The following issues were found
keras/distribute/test_example.py
41 issues
Line: 17
Column: 1
# ==============================================================================
"""A simple network to use in tests and examples."""
import tensorflow.compat.v2 as tf
from keras.optimizer_v2 import optimizer_v2
def minimize_loss_example(optimizer, use_bias=False, use_callable_loss=True):
"""Example of non-distribution-aware legacy code."""
Reported by Pylint.
Line: 26
Column: 3
def dataset_fn():
dataset = tf.data.Dataset.from_tensors([[1.]]).repeat()
# TODO(isaprykin): batch with drop_remainder causes shapes to be
# fully defined for TPU. Remove this when XLA supports dynamic shapes.
return dataset.batch(1, drop_remainder=True)
layer = tf.compat.v1.layers.Dense(1, use_bias=use_bias)
Reported by Pylint.
Line: 22
Column: 1
def minimize_loss_example(optimizer, use_bias=False, use_callable_loss=True):
"""Example of non-distribution-aware legacy code."""
def dataset_fn():
dataset = tf.data.Dataset.from_tensors([[1.]]).repeat()
# TODO(isaprykin): batch with drop_remainder causes shapes to be
# fully defined for TPU. Remove this when XLA supports dynamic shapes.
Reported by Pylint.
Line: 24
Column: 1
def minimize_loss_example(optimizer, use_bias=False, use_callable_loss=True):
"""Example of non-distribution-aware legacy code."""
def dataset_fn():
dataset = tf.data.Dataset.from_tensors([[1.]]).repeat()
# TODO(isaprykin): batch with drop_remainder causes shapes to be
# fully defined for TPU. Remove this when XLA supports dynamic shapes.
return dataset.batch(1, drop_remainder=True)
Reported by Pylint.
Line: 25
Column: 1
"""Example of non-distribution-aware legacy code."""
def dataset_fn():
dataset = tf.data.Dataset.from_tensors([[1.]]).repeat()
# TODO(isaprykin): batch with drop_remainder causes shapes to be
# fully defined for TPU. Remove this when XLA supports dynamic shapes.
return dataset.batch(1, drop_remainder=True)
layer = tf.compat.v1.layers.Dense(1, use_bias=use_bias)
Reported by Pylint.
Line: 28
Column: 1
dataset = tf.data.Dataset.from_tensors([[1.]]).repeat()
# TODO(isaprykin): batch with drop_remainder causes shapes to be
# fully defined for TPU. Remove this when XLA supports dynamic shapes.
return dataset.batch(1, drop_remainder=True)
layer = tf.compat.v1.layers.Dense(1, use_bias=use_bias)
def model_fn(x):
"""A very simple model written by the user."""
Reported by Pylint.
Line: 30
Column: 1
# fully defined for TPU. Remove this when XLA supports dynamic shapes.
return dataset.batch(1, drop_remainder=True)
layer = tf.compat.v1.layers.Dense(1, use_bias=use_bias)
def model_fn(x):
"""A very simple model written by the user."""
def loss_fn():
Reported by Pylint.
Line: 32
Column: 1
layer = tf.compat.v1.layers.Dense(1, use_bias=use_bias)
def model_fn(x):
"""A very simple model written by the user."""
def loss_fn():
y = tf.reshape(layer(x), []) - tf.constant(1.)
return y * y
Reported by Pylint.
Line: 32
Column: 3
layer = tf.compat.v1.layers.Dense(1, use_bias=use_bias)
def model_fn(x):
"""A very simple model written by the user."""
def loss_fn():
y = tf.reshape(layer(x), []) - tf.constant(1.)
return y * y
Reported by Pylint.
