The following issues were found
keras/utils/losses_utils_test.py
49 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for losses_utils."""
import tensorflow.compat.v2 as tf
from keras import combinations
from keras.utils import losses_utils
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
Reported by Pylint.
Line: 24
Column: 1
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class RemoveSqueezableTest(tf.test.TestCase):
"""Test remove_squeezable_dimensions"""
def test_ragged_3d_same_shape(self):
""" shape (2, (sequence={1, 2}), 3)"""
x = tf.ragged.constant([[[1, 2, 3]], [[4, 5, 6], [7, 8, 9]]])
rank = x.shape.ndims
Reported by Pylint.
Line: 26
Column: 1
class RemoveSqueezableTest(tf.test.TestCase):
"""Test remove_squeezable_dimensions"""
def test_ragged_3d_same_shape(self):
""" shape (2, (sequence={1, 2}), 3)"""
x = tf.ragged.constant([[[1, 2, 3]], [[4, 5, 6], [7, 8, 9]]])
rank = x.shape.ndims
x_p, _ = losses_utils.remove_squeezable_dimensions(x, x)
self.assertEqual(x_p.shape.ndims, rank)
Reported by Pylint.
Line: 27
Column: 1
"""Test remove_squeezable_dimensions"""
def test_ragged_3d_same_shape(self):
""" shape (2, (sequence={1, 2}), 3)"""
x = tf.ragged.constant([[[1, 2, 3]], [[4, 5, 6], [7, 8, 9]]])
rank = x.shape.ndims
x_p, _ = losses_utils.remove_squeezable_dimensions(x, x)
self.assertEqual(x_p.shape.ndims, rank)
Reported by Pylint.
Line: 28
Column: 1
def test_ragged_3d_same_shape(self):
""" shape (2, (sequence={1, 2}), 3)"""
x = tf.ragged.constant([[[1, 2, 3]], [[4, 5, 6], [7, 8, 9]]])
rank = x.shape.ndims
x_p, _ = losses_utils.remove_squeezable_dimensions(x, x)
self.assertEqual(x_p.shape.ndims, rank)
def test_ragged_3d_4d_squeezable(self):
Reported by Pylint.
Line: 28
Column: 5
def test_ragged_3d_same_shape(self):
""" shape (2, (sequence={1, 2}), 3)"""
x = tf.ragged.constant([[[1, 2, 3]], [[4, 5, 6], [7, 8, 9]]])
rank = x.shape.ndims
x_p, _ = losses_utils.remove_squeezable_dimensions(x, x)
self.assertEqual(x_p.shape.ndims, rank)
def test_ragged_3d_4d_squeezable(self):
Reported by Pylint.
Line: 29
Column: 1
def test_ragged_3d_same_shape(self):
""" shape (2, (sequence={1, 2}), 3)"""
x = tf.ragged.constant([[[1, 2, 3]], [[4, 5, 6], [7, 8, 9]]])
rank = x.shape.ndims
x_p, _ = losses_utils.remove_squeezable_dimensions(x, x)
self.assertEqual(x_p.shape.ndims, rank)
def test_ragged_3d_4d_squeezable(self):
""" shapes:
Reported by Pylint.
Line: 30
Column: 1
""" shape (2, (sequence={1, 2}), 3)"""
x = tf.ragged.constant([[[1, 2, 3]], [[4, 5, 6], [7, 8, 9]]])
rank = x.shape.ndims
x_p, _ = losses_utils.remove_squeezable_dimensions(x, x)
self.assertEqual(x_p.shape.ndims, rank)
def test_ragged_3d_4d_squeezable(self):
""" shapes:
Reported by Pylint.
Line: 31
Column: 1
x = tf.ragged.constant([[[1, 2, 3]], [[4, 5, 6], [7, 8, 9]]])
rank = x.shape.ndims
x_p, _ = losses_utils.remove_squeezable_dimensions(x, x)
self.assertEqual(x_p.shape.ndims, rank)
def test_ragged_3d_4d_squeezable(self):
""" shapes:
x: (2, (sequence={1, 2}), 3)
Reported by Pylint.
Line: 33
Column: 1
x_p, _ = losses_utils.remove_squeezable_dimensions(x, x)
self.assertEqual(x_p.shape.ndims, rank)
def test_ragged_3d_4d_squeezable(self):
""" shapes:
x: (2, (sequence={1, 2}), 3)
y: (2, (sequence={1, 2}), 3, 1)
"""
Reported by Pylint.
keras/utils/control_flow_util.py
47 issues
Line: 20
Column: 1
This file is copied from tensorflow/python/ops/control_flow_util.py.
