The following issues were found
keras/integration_test/vectorized_map_test.py
24 issues
Line: 16
Column: 1
# limitations under the License.
# ==============================================================================
import tensorflow as tf
class VectorizedMapTest(tf.test.TestCase):
def test_vectorized_map(self):
Reported by Pylint.
Line: 1
Column: 1
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
Reported by Pylint.
Line: 19
Column: 1
import tensorflow as tf
class VectorizedMapTest(tf.test.TestCase):
def test_vectorized_map(self):
batch_size = 10
num_features = 32
layer = tf.keras.layers.Dense(1)
Reported by Pylint.
Line: 19
Column: 1
import tensorflow as tf
class VectorizedMapTest(tf.test.TestCase):
def test_vectorized_map(self):
batch_size = 10
num_features = 32
layer = tf.keras.layers.Dense(1)
Reported by Pylint.
Line: 21
Column: 3
class VectorizedMapTest(tf.test.TestCase):
def test_vectorized_map(self):
batch_size = 10
num_features = 32
layer = tf.keras.layers.Dense(1)
def model_fn(arg):
Reported by Pylint.
Line: 21
Column: 1
class VectorizedMapTest(tf.test.TestCase):
def test_vectorized_map(self):
batch_size = 10
num_features = 32
layer = tf.keras.layers.Dense(1)
def model_fn(arg):
Reported by Pylint.
Line: 22
Column: 1
class VectorizedMapTest(tf.test.TestCase):
def test_vectorized_map(self):
batch_size = 10
num_features = 32
layer = tf.keras.layers.Dense(1)
def model_fn(arg):
with tf.GradientTape() as g:
Reported by Pylint.
Line: 23
Column: 1
def test_vectorized_map(self):
batch_size = 10
num_features = 32
layer = tf.keras.layers.Dense(1)
def model_fn(arg):
with tf.GradientTape() as g:
inp, label = arg
Reported by Pylint.
Line: 24
Column: 1
def test_vectorized_map(self):
batch_size = 10
num_features = 32
layer = tf.keras.layers.Dense(1)
def model_fn(arg):
with tf.GradientTape() as g:
inp, label = arg
inp = tf.expand_dims(inp, 0)
Reported by Pylint.
Line: 26
Column: 1
num_features = 32
layer = tf.keras.layers.Dense(1)
def model_fn(arg):
with tf.GradientTape() as g:
inp, label = arg
inp = tf.expand_dims(inp, 0)
label = tf.expand_dims(label, 0)
prediction = layer(inp)
Reported by Pylint.
keras/benchmarks/layer_benchmarks/layer_benchmarks_test_base.py
23 issues
Line: 21
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import time
from keras.benchmarks.layer_benchmarks import run_xprof
Reported by Pylint.
Line: 25
Column: 1
import time
from keras.benchmarks.layer_benchmarks import run_xprof
class LayerBenchmarksBase(tf.test.Benchmark):
"""Run and report benchmark results.
Reported by Pylint.
Line: 23
Column: 1
import tensorflow as tf
import time
from keras.benchmarks.layer_benchmarks import run_xprof
class LayerBenchmarksBase(tf.test.Benchmark):
Reported by Pylint.
Line: 28
Column: 1
from keras.benchmarks.layer_benchmarks import run_xprof
class LayerBenchmarksBase(tf.test.Benchmark):
"""Run and report benchmark results.
The first run is without any profiling to purly measure running time.
Second run is with xprof but no python trace.
Third run is with xprof and python trace.
Reported by Pylint.
Line: 29
Column: 1
class LayerBenchmarksBase(tf.test.Benchmark):
"""Run and report benchmark results.
The first run is without any profiling to purly measure running time.
Second run is with xprof but no python trace.
Third run is with xprof and python trace.
Note: xprof runs fewer iterations, and the maximum iterations is 100.
Reported by Pylint.
Line: 37
Column: 1
Note: xprof runs fewer iterations, and the maximum iterations is 100.
"""
def run_report(self, func, num_iters, metadata=None):
"""Run and report benchmark results for different settings."""
# 0. Warm up.
func()
Reported by Pylint.
Line: 38
Column: 1
"""
def run_report(self, func, num_iters, metadata=None):
"""Run and report benchmark results for different settings."""
# 0. Warm up.
func()
# 1. Run without profiling.
Reported by Pylint.