Line: 33
Column: 1
layer = tf.compat.v1.layers.Dense(1, use_bias=use_bias)
def model_fn(x):
"""A very simple model written by the user."""
def loss_fn():
y = tf.reshape(layer(x), []) - tf.constant(1.)
return y * y
Reported by Pylint.
keras/layers/preprocessing/benchmarks/category_vocab_file_dense_benchmark.py
40 issues
Line: 17
Column: 1
# ==============================================================================
"""Benchmark for KPL implementation of vocabulary columns from files with dense inputs."""
import tensorflow as tf
import os
import keras
from tensorflow.python.eager.def_function import function as tf_function
Reported by Pylint.
Line: 21
Column: 1
import os
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
Reported by Pylint.
Line: 22
Column: 1
import os
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 23
Column: 1
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 24
Column: 1
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
NUM_REPEATS = 10
Reported by Pylint.
Line: 19
Column: 1
import tensorflow as tf
import os
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
Reported by Pylint.
Line: 34
Column: 1
class BenchmarkLayer(tf.test.TestCase, fc_bm.LayerBenchmark):
"""Benchmark the layer forward pass."""
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
with tf.io.gfile.GFile(vocab_path, "w") as writer:
for vocab in vocab_list:
Reported by Pylint.
Line: 36
Column: 1
class BenchmarkLayer(tf.test.TestCase, fc_bm.LayerBenchmark):
"""Benchmark the layer forward pass."""
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
with tf.io.gfile.GFile(vocab_path, "w") as writer:
for vocab in vocab_list:
writer.write(vocab + "\n")
writer.flush()
Reported by Pylint.
Line: 37
Column: 1
"""Benchmark the layer forward pass."""
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
with tf.io.gfile.GFile(vocab_path, "w") as writer:
for vocab in vocab_list:
writer.write(vocab + "\n")
writer.flush()
writer.close()
Reported by Pylint.
Line: 38
Column: 1
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
with tf.io.gfile.GFile(vocab_path, "w") as writer:
for vocab in vocab_list:
writer.write(vocab + "\n")
writer.flush()
writer.close()
return vocab_path
Reported by Pylint.
keras/saving/saved_model/order_preserving_set.py
40 issues
Line: 45
Column: 3
return iter(self._dict)
# abstract from collections.MutableSet
def add(self, item):
self._dict[item] = None
# abstract from collections.MutableSet
def discard(self, value):
del self._dict[value]
Reported by Pylint.
Line: 27
Column: 1
class OrderPreservingSet(collections.abc.MutableSet):
"""A set based on dict so that it preserves key insertion order."""
def __init__(self, iterable=None):
self._dict = {item: None for item in (iterable or [])}
# abstract from collections.MutableSet
Reported by Pylint.
Line: 29
Column: 1
class OrderPreservingSet(collections.abc.MutableSet):
"""A set based on dict so that it preserves key insertion order."""
def __init__(self, iterable=None):
self._dict = {item: None for item in (iterable or [])}
# abstract from collections.MutableSet
def __len__(self):
return len(self._dict)
Reported by Pylint.
Line: 30
Column: 1
"""A set based on dict so that it preserves key insertion order."""
def __init__(self, iterable=None):
self._dict = {item: None for item in (iterable or [])}
# abstract from collections.MutableSet
def __len__(self):
return len(self._dict)
Reported by Pylint.
Line: 33
Column: 1
self._dict = {item: None for item in (iterable or [])}
# abstract from collections.MutableSet
def __len__(self):
return len(self._dict)
# abstract from collections.MutableSet
def __contains__(self, value):
return value in self._dict
Reported by Pylint.
Line: 34
Column: 1
# abstract from collections.MutableSet
def __len__(self):
return len(self._dict)
# abstract from collections.MutableSet
def __contains__(self, value):
return value in self._dict
Reported by Pylint.
Line: 37
Column: 1
return len(self._dict)
# abstract from collections.MutableSet
def __contains__(self, value):
return value in self._dict
# override from collections.MutableSet
def __iter__(self):
return iter(self._dict)
Reported by Pylint.
Line: 38
Column: 1
# abstract from collections.MutableSet
def __contains__(self, value):
return value in self._dict
# override from collections.MutableSet
def __iter__(self):
return iter(self._dict)
Reported by Pylint.