"""
import tensorflow.compat.v2 as tf
def InXlaContext(graph):
ctxt = graph._get_control_flow_context() # pylint: disable=protected-access
return GetContainingXLAContext(ctxt) is not None
Reported by Pylint.
Line: 23
Column: 1
import tensorflow.compat.v2 as tf
def InXlaContext(graph):
ctxt = graph._get_control_flow_context() # pylint: disable=protected-access
return GetContainingXLAContext(ctxt) is not None
def GraphOrParentsInXlaContext(graph):
Reported by Pylint.
Line: 23
Column: 1
import tensorflow.compat.v2 as tf
def InXlaContext(graph):
ctxt = graph._get_control_flow_context() # pylint: disable=protected-access
return GetContainingXLAContext(ctxt) is not None
def GraphOrParentsInXlaContext(graph):
Reported by Pylint.
Line: 24
Column: 1
def InXlaContext(graph):
ctxt = graph._get_control_flow_context() # pylint: disable=protected-access
return GetContainingXLAContext(ctxt) is not None
def GraphOrParentsInXlaContext(graph):
while True:
Reported by Pylint.
Line: 25
Column: 1
def InXlaContext(graph):
ctxt = graph._get_control_flow_context() # pylint: disable=protected-access
return GetContainingXLAContext(ctxt) is not None
def GraphOrParentsInXlaContext(graph):
while True:
if InXlaContext(graph): return True
Reported by Pylint.
Line: 28
Column: 1
return GetContainingXLAContext(ctxt) is not None
def GraphOrParentsInXlaContext(graph):
while True:
if InXlaContext(graph): return True
try:
graph = graph.outer_graph
except AttributeError:
Reported by Pylint.
Line: 28
Column: 1
return GetContainingXLAContext(ctxt) is not None
def GraphOrParentsInXlaContext(graph):
while True:
if InXlaContext(graph): return True
try:
graph = graph.outer_graph
except AttributeError:
Reported by Pylint.
Line: 29
Column: 1
def GraphOrParentsInXlaContext(graph):
while True:
if InXlaContext(graph): return True
try:
graph = graph.outer_graph
except AttributeError:
return False
Reported by Pylint.
Line: 30
Column: 1
def GraphOrParentsInXlaContext(graph):
while True:
if InXlaContext(graph): return True
try:
graph = graph.outer_graph
except AttributeError:
return False
Reported by Pylint.
Line: 30
Column: 29
def GraphOrParentsInXlaContext(graph):
while True:
if InXlaContext(graph): return True
try:
graph = graph.outer_graph
except AttributeError:
return False
Reported by Pylint.
keras/benchmarks/keras_examples_benchmarks/mnist_conv_benchmark_test.py
46 issues
Line: 20
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
from keras.benchmarks import benchmark_util
Reported by Pylint.
Line: 24
Column: 1
import numpy as np
from keras.benchmarks import benchmark_util
class ConvMnistBenchmark(tf.test.Benchmark):
"""Benchmarks for Convnet using `tf.test.Benchmark`."""
Reported by Pylint.
Line: 28
Column: 1
class ConvMnistBenchmark(tf.test.Benchmark):
"""Benchmarks for Convnet using `tf.test.Benchmark`."""
def __init__(self):
super(ConvMnistBenchmark, self).__init__()
self.num_classes = 10
self.input_shape = (28, 28, 1)
Reported by Pylint.
Line: 30
Column: 1
class ConvMnistBenchmark(tf.test.Benchmark):
"""Benchmarks for Convnet using `tf.test.Benchmark`."""
def __init__(self):
super(ConvMnistBenchmark, self).__init__()
self.num_classes = 10
self.input_shape = (28, 28, 1)
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.astype('float32') / 255
Reported by Pylint.
Line: 31
Column: 1
"""Benchmarks for Convnet using `tf.test.Benchmark`."""
def __init__(self):
super(ConvMnistBenchmark, self).__init__()
self.num_classes = 10
self.input_shape = (28, 28, 1)
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.astype('float32') / 255
self.x_train = np.expand_dims(self.x_train, -1)
Reported by Pylint.
