The following issues were found
keras/tests/memory_checker_test.py
44 issues
Line: 16
Column: 1
# limitations under the License.
# =============================================================================
import keras
import tensorflow.compat.v2 as tf
from tensorflow.python.framework.memory_checker import MemoryChecker
Reported by Pylint.
Line: 18
Column: 1
import keras
import tensorflow.compat.v2 as tf
from tensorflow.python.framework.memory_checker import MemoryChecker
class MemoryCheckerTest(tf.test.TestCase):
Reported by Pylint.
Line: 19
Column: 1
import keras
import tensorflow.compat.v2 as tf
from tensorflow.python.framework.memory_checker import MemoryChecker
class MemoryCheckerTest(tf.test.TestCase):
def testKerasBasic(self):
Reported by Pylint.
Line: 25
Column: 3
class MemoryCheckerTest(tf.test.TestCase):
def testKerasBasic(self):
# TODO(kkb): Fix the slowness on Forge.
self.skipTest('This test is too slow on Forge so disabled for now.')
x = tf.zeros([1, 1])
y = tf.constant([[3]])
model = keras.models.Sequential()
Reported by Pylint.
Line: 44
Column: 3
memory_checker.assert_no_leak_if_all_possibly_except_one()
def testKerasAdvanced(self):
# TODO(kkb): Fix the slowness on Forge.
self.skipTest('This test is too slow on Forge so disabled for now.')
# A real world example taken from the following.
# https://github.com/tensorflow/tensorflow/issues/32500
# b/142150794
Reported by Pylint.
Line: 1
Column: 1
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
Reported by Pylint.
Line: 22
Column: 1
from tensorflow.python.framework.memory_checker import MemoryChecker
class MemoryCheckerTest(tf.test.TestCase):
def testKerasBasic(self):
# TODO(kkb): Fix the slowness on Forge.
self.skipTest('This test is too slow on Forge so disabled for now.')
Reported by Pylint.
Line: 24
Column: 1
class MemoryCheckerTest(tf.test.TestCase):
def testKerasBasic(self):
# TODO(kkb): Fix the slowness on Forge.
self.skipTest('This test is too slow on Forge so disabled for now.')
x = tf.zeros([1, 1])
y = tf.constant([[3]])
Reported by Pylint.
Line: 24
Column: 3
class MemoryCheckerTest(tf.test.TestCase):
def testKerasBasic(self):
# TODO(kkb): Fix the slowness on Forge.
self.skipTest('This test is too slow on Forge so disabled for now.')
x = tf.zeros([1, 1])
y = tf.constant([[3]])
Reported by Pylint.
Line: 24
Column: 3
class MemoryCheckerTest(tf.test.TestCase):
def testKerasBasic(self):
# TODO(kkb): Fix the slowness on Forge.
self.skipTest('This test is too slow on Forge so disabled for now.')
x = tf.zeros([1, 1])
y = tf.constant([[3]])
Reported by Pylint.
keras/layers/preprocessing/preprocessing_stage_test.py
44 issues
Line: 17
Column: 1
# ==============================================================================
"""Preprocessing stage tests."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import time
import numpy as np
from keras import keras_parameterized
Reported by Pylint.
Line: 18
Column: 1
"""Preprocessing stage tests."""
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import time
import numpy as np
from keras import keras_parameterized
from keras.engine import base_preprocessing_layer
Reported by Pylint.
Line: 35
Column: 5
def test_adapt(self):
class PL(base_preprocessing_layer.PreprocessingLayer):
def __init__(self, **kwargs):
self.adapt_time = None
self.adapt_count = 0
super(PL, self).__init__(**kwargs)
Reported by Pylint.
Line: 35
Column: 5
def test_adapt(self):
class PL(base_preprocessing_layer.PreprocessingLayer):
def __init__(self, **kwargs):
self.adapt_time = None
self.adapt_count = 0
super(PL, self).__init__(**kwargs)
Reported by Pylint.