Line: 41
Column: 1
return value in self._dict
# override from collections.MutableSet
def __iter__(self):
return iter(self._dict)
# abstract from collections.MutableSet
def add(self, item):
self._dict[item] = None
Reported by Pylint.
Line: 42
Column: 1
# override from collections.MutableSet
def __iter__(self):
return iter(self._dict)
# abstract from collections.MutableSet
def add(self, item):
self._dict[item] = None
Reported by Pylint.
keras/layers/preprocessing/text_vectorization_distribution_test.py
40 issues
Line: 17
Column: 1
# ==============================================================================
"""Distribution tests for keras.layers.preprocessing.text_vectorization."""
import tensorflow.compat.v2 as tf
import numpy as np
import keras
from keras import backend
Reported by Pylint.
Line: 39
Column: 3
preprocessing_test_utils.PreprocessingLayerTest):
def test_distribution_strategy_output(self, strategy):
# TODO(b/180614455): remove this check when MLIR bridge is always enabled.
if backend.is_tpu_strategy(strategy):
self.skipTest("This test needs MLIR bridge on TPU.")
vocab_data = ["earth", "wind", "and", "fire"]
input_array = np.array([["earth", "wind", "and", "fire"],
Reported by Pylint.
Line: 68
Column: 3
self.assertAllEqual(expected_output, output_dataset)
def test_distribution_strategy_output_with_adapt(self, strategy):
# TODO(b/180614455): remove this check when MLIR bridge is always enabled.
if backend.is_tpu_strategy(strategy):
self.skipTest("This test needs MLIR bridge on TPU.")
vocab_data = [[
"earth", "earth", "earth", "earth", "wind", "wind", "wind", "and",
Reported by Pylint.
Line: 34
Column: 1
strategy=strategy_combinations.all_strategies +
strategy_combinations.multi_worker_mirrored_strategies,
mode=["eager"]))
class TextVectorizationDistributionTest(
keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest):
def test_distribution_strategy_output(self, strategy):
# TODO(b/180614455): remove this check when MLIR bridge is always enabled.
Reported by Pylint.
Line: 38
Column: 1
keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest):
def test_distribution_strategy_output(self, strategy):
# TODO(b/180614455): remove this check when MLIR bridge is always enabled.
if backend.is_tpu_strategy(strategy):
self.skipTest("This test needs MLIR bridge on TPU.")
vocab_data = ["earth", "wind", "and", "fire"]
Reported by Pylint.
Line: 38
Column: 3
keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest):
def test_distribution_strategy_output(self, strategy):
# TODO(b/180614455): remove this check when MLIR bridge is always enabled.
if backend.is_tpu_strategy(strategy):
self.skipTest("This test needs MLIR bridge on TPU.")
vocab_data = ["earth", "wind", "and", "fire"]
Reported by Pylint.
Line: 40
Column: 1
def test_distribution_strategy_output(self, strategy):
# TODO(b/180614455): remove this check when MLIR bridge is always enabled.
if backend.is_tpu_strategy(strategy):
self.skipTest("This test needs MLIR bridge on TPU.")
vocab_data = ["earth", "wind", "and", "fire"]
input_array = np.array([["earth", "wind", "and", "fire"],
["fire", "and", "earth", "michigan"]])
Reported by Pylint.
Line: 41
Column: 1
def test_distribution_strategy_output(self, strategy):
# TODO(b/180614455): remove this check when MLIR bridge is always enabled.
if backend.is_tpu_strategy(strategy):
self.skipTest("This test needs MLIR bridge on TPU.")
vocab_data = ["earth", "wind", "and", "fire"]
input_array = np.array([["earth", "wind", "and", "fire"],
["fire", "and", "earth", "michigan"]])
input_dataset = tf.data.Dataset.from_tensor_slices(input_array).batch(
Reported by Pylint.