Line: 31
Column: 5
"""Benchmarks for Convnet using `tf.test.Benchmark`."""
def __init__(self):
super(ConvMnistBenchmark, self).__init__()
self.num_classes = 10
self.input_shape = (28, 28, 1)
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.astype('float32') / 255
self.x_train = np.expand_dims(self.x_train, -1)
Reported by Pylint.
Line: 32
Column: 1
def __init__(self):
super(ConvMnistBenchmark, self).__init__()
self.num_classes = 10
self.input_shape = (28, 28, 1)
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.astype('float32') / 255
self.x_train = np.expand_dims(self.x_train, -1)
self.y_train = tf.keras.utils.to_categorical(self.y_train, self.num_classes)
Reported by Pylint.
Line: 33
Column: 1
def __init__(self):
super(ConvMnistBenchmark, self).__init__()
self.num_classes = 10
self.input_shape = (28, 28, 1)
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.astype('float32') / 255
self.x_train = np.expand_dims(self.x_train, -1)
self.y_train = tf.keras.utils.to_categorical(self.y_train, self.num_classes)
self.epochs = 15
Reported by Pylint.
Line: 34
Column: 1
super(ConvMnistBenchmark, self).__init__()
self.num_classes = 10
self.input_shape = (28, 28, 1)
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.astype('float32') / 255
self.x_train = np.expand_dims(self.x_train, -1)
self.y_train = tf.keras.utils.to_categorical(self.y_train, self.num_classes)
self.epochs = 15
Reported by Pylint.
Line: 35
Column: 1
self.num_classes = 10
self.input_shape = (28, 28, 1)
(self.x_train, self.y_train), _ = tf.keras.datasets.mnist.load_data()
self.x_train = self.x_train.astype('float32') / 255
self.x_train = np.expand_dims(self.x_train, -1)
self.y_train = tf.keras.utils.to_categorical(self.y_train, self.num_classes)
self.epochs = 15
def _build_model(self):
Reported by Pylint.
keras/distribute/distributed_training_utils.py
46 issues
Line: 17
Column: 1
# ==============================================================================
"""Utilities related to distributed training."""
from absl import flags
from keras import backend
import tensorflow.compat.v2 as tf
FLAGS = flags.FLAGS
Reported by Pylint.
Line: 20
Column: 1
from absl import flags
from keras import backend
import tensorflow.compat.v2 as tf
FLAGS = flags.FLAGS
# TODO(b/118776054): Currently we support global batch size for TPUStrategy and
Reported by Pylint.
Line: 25
Column: 3
FLAGS = flags.FLAGS
# TODO(b/118776054): Currently we support global batch size for TPUStrategy and
# core MirroredStrategy only. Remove this check when contrib MirroredStrategy is
# no longer needed.
def global_batch_size_supported(distribution_strategy):
return distribution_strategy.extended._global_batch_size # pylint: disable=protected-access
Reported by Pylint.
Line: 46
Column: 3
Returns:
The result of calling `fn`.
"""
# TODO(b/132666209): Remove this function when we support assign_*
# for replica-local variables.
strategy = None
if 'strategy' in kwargs:
strategy = kwargs.pop('strategy')
else:
Reported by Pylint.
Line: 55
Column: 3
if tf.distribute.has_strategy():
strategy = tf.distribute.get_strategy()
# TODO(b/120571621): TPUStrategy does not implement replica-local variables.
is_tpu = backend.is_tpu_strategy(strategy)
if ((not is_tpu) and strategy and tf.distribute.in_cross_replica_context()):
with strategy.scope():
return strategy.extended.call_for_each_replica(fn, args, kwargs)
return fn(*args, **kwargs)
Reported by Pylint.
Line: 28
Column: 1
# TODO(b/118776054): Currently we support global batch size for TPUStrategy and
# core MirroredStrategy only. Remove this check when contrib MirroredStrategy is
# no longer needed.
def global_batch_size_supported(distribution_strategy):
return distribution_strategy.extended._global_batch_size # pylint: disable=protected-access
def call_replica_local_fn(fn, *args, **kwargs):
"""Call a function that uses replica-local variables.
Reported by Pylint.
Line: 29
Column: 1
# core MirroredStrategy only. Remove this check when contrib MirroredStrategy is
# no longer needed.
def global_batch_size_supported(distribution_strategy):
return distribution_strategy.extended._global_batch_size # pylint: disable=protected-access
def call_replica_local_fn(fn, *args, **kwargs):
"""Call a function that uses replica-local variables.
Reported by Pylint.