Line: 42
Column: 29
self.adapt_count = 0
super(PL, self).__init__(**kwargs)
def adapt(self, data, reset_state=True):
self.adapt_time = time.time()
self.adapt_count += 1
def call(self, inputs):
return inputs + 1.
Reported by Pylint.
Line: 42
Column: 7
self.adapt_count = 0
super(PL, self).__init__(**kwargs)
def adapt(self, data, reset_state=True):
self.adapt_time = time.time()
self.adapt_count += 1
def call(self, inputs):
return inputs + 1.
Reported by Pylint.
Line: 46
Column: 7
self.adapt_time = time.time()
self.adapt_count += 1
def call(self, inputs):
return inputs + 1.
# Test with NumPy array
stage = preprocessing_stage.PreprocessingStage([
PL(),
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
# pylint: disable=g-classes-have-attributes
import time
import numpy as np
from keras import keras_parameterized
from keras.engine import base_preprocessing_layer
from keras.layers.preprocessing import preprocessing_stage
from keras.layers.preprocessing import preprocessing_test_utils
Reported by Pylint.
Line: 29
Column: 1
@keras_parameterized.run_all_keras_modes(always_skip_v1=True)
class PreprocessingStageTest(
keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest):
def test_adapt(self):
Reported by Pylint.
Line: 33
Column: 3
keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest):
def test_adapt(self):
class PL(base_preprocessing_layer.PreprocessingLayer):
def __init__(self, **kwargs):
self.adapt_time = None
Reported by Pylint.
keras/saving/utils_v1/mode_keys.py
43 issues
Line: 37
Column: 3
PREDICT = 'predict'
# TODO(kathywu): Remove copy in Estimator after nightlies
class EstimatorModeKeys:
"""Standard names for Estimator model modes.
The following standard keys are defined:
Reported by Pylint.
Line: 22
Column: 1
import collections
class KerasModeKeys:
"""Standard names for model modes.
The following standard keys are defined:
* `TRAIN`: training/fitting mode.
Reported by Pylint.
Line: 23
Column: 1
class KerasModeKeys:
"""Standard names for model modes.
The following standard keys are defined:
* `TRAIN`: training/fitting mode.
* `TEST`: testing/evaluation mode.
Reported by Pylint.
Line: 32
Column: 1
* `PREDICT`: prediction/inference mode.
"""
TRAIN = 'train'
TEST = 'test'
PREDICT = 'predict'
# TODO(kathywu): Remove copy in Estimator after nightlies
Reported by Pylint.
Line: 33
Column: 1
"""
TRAIN = 'train'
TEST = 'test'
PREDICT = 'predict'
# TODO(kathywu): Remove copy in Estimator after nightlies
class EstimatorModeKeys:
Reported by Pylint.
Line: 34
Column: 1
TRAIN = 'train'
TEST = 'test'
PREDICT = 'predict'
# TODO(kathywu): Remove copy in Estimator after nightlies
class EstimatorModeKeys:
"""Standard names for Estimator model modes.
Reported by Pylint.
Line: 38
Column: 1
# TODO(kathywu): Remove copy in Estimator after nightlies
class EstimatorModeKeys:
"""Standard names for Estimator model modes.
The following standard keys are defined:
* `TRAIN`: training/fitting mode.
Reported by Pylint.
Line: 39
Column: 1
# TODO(kathywu): Remove copy in Estimator after nightlies
class EstimatorModeKeys:
"""Standard names for Estimator model modes.
The following standard keys are defined:
* `TRAIN`: training/fitting mode.
* `EVAL`: testing/evaluation mode.
Reported by Pylint.
Line: 48
Column: 1
* `PREDICT`: predication/inference mode.
"""
TRAIN = 'train'
EVAL = 'eval'
PREDICT = 'infer'
def is_predict(mode):
Reported by Pylint.