Line: 43
Column: 1
if backend.is_tpu_strategy(strategy):
self.skipTest("This test needs MLIR bridge on TPU.")
vocab_data = ["earth", "wind", "and", "fire"]
input_array = np.array([["earth", "wind", "and", "fire"],
["fire", "and", "earth", "michigan"]])
input_dataset = tf.data.Dataset.from_tensor_slices(input_array).batch(
2, drop_remainder=True)
Reported by Pylint.
Line: 44
Column: 1
self.skipTest("This test needs MLIR bridge on TPU.")
vocab_data = ["earth", "wind", "and", "fire"]
input_array = np.array([["earth", "wind", "and", "fire"],
["fire", "and", "earth", "michigan"]])
input_dataset = tf.data.Dataset.from_tensor_slices(input_array).batch(
2, drop_remainder=True)
expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]]
Reported by Pylint.
keras/layers/preprocessing/benchmarks/category_vocab_file_varlen_benchmark.py
40 issues
Line: 17
Column: 1
# ==============================================================================
"""Benchmark for KPL implementation of vocabulary columns from files with varying-length inputs."""
import tensorflow as tf
import os
import keras
from tensorflow.python.eager.def_function import function as tf_function
Reported by Pylint.
Line: 21
Column: 1
import os
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
Reported by Pylint.
Line: 22
Column: 1
import os
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 23
Column: 1
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 24
Column: 1
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
# This is required as of 3/2021 because otherwise we drop into graph mode.
tf.compat.v1.enable_v2_behavior()
NUM_REPEATS = 10
Reported by Pylint.
Line: 19
Column: 1
import tensorflow as tf
import os
import keras
from tensorflow.python.eager.def_function import function as tf_function
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing.benchmarks import feature_column_benchmark as fc_bm
Reported by Pylint.
Line: 34
Column: 1
class BenchmarkLayer(tf.test.TestCase, fc_bm.LayerBenchmark):
"""Benchmark the layer forward pass."""
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
with tf.io.gfile.GFile(vocab_path, "w") as writer:
for vocab in vocab_list:
Reported by Pylint.
Line: 36
Column: 1
class BenchmarkLayer(tf.test.TestCase, fc_bm.LayerBenchmark):
"""Benchmark the layer forward pass."""
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
with tf.io.gfile.GFile(vocab_path, "w") as writer:
for vocab in vocab_list:
writer.write(vocab + "\n")
writer.flush()
Reported by Pylint.
Line: 37
Column: 1
"""Benchmark the layer forward pass."""
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
with tf.io.gfile.GFile(vocab_path, "w") as writer:
for vocab in vocab_list:
writer.write(vocab + "\n")
writer.flush()
writer.close()
Reported by Pylint.
Line: 38
Column: 1
def _write_to_temp_file(self, file_name, vocab_list):
vocab_path = os.path.join(self.get_temp_dir(), file_name + ".txt")
with tf.io.gfile.GFile(vocab_path, "w") as writer:
for vocab in vocab_list:
writer.write(vocab + "\n")
writer.flush()
writer.close()
return vocab_path
Reported by Pylint.
keras/layers/preprocessing/benchmarks/category_encoding_benchmark.py
40 issues
Line: 17
Column: 1
# ==============================================================================
"""Benchmark for Keras category_encoding preprocessing layer."""
import tensorflow as tf
import time
import numpy as np
Reported by Pylint.
Line: 23
Column: 1
import numpy as np
import keras
from keras.layers.preprocessing import category_encoding
tf.compat.v1.enable_v2_behavior()
Reported by Pylint.
Line: 24
Column: 1
import numpy as np
import keras
from keras.layers.preprocessing import category_encoding
tf.compat.v1.enable_v2_behavior()
class BenchmarkLayer(tf.test.Benchmark):
Reported by Pylint.
Line: 19
Column: 1
import tensorflow as tf
import time
import numpy as np
import keras
from keras.layers.preprocessing import category_encoding
Reported by Pylint.