Line: 32
Column: 1
return distribution_strategy.extended._global_batch_size # pylint: disable=protected-access
def call_replica_local_fn(fn, *args, **kwargs):
"""Call a function that uses replica-local variables.
This function correctly handles calling `fn` in a cross-replica
context.
Reported by Pylint.
Line: 33
Column: 1
def call_replica_local_fn(fn, *args, **kwargs):
"""Call a function that uses replica-local variables.
This function correctly handles calling `fn` in a cross-replica
context.
Args:
Reported by Pylint.
Line: 48
Column: 1
"""
# TODO(b/132666209): Remove this function when we support assign_*
# for replica-local variables.
strategy = None
if 'strategy' in kwargs:
strategy = kwargs.pop('strategy')
else:
if tf.distribute.has_strategy():
strategy = tf.distribute.get_strategy()
Reported by Pylint.
keras/saving/saved_model/save.py
46 issues
Line: 17
Column: 1
# ==============================================================================
"""Keras SavedModel serialization."""
import tensorflow.compat.v2 as tf
import os
from keras import backend as K
from keras.protobuf import saved_metadata_pb2
Reported by Pylint.
Line: 21
Column: 1
import os
from keras import backend as K
from keras.protobuf import saved_metadata_pb2
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import save_impl
Reported by Pylint.
Line: 22
Column: 1
import os
from keras import backend as K
from keras.protobuf import saved_metadata_pb2
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import save_impl
from keras.saving.saved_model import utils
Reported by Pylint.
Line: 23
Column: 1
from keras import backend as K
from keras.protobuf import saved_metadata_pb2
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import save_impl
from keras.saving.saved_model import utils
from keras.utils.generic_utils import LazyLoader
Reported by Pylint.
Line: 24
Column: 1
from keras import backend as K
from keras.protobuf import saved_metadata_pb2
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import save_impl
from keras.saving.saved_model import utils
from keras.utils.generic_utils import LazyLoader
from keras.utils.io_utils import ask_to_proceed_with_overwrite
Reported by Pylint.
Line: 25
Column: 1
from keras.protobuf import saved_metadata_pb2
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import save_impl
from keras.saving.saved_model import utils
from keras.utils.generic_utils import LazyLoader
from keras.utils.io_utils import ask_to_proceed_with_overwrite
from tensorflow.python.saved_model import save as save_lib
Reported by Pylint.
Line: 26
Column: 1
from keras.protobuf import versions_pb2
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import save_impl
from keras.saving.saved_model import utils
from keras.utils.generic_utils import LazyLoader
from keras.utils.io_utils import ask_to_proceed_with_overwrite
from tensorflow.python.saved_model import save as save_lib
Reported by Pylint.
Line: 27
Column: 1
from keras.saving import saving_utils
from keras.saving.saved_model import constants
from keras.saving.saved_model import save_impl
from keras.saving.saved_model import utils
from keras.utils.generic_utils import LazyLoader
from keras.utils.io_utils import ask_to_proceed_with_overwrite
from tensorflow.python.saved_model import save as save_lib
# To avoid circular dependencies between keras/engine and keras/saving,
Reported by Pylint.
Line: 28
Column: 1
from keras.saving.saved_model import constants
from keras.saving.saved_model import save_impl
from keras.saving.saved_model import utils
from keras.utils.generic_utils import LazyLoader
from keras.utils.io_utils import ask_to_proceed_with_overwrite
from tensorflow.python.saved_model import save as save_lib
# To avoid circular dependencies between keras/engine and keras/saving,
# code in keras/saving must delay imports.
Reported by Pylint.
Line: 29
Column: 1
from keras.saving.saved_model import save_impl
from keras.saving.saved_model import utils
from keras.utils.generic_utils import LazyLoader
from keras.utils.io_utils import ask_to_proceed_with_overwrite
from tensorflow.python.saved_model import save as save_lib
# To avoid circular dependencies between keras/engine and keras/saving,
# code in keras/saving must delay imports.
Reported by Pylint.
keras/saving/pickle_utils.py
45 issues
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Saving utilities to support Python's Pickle protocol."""
# pylint: disable=g-bad-import-order
import tensorflow.compat.v2 as tf
import os
import tarfile
import io
Reported by Pylint.
Line: 17
Column: 1
# ==============================================================================
"""Saving utilities to support Python's Pickle protocol."""
# pylint: disable=g-bad-import-order
import tensorflow.compat.v2 as tf
import os
import tarfile
import io
import uuid
Reported by Pylint.