Line: 41
Column: 1
"""Run and report benchmark results for different settings."""
# 0. Warm up.
func()
# 1. Run without profiling.
start = time.time()
for _ in range(num_iters):
func()
Reported by Pylint.
Line: 44
Column: 1
func()
# 1. Run without profiling.
start = time.time()
for _ in range(num_iters):
func()
total_time = time.time() - start
us_mean_time = total_time * 1e6 / num_iters
Reported by Pylint.
Line: 45
Column: 1
# 1. Run without profiling.
start = time.time()
for _ in range(num_iters):
func()
total_time = time.time() - start
us_mean_time = total_time * 1e6 / num_iters
metrics = [
Reported by Pylint.
keras/utils/np_utils.py
23 issues
Line: 18
Column: 1
"""Numpy-related utilities."""
import numpy as np
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.utils.to_categorical')
def to_categorical(y, num_classes=None, dtype='float32'):
"""Converts a class vector (integers) to binary class matrix.
Reported by Pylint.
Line: 22
Column: 1
@keras_export('keras.utils.to_categorical')
def to_categorical(y, num_classes=None, dtype='float32'):
"""Converts a class vector (integers) to binary class matrix.
E.g. for use with `categorical_crossentropy`.
Args:
Reported by Pylint.
Line: 23
Column: 1
@keras_export('keras.utils.to_categorical')
def to_categorical(y, num_classes=None, dtype='float32'):
"""Converts a class vector (integers) to binary class matrix.
E.g. for use with `categorical_crossentropy`.
Args:
y: Array-like with class values to be converted into a matrix
Reported by Pylint.
Line: 62
Column: 1
>>> print(np.around(loss, 5))
[0. 0. 0. 0.]
"""
y = np.array(y, dtype='int')
input_shape = y.shape
if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
input_shape = tuple(input_shape[:-1])
y = y.ravel()
if not num_classes:
Reported by Pylint.
Line: 63
Column: 1
[0. 0. 0. 0.]
"""
y = np.array(y, dtype='int')
input_shape = y.shape
if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
input_shape = tuple(input_shape[:-1])
y = y.ravel()
if not num_classes:
num_classes = np.max(y) + 1
Reported by Pylint.
Line: 64
Column: 1
"""
y = np.array(y, dtype='int')
input_shape = y.shape
if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
input_shape = tuple(input_shape[:-1])
y = y.ravel()
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
Reported by Pylint.
Line: 65
Column: 1
y = np.array(y, dtype='int')
input_shape = y.shape
if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
input_shape = tuple(input_shape[:-1])
y = y.ravel()
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
categorical = np.zeros((n, num_classes), dtype=dtype)
Reported by Pylint.
Line: 66
Column: 1
input_shape = y.shape
if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
input_shape = tuple(input_shape[:-1])
y = y.ravel()
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
categorical = np.zeros((n, num_classes), dtype=dtype)
categorical[np.arange(n), y] = 1
Reported by Pylint.
Line: 67
Column: 1
if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
input_shape = tuple(input_shape[:-1])
y = y.ravel()
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
categorical = np.zeros((n, num_classes), dtype=dtype)
categorical[np.arange(n), y] = 1
output_shape = input_shape + (num_classes,)
Reported by Pylint.
Line: 68
Column: 1
input_shape = tuple(input_shape[:-1])
y = y.ravel()
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
categorical = np.zeros((n, num_classes), dtype=dtype)
categorical[np.arange(n), y] = 1
output_shape = input_shape + (num_classes,)
categorical = np.reshape(categorical, output_shape)
Reported by Pylint.
keras/distribute/worker_training_state_test.py
23 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests of `worker_training_state.py` utilities."""
import tensorflow.compat.v2 as tf
import os
import sys
from absl.testing import parameterized
Reported by Pylint.
Line: 22
Column: 1
import os
import sys
from absl.testing import parameterized
from keras import callbacks
from keras.distribute import multi_worker_testing_utils
class ModelCheckpointTest(tf.test.TestCase, parameterized.TestCase):
Reported by Pylint.
Line: 52
Column: 57
if __name__ == '__main__':
with tf.compat.v1.test.mock.patch.object(sys, 'exit', os._exit):
tf.test.main()
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
import os
import sys
from absl.testing import parameterized
from keras import callbacks
from keras.distribute import multi_worker_testing_utils
Reported by Pylint.