Line: 49
Column: 1
"""
TRAIN = 'train'
EVAL = 'eval'
PREDICT = 'infer'
def is_predict(mode):
return mode in [KerasModeKeys.PREDICT, EstimatorModeKeys.PREDICT]
Reported by Pylint.
keras/layers/core/dropout.py
43 issues
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Contains the dropout layer."""
# pylint: disable=g-classes-have-attributes,g-direct-tensorflow-import
from keras import backend as K
from keras.engine.base_layer import Layer
from keras.utils import control_flow_util
import tensorflow.compat.v2 as tf
Reported by Pylint.
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Contains the dropout layer."""
# pylint: disable=g-classes-have-attributes,g-direct-tensorflow-import
from keras import backend as K
from keras.engine.base_layer import Layer
from keras.utils import control_flow_util
import tensorflow.compat.v2 as tf
Reported by Pylint.
Line: 21
Column: 1
from keras import backend as K
from keras.engine.base_layer import Layer
from keras.utils import control_flow_util
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
# TODO(b/168039935): track dropout rate to decide whether/how to make a
# dropout rate fastpath.
keras_temporary_dropout_rate = tf.__internal__.monitoring.BoolGauge(
Reported by Pylint.
Line: 22
Column: 1
from keras.engine.base_layer import Layer
from keras.utils import control_flow_util
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
# TODO(b/168039935): track dropout rate to decide whether/how to make a
# dropout rate fastpath.
keras_temporary_dropout_rate = tf.__internal__.monitoring.BoolGauge(
'/tensorflow/api/keras/dropout/temp_rate_is_zero',
Reported by Pylint.
Line: 24
Column: 3
import tensorflow.compat.v2 as tf
from tensorflow.python.util.tf_export import keras_export
# TODO(b/168039935): track dropout rate to decide whether/how to make a
# dropout rate fastpath.
keras_temporary_dropout_rate = tf.__internal__.monitoring.BoolGauge(
'/tensorflow/api/keras/dropout/temp_rate_is_zero',
'Temporarily record if Keras dropout layer was created w/'
'constant rate = 0')
Reported by Pylint.
Line: 111
Column: 3
noise_shape.append(concrete_inputs_shape[i] if value is None else value)
return tf.convert_to_tensor(noise_shape)
def call(self, inputs, training=None):
if training is None:
training = K.learning_phase()
def dropped_inputs():
return tf.nn.dropout(
Reported by Pylint.
Line: 34
Column: 1
@keras_export('keras.layers.Dropout')
class Dropout(Layer):
"""Applies Dropout to the input.
The Dropout layer randomly sets input units to 0 with a frequency of `rate`
at each step during training time, which helps prevent overfitting.
Inputs not set to 0 are scaled up by 1/(1 - rate) such that the sum over
all inputs is unchanged.
Reported by Pylint.
Line: 84
Column: 1
training mode (adding dropout) or in inference mode (doing nothing).
"""
def __init__(self, rate, noise_shape=None, seed=None, **kwargs):
super(Dropout, self).__init__(**kwargs)
if isinstance(rate, (int, float)) and not 0 <= rate <= 1:
raise ValueError(f'Invalid value {rate} received for '
f'`rate`, expected a value between 0 and 1.')
self.rate = rate
Reported by Pylint.
Line: 85
Column: 1
"""
def __init__(self, rate, noise_shape=None, seed=None, **kwargs):
super(Dropout, self).__init__(**kwargs)
if isinstance(rate, (int, float)) and not 0 <= rate <= 1:
raise ValueError(f'Invalid value {rate} received for '
f'`rate`, expected a value between 0 and 1.')
self.rate = rate
if isinstance(rate, (int, float)) and not rate:
Reported by Pylint.