Line: 30
Column: 1
class BenchmarkLayer(tf.test.Benchmark):
"""Benchmark the layer forward pass."""
def run_dataset_implementation(self, output_mode, batch_size, sequence_length,
max_tokens):
input_t = keras.Input(shape=(sequence_length,), dtype=tf.int32)
layer = category_encoding.CategoryEncoding(
Reported by Pylint.
Line: 32
Column: 1
class BenchmarkLayer(tf.test.Benchmark):
"""Benchmark the layer forward pass."""
def run_dataset_implementation(self, output_mode, batch_size, sequence_length,
max_tokens):
input_t = keras.Input(shape=(sequence_length,), dtype=tf.int32)
layer = category_encoding.CategoryEncoding(
max_tokens=max_tokens, output_mode=output_mode)
_ = layer(input_t)
Reported by Pylint.
Line: 32
Column: 3
class BenchmarkLayer(tf.test.Benchmark):
"""Benchmark the layer forward pass."""
def run_dataset_implementation(self, output_mode, batch_size, sequence_length,
max_tokens):
input_t = keras.Input(shape=(sequence_length,), dtype=tf.int32)
layer = category_encoding.CategoryEncoding(
max_tokens=max_tokens, output_mode=output_mode)
_ = layer(input_t)
Reported by Pylint.
Line: 32
Column: 3
class BenchmarkLayer(tf.test.Benchmark):
"""Benchmark the layer forward pass."""
def run_dataset_implementation(self, output_mode, batch_size, sequence_length,
max_tokens):
input_t = keras.Input(shape=(sequence_length,), dtype=tf.int32)
layer = category_encoding.CategoryEncoding(
max_tokens=max_tokens, output_mode=output_mode)
_ = layer(input_t)
Reported by Pylint.
Line: 34
Column: 1
def run_dataset_implementation(self, output_mode, batch_size, sequence_length,
max_tokens):
input_t = keras.Input(shape=(sequence_length,), dtype=tf.int32)
layer = category_encoding.CategoryEncoding(
max_tokens=max_tokens, output_mode=output_mode)
_ = layer(input_t)
num_repeats = 5
Reported by Pylint.
Line: 35
Column: 1
def run_dataset_implementation(self, output_mode, batch_size, sequence_length,
max_tokens):
input_t = keras.Input(shape=(sequence_length,), dtype=tf.int32)
layer = category_encoding.CategoryEncoding(
max_tokens=max_tokens, output_mode=output_mode)
_ = layer(input_t)
num_repeats = 5
starts = []
Reported by Pylint.
keras/utils/kernelized_utils.py
39 issues
Line: 17
Column: 1
# ==============================================================================
"""Utility methods related to kernelized layers."""
import tensorflow.compat.v2 as tf
def _to_matrix(u):
"""If input tensor is a vector (i.e., has rank 1), converts it to matrix."""
u_rank = len(u.shape)
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
def _to_matrix(u):
"""If input tensor is a vector (i.e., has rank 1), converts it to matrix."""
u_rank = len(u.shape)
if u_rank not in [1, 2]:
raise ValueError('The input tensor should have rank 1 or 2. '
f'Received rank: {u_rank}')
Reported by Pylint.
Line: 21
Column: 1
def _to_matrix(u):
"""If input tensor is a vector (i.e., has rank 1), converts it to matrix."""
u_rank = len(u.shape)
if u_rank not in [1, 2]:
raise ValueError('The input tensor should have rank 1 or 2. '
f'Received rank: {u_rank}')
if u_rank == 1:
Reported by Pylint.
Line: 22
Column: 1
def _to_matrix(u):
"""If input tensor is a vector (i.e., has rank 1), converts it to matrix."""
u_rank = len(u.shape)
if u_rank not in [1, 2]:
raise ValueError('The input tensor should have rank 1 or 2. '
f'Received rank: {u_rank}')
if u_rank == 1:
return tf.expand_dims(u, 0)
Reported by Pylint.