Line: 20
Column: 1
import tensorflow.compat.v2 as tf
import os
import sys
from absl.testing import parameterized
from keras import callbacks
from keras.distribute import multi_worker_testing_utils
Reported by Pylint.
Line: 27
Column: 1
from keras.distribute import multi_worker_testing_utils
class ModelCheckpointTest(tf.test.TestCase, parameterized.TestCase):
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
mode=['eager'],
file_format=['h5', 'tf'],
Reported by Pylint.
Line: 27
Column: 1
from keras.distribute import multi_worker_testing_utils
class ModelCheckpointTest(tf.test.TestCase, parameterized.TestCase):
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
mode=['eager'],
file_format=['h5', 'tf'],
Reported by Pylint.
Line: 29
Column: 1
class ModelCheckpointTest(tf.test.TestCase, parameterized.TestCase):
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
mode=['eager'],
file_format=['h5', 'tf'],
save_weights_only=[True, False]))
def testCheckpointExists(self, file_format, save_weights_only):
Reported by Pylint.
Line: 34
Column: 3
mode=['eager'],
file_format=['h5', 'tf'],
save_weights_only=[True, False]))
def testCheckpointExists(self, file_format, save_weights_only):
train_ds, _ = multi_worker_testing_utils.mnist_synthetic_dataset(64, 2)
model = multi_worker_testing_utils.get_mnist_model((28, 28, 1))
saving_dir = self.get_temp_dir()
saving_filepath = os.path.join(saving_dir, 'checkpoint.' + file_format)
callbacks_list = [
Reported by Pylint.
Line: 34
Column: 3
mode=['eager'],
file_format=['h5', 'tf'],
save_weights_only=[True, False]))
def testCheckpointExists(self, file_format, save_weights_only):
train_ds, _ = multi_worker_testing_utils.mnist_synthetic_dataset(64, 2)
model = multi_worker_testing_utils.get_mnist_model((28, 28, 1))
saving_dir = self.get_temp_dir()
saving_filepath = os.path.join(saving_dir, 'checkpoint.' + file_format)
callbacks_list = [
Reported by Pylint.
keras/integration_test/preprocessing_applied_in_model_test.py
23 issues
Line: 20
Column: 1
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from keras.integration_test import preprocessing_test_utils as utils
ds_combinations = tf.__internal__.distribute.combinations
multi_process_runner = tf.__internal__.distribute.multi_process_runner
test_combinations = tf.__internal__.test.combinations
Reported by Pylint.
Line: 21
Column: 1
from __future__ import print_function
import tensorflow as tf
from keras.integration_test import preprocessing_test_utils as utils
ds_combinations = tf.__internal__.distribute.combinations
multi_process_runner = tf.__internal__.distribute.multi_process_runner
test_combinations = tf.__internal__.test.combinations
Reported by Pylint.
Line: 33
Column: 3
ds_combinations.default_strategy,
ds_combinations.mirrored_strategy_with_cpu_1_and_2,
ds_combinations.mirrored_strategy_with_two_gpus,
# TODO(b/183044870) TPU strategies with soft placement do not yet work.
# ds_combinations.tpu_strategy,
# ds_combinations.cloud_tpu_strategy,
ds_combinations.parameter_server_strategy_3worker_2ps_cpu,
ds_combinations.parameter_server_strategy_3worker_2ps_1gpu,
ds_combinations.multi_worker_mirrored_2x1_cpu,
Reported by Pylint.
Line: 46
Column: 1
@ds_combinations.generate(
test_combinations.combine(strategy=STRATEGIES, mode="eager"))
class PreprocessingAppliedInModelTest(tf.test.TestCase):
"""Demonstrate Keras preprocessing layers applied inside a Model."""
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
Reported by Pylint.
Line: 47
Column: 1
@ds_combinations.generate(
test_combinations.combine(strategy=STRATEGIES, mode="eager"))
class PreprocessingAppliedInModelTest(tf.test.TestCase):
"""Demonstrate Keras preprocessing layers applied inside a Model."""
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
training_model = utils.make_training_model()
Reported by Pylint.
Line: 49
Column: 1
class PreprocessingAppliedInModelTest(tf.test.TestCase):
"""Demonstrate Keras preprocessing layers applied inside a Model."""