Line: 19
Column: 1
# pylint: disable=g-bad-import-order
import tensorflow.compat.v2 as tf
import os
import tarfile
import io
import uuid
import numpy
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import os
import tarfile
import io
import uuid
import numpy
from keras.saving import save as save_module
Reported by Pylint.
Line: 21
Column: 1
import os
import tarfile
import io
import uuid
import numpy
from keras.saving import save as save_module
Reported by Pylint.
Line: 22
Column: 1
import os
import tarfile
import io
import uuid
import numpy
from keras.saving import save as save_module
Reported by Pylint.
Line: 29
Column: 1
def deserialize_model_from_bytecode(serialized_model):
"""Reconstruct a Model from the output of `serialize_model_as_bytecode`.
Args:
serialized_model: (np.array) return value from
`serialize_model_as_bytecode`.
Reported by Pylint.
Line: 38
Column: 1
Returns:
keras.Model: Keras Model instance.
"""
temp_dir = f"ram://{uuid.uuid4()}"
b = io.BytesIO(serialized_model)
with tarfile.open(fileobj=b, mode="r") as archive:
for name in archive.getnames():
dest_path = os.path.join(temp_dir, name)
member = archive.getmember(name)
Reported by Pylint.
Line: 39
Column: 3
keras.Model: Keras Model instance.
"""
temp_dir = f"ram://{uuid.uuid4()}"
b = io.BytesIO(serialized_model)
with tarfile.open(fileobj=b, mode="r") as archive:
for name in archive.getnames():
dest_path = os.path.join(temp_dir, name)
member = archive.getmember(name)
tf.io.gfile.makedirs(os.path.dirname(dest_path))
Reported by Pylint.
Line: 39
Column: 1
keras.Model: Keras Model instance.
"""
temp_dir = f"ram://{uuid.uuid4()}"
b = io.BytesIO(serialized_model)
with tarfile.open(fileobj=b, mode="r") as archive:
for name in archive.getnames():
dest_path = os.path.join(temp_dir, name)
member = archive.getmember(name)
tf.io.gfile.makedirs(os.path.dirname(dest_path))
Reported by Pylint.
keras/engine/keras_tensor_test.py
45 issues
Line: 17
Column: 1
# ==============================================================================
"""InputSpec tests."""
import tensorflow.compat.v2 as tf
from keras import layers
from keras.engine import keras_tensor
class KerasTensorTest(tf.test.TestCase):
Reported by Pylint.
Line: 22
Column: 1
from keras.engine import keras_tensor
class KerasTensorTest(tf.test.TestCase):
def test_repr_and_string(self):
kt = keras_tensor.KerasTensor(
type_spec=tf.TensorSpec(shape=(1, 2, 3), dtype=tf.float32))
expected_str = ("KerasTensor(type_spec=TensorSpec(shape=(1, 2, 3), "
Reported by Pylint.
Line: 22
Column: 1
from keras.engine import keras_tensor
class KerasTensorTest(tf.test.TestCase):
def test_repr_and_string(self):
kt = keras_tensor.KerasTensor(
type_spec=tf.TensorSpec(shape=(1, 2, 3), dtype=tf.float32))
expected_str = ("KerasTensor(type_spec=TensorSpec(shape=(1, 2, 3), "
Reported by Pylint.
Line: 24
Column: 1
class KerasTensorTest(tf.test.TestCase):
def test_repr_and_string(self):
kt = keras_tensor.KerasTensor(
type_spec=tf.TensorSpec(shape=(1, 2, 3), dtype=tf.float32))
expected_str = ("KerasTensor(type_spec=TensorSpec(shape=(1, 2, 3), "
"dtype=tf.float32, name=None))")
expected_repr = "<KerasTensor: shape=(1, 2, 3) dtype=float32>"
Reported by Pylint.
Line: 24
Column: 3
class KerasTensorTest(tf.test.TestCase):
def test_repr_and_string(self):
kt = keras_tensor.KerasTensor(
type_spec=tf.TensorSpec(shape=(1, 2, 3), dtype=tf.float32))
expected_str = ("KerasTensor(type_spec=TensorSpec(shape=(1, 2, 3), "
"dtype=tf.float32, name=None))")
expected_repr = "<KerasTensor: shape=(1, 2, 3) dtype=float32>"
Reported by Pylint.