Line: 85
Column: 5
"""
def __init__(self, rate, noise_shape=None, seed=None, **kwargs):
super(Dropout, self).__init__(**kwargs)
if isinstance(rate, (int, float)) and not 0 <= rate <= 1:
raise ValueError(f'Invalid value {rate} received for '
f'`rate`, expected a value between 0 and 1.')
self.rate = rate
if isinstance(rate, (int, float)) and not rate:
Reported by Pylint.
keras/combinations.py
43 issues
Line: 17
Column: 1
# ==============================================================================
"""This module customizes `test_combinations` for `tf.keras` related tests."""
import tensorflow.compat.v2 as tf
import functools
from keras import testing_utils
KERAS_MODEL_TYPES = ['functional', 'subclass', 'sequential']
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import functools
from keras import testing_utils
KERAS_MODEL_TYPES = ['functional', 'subclass', 'sequential']
Reported by Pylint.
Line: 26
Column: 1
def keras_mode_combinations(mode=None, run_eagerly=None):
"""Returns the default test combinations for tf.keras tests.
Note that if tf2 is enabled, then v1 session test will be skipped.
Args:
mode: List of modes to run the tests. The valid options are 'graph' and
Reported by Pylint.
Line: 42
Column: 1
Returns:
A list contains all the combinations to be used to generate test cases.
"""
if mode is None:
mode = ['eager'] if tf.__internal__.tf2.enabled() else ['graph', 'eager']
if run_eagerly is None:
run_eagerly = [True, False]
result = []
if 'eager' in mode:
Reported by Pylint.
Line: 43
Column: 1
A list contains all the combinations to be used to generate test cases.
"""
if mode is None:
mode = ['eager'] if tf.__internal__.tf2.enabled() else ['graph', 'eager']
if run_eagerly is None:
run_eagerly = [True, False]
result = []
if 'eager' in mode:
result += tf.__internal__.test.combinations.combine(mode=['eager'], run_eagerly=run_eagerly)
Reported by Pylint.
Line: 44
Column: 1
"""
if mode is None:
mode = ['eager'] if tf.__internal__.tf2.enabled() else ['graph', 'eager']
if run_eagerly is None:
run_eagerly = [True, False]
result = []
if 'eager' in mode:
result += tf.__internal__.test.combinations.combine(mode=['eager'], run_eagerly=run_eagerly)
if 'graph' in mode:
Reported by Pylint.
Line: 45
Column: 1
if mode is None:
mode = ['eager'] if tf.__internal__.tf2.enabled() else ['graph', 'eager']
if run_eagerly is None:
run_eagerly = [True, False]
result = []
if 'eager' in mode:
result += tf.__internal__.test.combinations.combine(mode=['eager'], run_eagerly=run_eagerly)
if 'graph' in mode:
result += tf.__internal__.test.combinations.combine(mode=['graph'], run_eagerly=[False])
Reported by Pylint.
Line: 46
Column: 1
mode = ['eager'] if tf.__internal__.tf2.enabled() else ['graph', 'eager']
if run_eagerly is None:
run_eagerly = [True, False]
result = []
if 'eager' in mode:
result += tf.__internal__.test.combinations.combine(mode=['eager'], run_eagerly=run_eagerly)
if 'graph' in mode:
result += tf.__internal__.test.combinations.combine(mode=['graph'], run_eagerly=[False])
return result
Reported by Pylint.
Line: 47
Column: 1
if run_eagerly is None:
run_eagerly = [True, False]
result = []
if 'eager' in mode:
result += tf.__internal__.test.combinations.combine(mode=['eager'], run_eagerly=run_eagerly)
if 'graph' in mode:
result += tf.__internal__.test.combinations.combine(mode=['graph'], run_eagerly=[False])
return result
Reported by Pylint.
Line: 48
Column: 1
run_eagerly = [True, False]
result = []
if 'eager' in mode:
result += tf.__internal__.test.combinations.combine(mode=['eager'], run_eagerly=run_eagerly)
if 'graph' in mode:
result += tf.__internal__.test.combinations.combine(mode=['graph'], run_eagerly=[False])
return result
Reported by Pylint.
keras/feature_column/dense_features.py
42 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
import json
from keras import backend
from keras.feature_column import base_feature_layer as kfc
from keras.saving.saved_model import json_utils
Reported by Pylint.