Line: 23
Column: 1
def _to_matrix(u):
"""If input tensor is a vector (i.e., has rank 1), converts it to matrix."""
u_rank = len(u.shape)
if u_rank not in [1, 2]:
raise ValueError('The input tensor should have rank 1 or 2. '
f'Received rank: {u_rank}')
if u_rank == 1:
return tf.expand_dims(u, 0)
return u
Reported by Pylint.
Line: 24
Column: 1
"""If input tensor is a vector (i.e., has rank 1), converts it to matrix."""
u_rank = len(u.shape)
if u_rank not in [1, 2]:
raise ValueError('The input tensor should have rank 1 or 2. '
f'Received rank: {u_rank}')
if u_rank == 1:
return tf.expand_dims(u, 0)
return u
Reported by Pylint.
Line: 26
Column: 1
if u_rank not in [1, 2]:
raise ValueError('The input tensor should have rank 1 or 2. '
f'Received rank: {u_rank}')
if u_rank == 1:
return tf.expand_dims(u, 0)
return u
def _align_matrices(x, y):
Reported by Pylint.
Line: 27
Column: 1
raise ValueError('The input tensor should have rank 1 or 2. '
f'Received rank: {u_rank}')
if u_rank == 1:
return tf.expand_dims(u, 0)
return u
def _align_matrices(x, y):
"""Aligns x and y tensors to allow computations over pairs of their rows."""
Reported by Pylint.
Line: 28
Column: 1
f'Received rank: {u_rank}')
if u_rank == 1:
return tf.expand_dims(u, 0)
return u
def _align_matrices(x, y):
"""Aligns x and y tensors to allow computations over pairs of their rows."""
x_matrix = _to_matrix(x)
Reported by Pylint.
Line: 31
Column: 1
return u
def _align_matrices(x, y):
"""Aligns x and y tensors to allow computations over pairs of their rows."""
x_matrix = _to_matrix(x)
y_matrix = _to_matrix(y)
x_shape = x_matrix.shape
y_shape = y_matrix.shape
Reported by Pylint.
keras/tests/saved_model_test.py
38 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for trackable object SavedModel save."""
import tensorflow.compat.v2 as tf
import os
from tensorflow.python.framework import test_util
from keras.layers import core
from keras.optimizer_v2 import adam
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import os
from tensorflow.python.framework import test_util
from keras.layers import core
from keras.optimizer_v2 import adam
class _ModelWithOptimizerUsingDefun(tf.train.Checkpoint):
Reported by Pylint.
Line: 21
Column: 1
import os
from tensorflow.python.framework import test_util
from keras.layers import core
from keras.optimizer_v2 import adam
class _ModelWithOptimizerUsingDefun(tf.train.Checkpoint):
Reported by Pylint.
Line: 22
Column: 1
import os
from tensorflow.python.framework import test_util
from keras.layers import core
from keras.optimizer_v2 import adam
class _ModelWithOptimizerUsingDefun(tf.train.Checkpoint):
def __init__(self):
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import os
from tensorflow.python.framework import test_util
from keras.layers import core
from keras.optimizer_v2 import adam
Reported by Pylint.
Line: 25
Column: 1
from keras.optimizer_v2 import adam
class _ModelWithOptimizerUsingDefun(tf.train.Checkpoint):
def __init__(self):
self.dense = core.Dense(1)
self.optimizer = adam.Adam(0.01)
Reported by Pylint.
Line: 27
Column: 1
class _ModelWithOptimizerUsingDefun(tf.train.Checkpoint):
def __init__(self):
self.dense = core.Dense(1)
self.optimizer = adam.Adam(0.01)
@tf.function(
input_signature=(tf.TensorSpec([None, 2], tf.float32),
Reported by Pylint.
Line: 28
Column: 1
class _ModelWithOptimizerUsingDefun(tf.train.Checkpoint):
def __init__(self):
self.dense = core.Dense(1)
self.optimizer = adam.Adam(0.01)
@tf.function(
input_signature=(tf.TensorSpec([None, 2], tf.float32),
tf.TensorSpec([None], tf.float32)),
Reported by Pylint.