Line: 25
Column: 5
class KerasTensorTest(tf.test.TestCase):
def test_repr_and_string(self):
kt = keras_tensor.KerasTensor(
type_spec=tf.TensorSpec(shape=(1, 2, 3), dtype=tf.float32))
expected_str = ("KerasTensor(type_spec=TensorSpec(shape=(1, 2, 3), "
"dtype=tf.float32, name=None))")
expected_repr = "<KerasTensor: shape=(1, 2, 3) dtype=float32>"
self.assertEqual(expected_str, str(kt))
Reported by Pylint.
Line: 25
Column: 1
class KerasTensorTest(tf.test.TestCase):
def test_repr_and_string(self):
kt = keras_tensor.KerasTensor(
type_spec=tf.TensorSpec(shape=(1, 2, 3), dtype=tf.float32))
expected_str = ("KerasTensor(type_spec=TensorSpec(shape=(1, 2, 3), "
"dtype=tf.float32, name=None))")
expected_repr = "<KerasTensor: shape=(1, 2, 3) dtype=float32>"
self.assertEqual(expected_str, str(kt))
Reported by Pylint.
Line: 27
Column: 1
def test_repr_and_string(self):
kt = keras_tensor.KerasTensor(
type_spec=tf.TensorSpec(shape=(1, 2, 3), dtype=tf.float32))
expected_str = ("KerasTensor(type_spec=TensorSpec(shape=(1, 2, 3), "
"dtype=tf.float32, name=None))")
expected_repr = "<KerasTensor: shape=(1, 2, 3) dtype=float32>"
self.assertEqual(expected_str, str(kt))
self.assertEqual(expected_repr, repr(kt))
Reported by Pylint.
Line: 29
Column: 1
type_spec=tf.TensorSpec(shape=(1, 2, 3), dtype=tf.float32))
expected_str = ("KerasTensor(type_spec=TensorSpec(shape=(1, 2, 3), "
"dtype=tf.float32, name=None))")
expected_repr = "<KerasTensor: shape=(1, 2, 3) dtype=float32>"
self.assertEqual(expected_str, str(kt))
self.assertEqual(expected_repr, repr(kt))
kt = keras_tensor.KerasTensor(
type_spec=tf.TensorSpec(shape=(2,), dtype=tf.int32),
Reported by Pylint.
Line: 30
Column: 1
expected_str = ("KerasTensor(type_spec=TensorSpec(shape=(1, 2, 3), "
"dtype=tf.float32, name=None))")
expected_repr = "<KerasTensor: shape=(1, 2, 3) dtype=float32>"
self.assertEqual(expected_str, str(kt))
self.assertEqual(expected_repr, repr(kt))
kt = keras_tensor.KerasTensor(
type_spec=tf.TensorSpec(shape=(2,), dtype=tf.int32),
inferred_value=[2, 3])
Reported by Pylint.
keras/feature_column/sequence_feature_column.py
45 issues
Line: 24
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
from keras import backend
from keras.feature_column import base_feature_layer as kfc
from tensorflow.python.util.tf_export import keras_export
# pylint: disable=protected-access
Reported by Pylint.
Line: 27
Column: 1
import tensorflow.compat.v2 as tf
from keras import backend
from keras.feature_column import base_feature_layer as kfc
from tensorflow.python.util.tf_export import keras_export
# pylint: disable=protected-access
@keras_export('keras.experimental.SequenceFeatures')
Reported by Pylint.
Line: 33
Column: 1
@keras_export('keras.experimental.SequenceFeatures')
class SequenceFeatures(kfc._BaseFeaturesLayer):
"""A layer for sequence input.
All `feature_columns` must be sequence dense columns with the same
`sequence_length`. The output of this method can be fed into sequence
networks, such as RNN.
Reported by Pylint.
Line: 116
Column: 3
def _target_shape(self, input_shape, total_elements):
return (input_shape[0], input_shape[1], total_elements)
def call(self, features, training=None):
"""Returns sequence input corresponding to the `feature_columns`.
Args:
features: A dict mapping keys to tensors.
training: Python boolean or None, indicating whether to the layer is being
Reported by Pylint.
Line: 34
Column: 1
@keras_export('keras.experimental.SequenceFeatures')
class SequenceFeatures(kfc._BaseFeaturesLayer):
"""A layer for sequence input.
All `feature_columns` must be sequence dense columns with the same
`sequence_length`. The output of this method can be fed into sequence
networks, such as RNN.