Line: 27
Column: 1
from keras import backend
from keras.feature_column import base_feature_layer as kfc
from keras.saving.saved_model import json_utils
from tensorflow.python.util.tf_export import keras_export
@keras_export(v1=['keras.layers.DenseFeatures'])
class DenseFeatures(kfc._BaseFeaturesLayer): # pylint: disable=protected-access
"""A layer that produces a dense `Tensor` based on given `feature_columns`.
Reported by Pylint.
Line: 31
Column: 1
@keras_export(v1=['keras.layers.DenseFeatures'])
class DenseFeatures(kfc._BaseFeaturesLayer): # pylint: disable=protected-access
"""A layer that produces a dense `Tensor` based on given `feature_columns`.
Generally a single example in training data is described with FeatureColumns.
At the first layer of the model, this column-oriented data should be converted
to a single `Tensor`.
Reported by Pylint.
Line: 119
Column: 3
def _target_shape(self, input_shape, total_elements):
return (input_shape[0], total_elements)
def call(self, features, cols_to_output_tensors=None, training=None):
"""Returns a dense tensor corresponding to the `feature_columns`.
Example usage:
>>> t1 = tf.feature_column.embedding_column(
Reported by Pylint.
Line: 23
Column: 1
import tensorflow.compat.v2 as tf
import json
from keras import backend
from keras.feature_column import base_feature_layer as kfc
from keras.saving.saved_model import json_utils
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 32
Column: 1
@keras_export(v1=['keras.layers.DenseFeatures'])
class DenseFeatures(kfc._BaseFeaturesLayer): # pylint: disable=protected-access
"""A layer that produces a dense `Tensor` based on given `feature_columns`.
Generally a single example in training data is described with FeatureColumns.
At the first layer of the model, this column-oriented data should be converted
to a single `Tensor`.
Reported by Pylint.
Line: 69
Column: 1
```
"""
def __init__(self,
feature_columns,
trainable=True,
name=None,
partitioner=None,
**kwargs):
Reported by Pylint.
Line: 75
Column: 1
name=None,
partitioner=None,
**kwargs):
"""Constructs a DenseFeatures layer.
Args:
feature_columns: An iterable containing the FeatureColumns to use as
inputs to your model. All items should be instances of classes derived
from `DenseColumn` such as `numeric_column`, `embedding_column`,
Reported by Pylint.
Line: 93
Column: 5
Raises:
ValueError: if an item in `feature_columns` is not a `DenseColumn`.
"""
super(DenseFeatures, self).__init__(
feature_columns=feature_columns,
trainable=trainable,
name=name,
partitioner=partitioner,
expected_column_type=tf.__internal__.feature_column.DenseColumn,
Reported by Pylint.
Line: 93
Column: 1
Raises:
ValueError: if an item in `feature_columns` is not a `DenseColumn`.
"""
super(DenseFeatures, self).__init__(
feature_columns=feature_columns,
trainable=trainable,
name=name,
partitioner=partitioner,
expected_column_type=tf.__internal__.feature_column.DenseColumn,
Reported by Pylint.
keras/saving/saved_model/json_utils_test.py
42 issues
Line: 18
Column: 1
# pylint: disable=protected-access
"""Tests the JSON encoder and decoder."""
import tensorflow.compat.v2 as tf
import enum
from keras.saving.saved_model import json_utils
Reported by Pylint.
Line: 21
Column: 1
import tensorflow.compat.v2 as tf
import enum
from keras.saving.saved_model import json_utils
class JsonUtilsTest(tf.test.TestCase):
def test_encode_decode_tensor_shape(self):
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import enum
from keras.saving.saved_model import json_utils
class JsonUtilsTest(tf.test.TestCase):
Reported by Pylint.
Line: 24
Column: 1
from keras.saving.saved_model import json_utils
class JsonUtilsTest(tf.test.TestCase):
def test_encode_decode_tensor_shape(self):
metadata = {
'key1': tf.TensorShape(None),
'key2': [tf.TensorShape([None]),
Reported by Pylint.