Line: 29
Column: 1
def __init__(self):
self.dense = core.Dense(1)
self.optimizer = adam.Adam(0.01)
@tf.function(
input_signature=(tf.TensorSpec([None, 2], tf.float32),
tf.TensorSpec([None], tf.float32)),
)
Reported by Pylint.
Line: 31
Column: 1
self.dense = core.Dense(1)
self.optimizer = adam.Adam(0.01)
@tf.function(
input_signature=(tf.TensorSpec([None, 2], tf.float32),
tf.TensorSpec([None], tf.float32)),
)
def call(self, x, y):
with tf.GradientTape() as tape:
Reported by Pylint.
keras/saving/pickle_utils_test.py
38 issues
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
"""Tests for pickling / deepcopying of Keras Models."""
# pylint: disable=g-bad-import-order
import tensorflow.compat.v2 as tf
import copy
import pickle
import numpy as np
Reported by Pylint.
Line: 17
Column: 1
# ==============================================================================
"""Tests for pickling / deepcopying of Keras Models."""
# pylint: disable=g-bad-import-order
import tensorflow.compat.v2 as tf
import copy
import pickle
import numpy as np
Reported by Pylint.
Line: 34
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html#b301-pickle
@keras_parameterized.parameterized.named_parameters(
('copy', copy.copy), ('deepcopy', copy.deepcopy),
*((f'pickle_protocol_level_{protocol}',
lambda model: pickle.loads(pickle.dumps(model, protocol=protocol))) # pylint: disable=cell-var-from-loop
for protocol in range(pickle.HIGHEST_PROTOCOL + 1)))
def test_built_models(self, serializer):
"""Built models should be copyable and picklable for all model types."""
model = testing_utils.get_small_mlp(
Reported by Bandit.
Line: 19
Column: 1
# pylint: disable=g-bad-import-order
import tensorflow.compat.v2 as tf
import copy
import pickle
import numpy as np
from keras import keras_parameterized
from keras import testing_utils
Reported by Pylint.
Line: 20
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_imports.html#b403-import-pickle
import tensorflow.compat.v2 as tf
import copy
import pickle
import numpy as np
from keras import keras_parameterized
from keras import testing_utils
Reported by Bandit.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import copy
import pickle
import numpy as np
from keras import keras_parameterized
from keras import testing_utils
Reported by Pylint.
Line: 28
Column: 1
class TestPickleProtocol(keras_parameterized.TestCase):
"""Tests pickle protoocol support."""
@keras_parameterized.run_with_all_model_types
@keras_parameterized.parameterized.named_parameters(
('copy', copy.copy), ('deepcopy', copy.deepcopy),
*((f'pickle_protocol_level_{protocol}',
Reported by Pylint.
Line: 30
Column: 1
class TestPickleProtocol(keras_parameterized.TestCase):
"""Tests pickle protoocol support."""
@keras_parameterized.run_with_all_model_types
@keras_parameterized.parameterized.named_parameters(
('copy', copy.copy), ('deepcopy', copy.deepcopy),
*((f'pickle_protocol_level_{protocol}',
lambda model: pickle.loads(pickle.dumps(model, protocol=protocol))) # pylint: disable=cell-var-from-loop
for protocol in range(pickle.HIGHEST_PROTOCOL + 1)))
Reported by Pylint.
Line: 31
Column: 1
"""Tests pickle protoocol support."""
@keras_parameterized.run_with_all_model_types
@keras_parameterized.parameterized.named_parameters(
('copy', copy.copy), ('deepcopy', copy.deepcopy),
*((f'pickle_protocol_level_{protocol}',
lambda model: pickle.loads(pickle.dumps(model, protocol=protocol))) # pylint: disable=cell-var-from-loop
for protocol in range(pickle.HIGHEST_PROTOCOL + 1)))
def test_built_models(self, serializer):
Reported by Pylint.