Reported by Pylint.
Line: 81
Column: 1
```
"""
def __init__(
self,
feature_columns,
trainable=True,
name=None,
**kwargs):
Reported by Pylint.
Line: 87
Column: 1
trainable=True,
name=None,
**kwargs):
""""Constructs a SequenceFeatures layer.
Args:
feature_columns: An iterable of dense sequence columns. Valid columns are
- `embedding_column` that wraps a `sequence_categorical_column_with_*`
- `sequence_numeric_column`.
Reported by Pylint.
Line: 102
Column: 1
ValueError: If any of the `feature_columns` is not a
`SequenceDenseColumn`.
"""
super(SequenceFeatures, self).__init__(
feature_columns=feature_columns,
trainable=trainable,
name=name,
expected_column_type=tf.__internal__.feature_column.SequenceDenseColumn,
**kwargs)
Reported by Pylint.
Line: 102
Column: 5
ValueError: If any of the `feature_columns` is not a
`SequenceDenseColumn`.
"""
super(SequenceFeatures, self).__init__(
feature_columns=feature_columns,
trainable=trainable,
name=name,
expected_column_type=tf.__internal__.feature_column.SequenceDenseColumn,
**kwargs)
Reported by Pylint.
Line: 109
Column: 1
expected_column_type=tf.__internal__.feature_column.SequenceDenseColumn,
**kwargs)
@property
def _is_feature_layer(self):
return True
def _target_shape(self, input_shape, total_elements):
return (input_shape[0], input_shape[1], total_elements)
Reported by Pylint.
keras/mixed_precision/mixed_precision_graph_rewrite_test.py
44 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests Keras integration with enable_mixed_precision_graph_rewrite()."""
import tensorflow.compat.v2 as tf
import os
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import os
from keras import combinations
from keras import keras_parameterized
from keras import testing_utils
from keras.mixed_precision import loss_scale_optimizer as loss_scale_optimizer_v2
from keras.mixed_precision import policy
Reported by Pylint.
Line: 28
Column: 1
from keras.optimizer_v2 import gradient_descent as gradient_descent_v2
class MixedPrecisionTest(keras_parameterized.TestCase):
IGNORE_PERF_VAR = 'TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_IGNORE_PERFORMANCE'
def setUp(self):
super(MixedPrecisionTest, self).setUp()
Reported by Pylint.
Line: 30
Column: 1
class MixedPrecisionTest(keras_parameterized.TestCase):
IGNORE_PERF_VAR = 'TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_IGNORE_PERFORMANCE'
def setUp(self):
super(MixedPrecisionTest, self).setUp()
# Enable the tests to be run on pre-Volta GPUs by telling the grappler pass
# to ignore performance and always transform the graph.
Reported by Pylint.
Line: 32
Column: 3
IGNORE_PERF_VAR = 'TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_IGNORE_PERFORMANCE'
def setUp(self):
super(MixedPrecisionTest, self).setUp()
# Enable the tests to be run on pre-Volta GPUs by telling the grappler pass
# to ignore performance and always transform the graph.
self._original_ignore_perf_value = os.getenv(self.IGNORE_PERF_VAR)
os.environ[self.IGNORE_PERF_VAR] = '1'
Reported by Pylint.
Line: 32
Column: 3
IGNORE_PERF_VAR = 'TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_IGNORE_PERFORMANCE'
def setUp(self):
super(MixedPrecisionTest, self).setUp()
# Enable the tests to be run on pre-Volta GPUs by telling the grappler pass
# to ignore performance and always transform the graph.
self._original_ignore_perf_value = os.getenv(self.IGNORE_PERF_VAR)
os.environ[self.IGNORE_PERF_VAR] = '1'
Reported by Pylint.
Line: 32
Column: 1
IGNORE_PERF_VAR = 'TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_IGNORE_PERFORMANCE'
def setUp(self):
super(MixedPrecisionTest, self).setUp()
# Enable the tests to be run on pre-Volta GPUs by telling the grappler pass
# to ignore performance and always transform the graph.
self._original_ignore_perf_value = os.getenv(self.IGNORE_PERF_VAR)
os.environ[self.IGNORE_PERF_VAR] = '1'
Reported by Pylint.
