day_of_year(*date_tuple) == expected
Reported by Pylint.
Line: 28
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
],
)
def test_get_day_of_year_numeric(date_tuple, expected):
assert ccalendar.get_day_of_year(*date_tuple) == expected
def test_get_day_of_year_dt():
dt = datetime.fromordinal(1 + np.random.randint(365 * 4000))
result = ccalendar.get_day_of_year(dt.year, dt.month, dt.day)
Reported by Bandit.
Line: 31
Column: 1
assert ccalendar.get_day_of_year(*date_tuple) == expected
def test_get_day_of_year_dt():
dt = datetime.fromordinal(1 + np.random.randint(365 * 4000))
result = ccalendar.get_day_of_year(dt.year, dt.month, dt.day)
expected = (dt - dt.replace(month=1, day=1)).days + 1
assert result == expected
Reported by Pylint.
Line: 32
Column: 5
def test_get_day_of_year_dt():
dt = datetime.fromordinal(1 + np.random.randint(365 * 4000))
result = ccalendar.get_day_of_year(dt.year, dt.month, dt.day)
expected = (dt - dt.replace(month=1, day=1)).days + 1
assert result == expected
Reported by Pylint.
Line: 36
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = ccalendar.get_day_of_year(dt.year, dt.month, dt.day)
expected = (dt - dt.replace(month=1, day=1)).days + 1
assert result == expected
@pytest.mark.parametrize(
"input_date_tuple, expected_iso_tuple",
[
Reported by Bandit.
Line: 53
Column: 1
[(2005, 12, 31), (2005, 52, 6)],
[(2008, 12, 28), (2008, 52, 7)],
[(2008, 12, 29), (2009, 1, 1)],
],
)
def test_dt_correct_iso_8601_year_week_and_day(input_date_tuple, expected_iso_tuple):
result = ccalendar.get_iso_calendar(*input_date_tuple)
expected_from_date_isocalendar = date(*input_date_tuple).isocalendar()
assert result == expected_from_date_isocalendar
Reported by Pylint.
pandas/tests/series/methods/test_item.py
15 issues
Line: 5
Column: 1
Series.item method, mainly testing that we get python scalars as opposed to
numpy scalars.
"""
import pytest
from pandas import (
Series,
Timedelta,
Timestamp,
Reported by Pylint.
Line: 15
Column: 1
)
class TestItem:
def test_item(self):
# We are testing that we get python scalars as opposed to numpy scalars
ser = Series([1])
result = ser.item()
assert result == 1
Reported by Pylint.
Line: 15
Column: 1
)
class TestItem:
def test_item(self):
# We are testing that we get python scalars as opposed to numpy scalars
ser = Series([1])
result = ser.item()
assert result == 1
Reported by Pylint.
Line: 16
Column: 5
class TestItem:
def test_item(self):
# We are testing that we get python scalars as opposed to numpy scalars
ser = Series([1])
result = ser.item()
assert result == 1
assert result == ser.iloc[0]
Reported by Pylint.
Line: 16
Column: 5
class TestItem:
def test_item(self):
# We are testing that we get python scalars as opposed to numpy scalars
ser = Series([1])
result = ser.item()
assert result == 1
assert result == ser.iloc[0]
Reported by Pylint.
Line: 20
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
# We are testing that we get python scalars as opposed to numpy scalars
ser = Series([1])
result = ser.item()
assert result == 1
assert result == ser.iloc[0]
assert isinstance(result, int) # i.e. not np.int64
ser = Series([0.5], index=[3])
result = ser.item()
Reported by Bandit.
Line: 21
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
ser = Series([1])
result = ser.item()
assert result == 1
assert result == ser.iloc[0]
assert isinstance(result, int) # i.e. not np.int64
ser = Series([0.5], index=[3])
result = ser.item()
assert isinstance(result, float)
Reported by Bandit.
Line: 22
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
result = ser.item()
assert result == 1
assert result == ser.iloc[0]
assert isinstance(result, int) # i.e. not np.int64
ser = Series([0.5], index=[3])
result = ser.item()
assert isinstance(result, float)
assert result == 0.5
Reported by Bandit.
Line: 26
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
ser = Series([0.5], index=[3])
result = ser.item()
assert isinstance(result, float)
assert result == 0.5
ser = Series([1, 2])
msg = "can only convert an array of size 1"
with pytest.raises(ValueError, match=msg):
Reported by Bandit.
Line: 27
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
ser = Series([0.5], index=[3])
result = ser.item()
assert isinstance(result, float)
assert result == 0.5
ser = Series([1, 2])
msg = "can only convert an array of size 1"
with pytest.raises(ValueError, match=msg):
ser.item()
Reported by Bandit.
pandas/tests/io/formats/test_css.py
15 issues
Line: 1
Column: 1
import pytest
import pandas._testing as tm
from pandas.io.formats.css import (
CSSResolver,
CSSWarning,
)
Reported by Pylint.
Line: 37
Column: 34
("empty-list", "", ";"),
],
)
def test_css_parse_normalisation(name, norm, abnorm):
assert_same_resolution(norm, abnorm)
@pytest.mark.parametrize(
"invalid_css,remainder",
Reported by Pylint.
Line: 1
Column: 1
import pytest
import pandas._testing as tm
from pandas.io.formats.css import (
CSSResolver,
CSSWarning,
)
Reported by Pylint.
Line: 11
Column: 1
)
def assert_resolves(css, props, inherited=None):
resolve = CSSResolver()
actual = resolve(css, inherited=inherited)
assert props == actual
Reported by Pylint.
Line: 14
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
def assert_resolves(css, props, inherited=None):
resolve = CSSResolver()
actual = resolve(css, inherited=inherited)
assert props == actual
def assert_same_resolution(css1, css2, inherited=None):
resolve = CSSResolver()
resolved1 = resolve(css1, inherited=inherited)
Reported by Bandit.
Line: 17
Column: 1
assert props == actual
def assert_same_resolution(css1, css2, inherited=None):
resolve = CSSResolver()
resolved1 = resolve(css1, inherited=inherited)
resolved2 = resolve(css2, inherited=inherited)
assert resolved1 == resolved2
Reported by Pylint.
Line: 21
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
resolve = CSSResolver()
resolved1 = resolve(css1, inherited=inherited)
resolved2 = resolve(css2, inherited=inherited)
assert resolved1 == resolved2
@pytest.mark.parametrize(
"name,norm,abnorm",
[
Reported by Bandit.
Line: 35
Column: 1
("case", "hello: world; foo: bar", "Hello: WORLD; foO: bar"),
("empty-decl", "hello: world; foo: bar", "; hello: world;; foo: bar;\n; ;"),
("empty-list", "", ";"),
],
)
def test_css_parse_normalisation(name, norm, abnorm):
assert_same_resolution(norm, abnorm)
Reported by Pylint.
Line: 60
Column: 1
("font-size: 1unknownunit", "font-size: 1em"),
("font-size: 10", "font-size: 1em"),
("font-size: 10 pt", "font-size: 1em"),
],
)
def test_css_parse_invalid(invalid_css, remainder):
with tm.assert_produces_warning(CSSWarning):
assert_same_resolution(invalid_css, remainder)
Reported by Pylint.
Line: 97
Column: 1
"border-right-style",
"border-bottom-style",
"border-left-style",
],
),
],
)
def test_css_side_shorthands(shorthand, expansions):
top, right, bottom, left = expansions
Reported by Pylint.