Line: 26
Column: 1
class JsonUtilsTest(tf.test.TestCase):
def test_encode_decode_tensor_shape(self):
metadata = {
'key1': tf.TensorShape(None),
'key2': [tf.TensorShape([None]),
tf.TensorShape([3, None, 5])]}
string = json_utils.Encoder().encode(metadata)
Reported by Pylint.
Line: 26
Column: 3
class JsonUtilsTest(tf.test.TestCase):
def test_encode_decode_tensor_shape(self):
metadata = {
'key1': tf.TensorShape(None),
'key2': [tf.TensorShape([None]),
tf.TensorShape([3, None, 5])]}
string = json_utils.Encoder().encode(metadata)
Reported by Pylint.
Line: 27
Column: 1
class JsonUtilsTest(tf.test.TestCase):
def test_encode_decode_tensor_shape(self):
metadata = {
'key1': tf.TensorShape(None),
'key2': [tf.TensorShape([None]),
tf.TensorShape([3, None, 5])]}
string = json_utils.Encoder().encode(metadata)
loaded = json_utils.decode(string)
Reported by Pylint.
Line: 31
Column: 1
'key1': tf.TensorShape(None),
'key2': [tf.TensorShape([None]),
tf.TensorShape([3, None, 5])]}
string = json_utils.Encoder().encode(metadata)
loaded = json_utils.decode(string)
self.assertEqual(set(loaded.keys()), {'key1', 'key2'})
self.assertAllEqual(loaded['key1'].rank, None)
self.assertAllEqual(loaded['key2'][0].as_list(), [None])
Reported by Pylint.
Line: 32
Column: 1
'key2': [tf.TensorShape([None]),
tf.TensorShape([3, None, 5])]}
string = json_utils.Encoder().encode(metadata)
loaded = json_utils.decode(string)
self.assertEqual(set(loaded.keys()), {'key1', 'key2'})
self.assertAllEqual(loaded['key1'].rank, None)
self.assertAllEqual(loaded['key2'][0].as_list(), [None])
self.assertAllEqual(loaded['key2'][1].as_list(), [3, None, 5])
Reported by Pylint.
Line: 34
Column: 1
string = json_utils.Encoder().encode(metadata)
loaded = json_utils.decode(string)
self.assertEqual(set(loaded.keys()), {'key1', 'key2'})
self.assertAllEqual(loaded['key1'].rank, None)
self.assertAllEqual(loaded['key2'][0].as_list(), [None])
self.assertAllEqual(loaded['key2'][1].as_list(), [3, None, 5])
def test_encode_decode_tuple(self):
Reported by Pylint.
keras/preprocessing/text_dataset.py
41 issues
Line: 17
Column: 1
# ==============================================================================
"""Keras text dataset generation utilities."""
import tensorflow.compat.v2 as tf
import numpy as np
from keras.preprocessing import dataset_utils
from tensorflow.python.util.tf_export import keras_export
Reported by Pylint.
Line: 21
Column: 1
import numpy as np
from keras.preprocessing import dataset_utils
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.utils.text_dataset_from_directory',
'keras.preprocessing.text_dataset_from_directory',
v1=[])
Reported by Pylint.
Line: 27
Column: 1
@keras_export('keras.utils.text_dataset_from_directory',
'keras.preprocessing.text_dataset_from_directory',
v1=[])
def text_dataset_from_directory(directory,
labels='inferred',
label_mode='int',
class_names=None,
batch_size=32,
max_length=None,
Reported by Pylint.
Line: 38
Column: 1
validation_split=None,
subset=None,
follow_links=False):
"""Generates a `tf.data.Dataset` from text files in a directory.
If your directory structure is:
```
main_directory/
Reported by Pylint.
Line: 115
Column: 1
of shape `(batch_size, num_classes)`, representing a one-hot
encoding of the class index.