Line: 33
Column: 1
IGNORE_PERF_VAR = 'TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_IGNORE_PERFORMANCE'
def setUp(self):
super(MixedPrecisionTest, self).setUp()
# Enable the tests to be run on pre-Volta GPUs by telling the grappler pass
# to ignore performance and always transform the graph.
self._original_ignore_perf_value = os.getenv(self.IGNORE_PERF_VAR)
os.environ[self.IGNORE_PERF_VAR] = '1'
Reported by Pylint.
Line: 33
Column: 5
IGNORE_PERF_VAR = 'TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_IGNORE_PERFORMANCE'
def setUp(self):
super(MixedPrecisionTest, self).setUp()
# Enable the tests to be run on pre-Volta GPUs by telling the grappler pass
# to ignore performance and always transform the graph.
self._original_ignore_perf_value = os.getenv(self.IGNORE_PERF_VAR)
os.environ[self.IGNORE_PERF_VAR] = '1'
Reported by Pylint.
Line: 36
Column: 1
super(MixedPrecisionTest, self).setUp()
# Enable the tests to be run on pre-Volta GPUs by telling the grappler pass
# to ignore performance and always transform the graph.
self._original_ignore_perf_value = os.getenv(self.IGNORE_PERF_VAR)
os.environ[self.IGNORE_PERF_VAR] = '1'
def tearDown(self):
# Set the IGNORE_PERF_VAR variable back to it's original value.
if self._original_ignore_perf_value is not None:
Reported by Pylint.
keras/layers/subclassed_layers_test.py
44 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras subclassed layers utilizing desired user syntax."""
import tensorflow.compat.v2 as tf
import keras
from keras import keras_parameterized
from keras import testing_utils
from keras.utils import tf_utils
Reported by Pylint.
Line: 34
Column: 9
class BuildConstantLayer(keras.layers.Layer):
def build(self, input_shape):
self.b = tf.convert_to_tensor(2.0)
def call(self, inputs):
return self.b * inputs
layer = BuildConstantLayer()
Reported by Pylint.
Line: 36
Column: 7
def build(self, input_shape):
self.b = tf.convert_to_tensor(2.0)
def call(self, inputs):
return self.b * inputs
layer = BuildConstantLayer()
model = testing_utils.get_model_from_layers(
[layer, keras.layers.Dense(1)], input_shape=(1,))
Reported by Pylint.
Line: 57
Column: 9
def build(self, input_shape):
a = tf.convert_to_tensor(1.0)
b = 2.0 * a
self.variable = tf.Variable(b)
self.constant = tf.convert_to_tensor(self.variable)
def call(self, inputs):
return self.variable * self.constant * inputs
Reported by Pylint.
Line: 58
Column: 9
a = tf.convert_to_tensor(1.0)
b = 2.0 * a
self.variable = tf.Variable(b)
self.constant = tf.convert_to_tensor(self.variable)
def call(self, inputs):
return self.variable * self.constant * inputs
layer = BuildDerivedConstantLayer()
Reported by Pylint.
Line: 60
Column: 7
self.variable = tf.Variable(b)
self.constant = tf.convert_to_tensor(self.variable)
def call(self, inputs):
return self.variable * self.constant * inputs
layer = BuildDerivedConstantLayer()
model = testing_utils.get_model_from_layers(
[layer, keras.layers.Dense(1)], input_shape=(1,))
Reported by Pylint.
Line: 27
Column: 1
@keras_parameterized.run_all_keras_modes
@keras_parameterized.run_with_all_model_types
class SubclassedLayersTest(keras_parameterized.TestCase):
def test_simple_build_with_constant(self):
class BuildConstantLayer(keras.layers.Layer):
Reported by Pylint.
Line: 29
Column: 1
@keras_parameterized.run_with_all_model_types
class SubclassedLayersTest(keras_parameterized.TestCase):
def test_simple_build_with_constant(self):
class BuildConstantLayer(keras.layers.Layer):
def build(self, input_shape):
self.b = tf.convert_to_tensor(2.0)
Reported by Pylint.
Line: 29
Column: 3
@keras_parameterized.run_with_all_model_types
class SubclassedLayersTest(keras_parameterized.TestCase):
def test_simple_build_with_constant(self):
class BuildConstantLayer(keras.layers.Layer):
def build(self, input_shape):
self.b = tf.convert_to_tensor(2.0)
Reported by Pylint.
Line: 31
Column: 5
def test_simple_build_with_constant(self):
class BuildConstantLayer(keras.layers.Layer):
def build(self, input_shape):
self.b = tf.convert_to_tensor(2.0)
def call(self, inputs):
Reported by Pylint.