Line: 36
Column: 1
*((f'pickle_protocol_level_{protocol}',
lambda model: pickle.loads(pickle.dumps(model, protocol=protocol))) # pylint: disable=cell-var-from-loop
for protocol in range(pickle.HIGHEST_PROTOCOL + 1)))
def test_built_models(self, serializer):
"""Built models should be copyable and picklable for all model types."""
model = testing_utils.get_small_mlp(
num_hidden=1, num_classes=2, input_dim=3)
model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy')
Reported by Pylint.
keras/benchmarks/metrics_memory_benchmark_test.py
38 issues
Line: 17
Column: 1
# ==============================================================================
"""Benchmark tests for Keras metrics memory consumption."""
import tensorflow as tf
import numpy as np
try:
import memory_profiler # pylint:disable=g-import-not-at-top
Reported by Pylint.
Line: 22
Column: 1
import numpy as np
try:
import memory_profiler # pylint:disable=g-import-not-at-top
except ImportError:
memory_profiler = None
class KerasMetricMemoryBenchmark(tf.test.Benchmark):
Reported by Pylint.
Line: 37
Column: 7
self.skipTest('Skip test since memory_profiler is not available.')
with tf.compat.forward_compatibility_horizon(2021, 6, 9):
self.y_true = np.random.randint(2, size=(1024, 1024))
self.y_pred = np.random.rand(1024, 1024)
memory_usage_1 = memory_profiler.memory_usage((self.even_thresholds_auc))
memory_usage_2 = memory_profiler.memory_usage(
(self.uneven_thresholds_auc))
Reported by Pylint.
Line: 38
Column: 7
with tf.compat.forward_compatibility_horizon(2021, 6, 9):
self.y_true = np.random.randint(2, size=(1024, 1024))
self.y_pred = np.random.rand(1024, 1024)
memory_usage_1 = memory_profiler.memory_usage((self.even_thresholds_auc))
memory_usage_2 = memory_profiler.memory_usage(
(self.uneven_thresholds_auc))
# memory usage is a list of number which sampled when running the function
Reported by Pylint.
Line: 54
Column: 21
def even_thresholds_auc(self):
auc = tf.keras.metrics.AUC(num_thresholds=200)
self.assertTrue(auc._thresholds_distributed_evenly)
auc(self.y_true, self.y_pred)
def uneven_thresholds_auc(self):
num_thresholds = 200
Reported by Pylint.
Line: 65
Column: 22
thresholds = thresholds[1:-1]
auc = tf.keras.metrics.AUC(thresholds=thresholds)
self.assertFalse(auc._thresholds_distributed_evenly)
self.assertEqual(auc.num_thresholds, num_thresholds)
auc(self.y_true, self.y_pred)
Reported by Pylint.
Line: 22
Column: 1
import numpy as np
try:
import memory_profiler # pylint:disable=g-import-not-at-top
except ImportError:
memory_profiler = None
class KerasMetricMemoryBenchmark(tf.test.Benchmark):
Reported by Pylint.
Line: 24
Column: 1
try:
import memory_profiler # pylint:disable=g-import-not-at-top
except ImportError:
memory_profiler = None
class KerasMetricMemoryBenchmark(tf.test.Benchmark):
# This test is added to measure the memory footprint for
Reported by Pylint.
Line: 27
Column: 1
memory_profiler = None
class KerasMetricMemoryBenchmark(tf.test.Benchmark):
# This test is added to measure the memory footprint for
# metrics_utils._update_confusion_matrix_variables_optimized().
def benchmark_auc_memory_usage(self):
Reported by Pylint.
Line: 32
Column: 3
# This test is added to measure the memory footprint for
# metrics_utils._update_confusion_matrix_variables_optimized().
def benchmark_auc_memory_usage(self):
if memory_profiler is None:
self.skipTest('Skip test since memory_profiler is not available.')
with tf.compat.forward_compatibility_horizon(2021, 6, 9):
self.y_true = np.random.randint(2, size=(1024, 1024))
Reported by Pylint.