"""
if labels not in ('inferred', None):
if not isinstance(labels, (list, tuple)):
raise ValueError(
'`labels` argument should be a list/tuple of integer labels, of '
'the same size as the number of text files in the target '
'directory. If you wish to infer the labels from the subdirectory '
Reported by Pylint.
Line: 116
Column: 1
encoding of the class index.
"""
if labels not in ('inferred', None):
if not isinstance(labels, (list, tuple)):
raise ValueError(
'`labels` argument should be a list/tuple of integer labels, of '
'the same size as the number of text files in the target '
'directory. If you wish to infer the labels from the subdirectory '
'names in the target directory, pass `labels="inferred"`. '
Reported by Pylint.
Line: 117
Column: 1
"""
if labels not in ('inferred', None):
if not isinstance(labels, (list, tuple)):
raise ValueError(
'`labels` argument should be a list/tuple of integer labels, of '
'the same size as the number of text files in the target '
'directory. If you wish to infer the labels from the subdirectory '
'names in the target directory, pass `labels="inferred"`. '
'If you wish to get a dataset that only contains text samples '
Reported by Pylint.
Line: 124
Column: 1
'names in the target directory, pass `labels="inferred"`. '
'If you wish to get a dataset that only contains text samples '
f'(no labels), pass `labels=None`. Received: labels={labels}')
if class_names:
raise ValueError('You can only pass `class_names` if '
f'`labels="inferred"`. Received: labels={labels}, and '
f'class_names={class_names}')
if label_mode not in {'int', 'categorical', 'binary', None}:
raise ValueError(
Reported by Pylint.
Line: 125
Column: 1
'If you wish to get a dataset that only contains text samples '
f'(no labels), pass `labels=None`. Received: labels={labels}')
if class_names:
raise ValueError('You can only pass `class_names` if '
f'`labels="inferred"`. Received: labels={labels}, and '
f'class_names={class_names}')
if label_mode not in {'int', 'categorical', 'binary', None}:
raise ValueError(
'`label_mode` argument must be one of "int", "categorical", "binary", '
Reported by Pylint.
Line: 128
Column: 1
raise ValueError('You can only pass `class_names` if '
f'`labels="inferred"`. Received: labels={labels}, and '
f'class_names={class_names}')
if label_mode not in {'int', 'categorical', 'binary', None}:
raise ValueError(
'`label_mode` argument must be one of "int", "categorical", "binary", '
f'or None. Received: label_mode={label_mode}')
if labels is None or label_mode is None:
labels = None
Reported by Pylint.
keras/tests/memory_test.py
41 issues
Line: 23
Column: 1
introspection (test_util decorators). Please be careful adding new tests here.
"""
import tensorflow.compat.v2 as tf
import keras
from tensorflow.python.eager.memory_tests import memory_test_util
Reported by Pylint.
Line: 25
Column: 1
import tensorflow.compat.v2 as tf
import keras
from tensorflow.python.eager.memory_tests import memory_test_util
class SingleLayerNet(keras.Model):
"""Simple keras model used to ensure that there are no leaks."""
Reported by Pylint.
Line: 26
Column: 1
import tensorflow.compat.v2 as tf
import keras
from tensorflow.python.eager.memory_tests import memory_test_util
class SingleLayerNet(keras.Model):
"""Simple keras model used to ensure that there are no leaks."""
Reported by Pylint.
Line: 29
Column: 1
from tensorflow.python.eager.memory_tests import memory_test_util
class SingleLayerNet(keras.Model):
"""Simple keras model used to ensure that there are no leaks."""
def __init__(self):
super(SingleLayerNet, self).__init__()
self.fc1 = keras.layers.Dense(5)
Reported by Pylint.
Line: 30
Column: 1
class SingleLayerNet(keras.Model):
"""Simple keras model used to ensure that there are no leaks."""
def __init__(self):
super(SingleLayerNet, self).__init__()
self.fc1 = keras.layers.Dense(5)
Reported by Pylint.
Line: 32
Column: 1
class SingleLayerNet(keras.Model):
"""Simple keras model used to ensure that there are no leaks."""
def __init__(self):
super(SingleLayerNet, self).__init__()
self.fc1 = keras.layers.Dense(5)
def call(self, x):
return self.fc1(x)
Reported by Pylint.
Line: 33
Column: 5
"""Simple keras model used to ensure that there are no leaks."""
def __init__(self):
super(SingleLayerNet, self).__init__()
self.fc1 = keras.layers.Dense(5)
def call(self, x):
return self.fc1(x)
Reported by Pylint.
Line: 33
Column: 1
"""Simple keras model used to ensure that there are no leaks."""
def __init__(self):
super(SingleLayerNet, self).__init__()
self.fc1 = keras.layers.Dense(5)
def call(self, x):
return self.fc1(x)
Reported by Pylint.
Line: 34
Column: 1
def __init__(self):
super(SingleLayerNet, self).__init__()
self.fc1 = keras.layers.Dense(5)
def call(self, x):
return self.fc1(x)
Reported by Pylint.
Line: 36
Column: 1
super(SingleLayerNet, self).__init__()
self.fc1 = keras.layers.Dense(5)
def call(self, x):
return self.fc1(x)
class MemoryTest(tf.test.TestCase):
Reported by Pylint.
keras/saving/saved_model/base_serialization.py
41 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v2 as tf
import abc
from keras.saving.saved_model import json_utils
from keras.saving.saved_model import utils
Reported by Pylint.
Line: 25
Column: 1
import abc
from keras.saving.saved_model import json_utils
from keras.saving.saved_model import utils
class SavedModelSaver(object, metaclass=abc.ABCMeta):
"""Saver defining the methods and properties used to serialize Keras objects.
Reported by Pylint.
Line: 26
Column: 1
import abc
from keras.saving.saved_model import json_utils
from keras.saving.saved_model import utils
class SavedModelSaver(object, metaclass=abc.ABCMeta):
"""Saver defining the methods and properties used to serialize Keras objects.
"""
Reported by Pylint.
Line: 52
Column: 3
Returns:
A serialized JSON storing information necessary for recreating this layer.
"""
# TODO(kathywu): check that serialized JSON can be loaded (e.g., if an
# object is in the python property)
return json_utils.Encoder().encode(self.python_properties)
def list_extra_dependencies_for_serialization(self, serialization_cache):
"""Lists extra dependencies to serialize to SavedModel.
Reported by Pylint.
Line: 23
Column: 1
import tensorflow.compat.v2 as tf
import abc
from keras.saving.saved_model import json_utils
from keras.saving.saved_model import utils
Reported by Pylint.
Line: 29
Column: 1
from keras.saving.saved_model import utils
class SavedModelSaver(object, metaclass=abc.ABCMeta):
"""Saver defining the methods and properties used to serialize Keras objects.
"""
def __init__(self, obj):
self.obj = obj
Reported by Pylint.
Line: 30
Column: 1
class SavedModelSaver(object, metaclass=abc.ABCMeta):
"""Saver defining the methods and properties used to serialize Keras objects.
"""
def __init__(self, obj):
self.obj = obj
Reported by Pylint.
Line: 33
Column: 1
"""Saver defining the methods and properties used to serialize Keras objects.
"""
def __init__(self, obj):
self.obj = obj
@abc.abstractproperty
def object_identifier(self):
"""String stored in object identifier field in the SavedModel proto.
Reported by Pylint.
Line: 34
Column: 1
"""
def __init__(self, obj):
self.obj = obj
@abc.abstractproperty
def object_identifier(self):
"""String stored in object identifier field in the SavedModel proto.
Reported by Pylint.
Line: 36
Column: 1
def __init__(self, obj):
self.obj = obj
@abc.abstractproperty
def object_identifier(self):
"""String stored in object identifier field in the SavedModel proto.
Returns:
A string with the object identifier, which is used at load time.
Reported by Pylint.