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
training_model = utils.make_training_model()
# Merge the two separate models into a single model for training.
inputs = preprocessing_model.inputs
Reported by Pylint.
Line: 49
Column: 3
class PreprocessingAppliedInModelTest(tf.test.TestCase):
"""Demonstrate Keras preprocessing layers applied inside a Model."""
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
training_model = utils.make_training_model()
# Merge the two separate models into a single model for training.
inputs = preprocessing_model.inputs
Reported by Pylint.
Line: 49
Column: 3
class PreprocessingAppliedInModelTest(tf.test.TestCase):
"""Demonstrate Keras preprocessing layers applied inside a Model."""
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
training_model = utils.make_training_model()
# Merge the two separate models into a single model for training.
inputs = preprocessing_model.inputs
Reported by Pylint.
Line: 50
Column: 1
"""Demonstrate Keras preprocessing layers applied inside a Model."""
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
training_model = utils.make_training_model()
# Merge the two separate models into a single model for training.
inputs = preprocessing_model.inputs
outputs = training_model(preprocessing_model(inputs))
Reported by Pylint.
Line: 51
Column: 1
def testDistributedModelFit(self, strategy):
with strategy.scope():
preprocessing_model = utils.make_preprocessing_model(self.get_temp_dir())
training_model = utils.make_training_model()
# Merge the two separate models into a single model for training.
inputs = preprocessing_model.inputs
outputs = training_model(preprocessing_model(inputs))
merged_model = tf.keras.Model(inputs, outputs)
Reported by Pylint.
keras/layers/preprocessing/image_preprocessing_distribution_test.py
22 issues
Line: 17
Column: 1
# ==============================================================================
"""Distribution tests for keras.layers.preprocessing.image_preprocessing."""
import tensorflow.compat.v2 as tf
import numpy as np
import keras
from keras import keras_parameterized
Reported by Pylint.
Line: 40
Column: 3
def test_distribution(self, strategy):
if "CentralStorage" in type(strategy).__name__:
self.skipTest("Does not work with CentralStorageStrategy yet.")
# TODO(b/159738418): large image input causes OOM in ubuntu multi gpu.
np_images = np.random.random((32, 32, 32, 3)).astype(np.float32)
image_dataset = tf.data.Dataset.from_tensor_slices(np_images).batch(
16, drop_remainder=True)
with strategy.scope():
Reported by Pylint.
Line: 33
Column: 1
strategy=strategy_combinations.all_strategies +
strategy_combinations.multi_worker_mirrored_strategies,
mode=["eager", "graph"]))
class ImagePreprocessingDistributionTest(
keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest):
def test_distribution(self, strategy):
if "CentralStorage" in type(strategy).__name__:
Reported by Pylint.
Line: 37
Column: 3
keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest):
def test_distribution(self, strategy):
if "CentralStorage" in type(strategy).__name__:
self.skipTest("Does not work with CentralStorageStrategy yet.")
# TODO(b/159738418): large image input causes OOM in ubuntu multi gpu.
np_images = np.random.random((32, 32, 32, 3)).astype(np.float32)
image_dataset = tf.data.Dataset.from_tensor_slices(np_images).batch(
Reported by Pylint.
Line: 37
Column: 1
keras_parameterized.TestCase,
preprocessing_test_utils.PreprocessingLayerTest):
def test_distribution(self, strategy):
if "CentralStorage" in type(strategy).__name__:
self.skipTest("Does not work with CentralStorageStrategy yet.")
# TODO(b/159738418): large image input causes OOM in ubuntu multi gpu.
np_images = np.random.random((32, 32, 32, 3)).astype(np.float32)
image_dataset = tf.data.Dataset.from_tensor_slices(np_images).batch(
Reported by Pylint.
Line: 38
Column: 1
preprocessing_test_utils.PreprocessingLayerTest):
def test_distribution(self, strategy):
if "CentralStorage" in type(strategy).__name__:
self.skipTest("Does not work with CentralStorageStrategy yet.")
# TODO(b/159738418): large image input causes OOM in ubuntu multi gpu.
np_images = np.random.random((32, 32, 32, 3)).astype(np.float32)
image_dataset = tf.data.Dataset.from_tensor_slices(np_images).batch(
16, drop_remainder=True)
Reported by Pylint.
Line: 39
Column: 1
def test_distribution(self, strategy):
if "CentralStorage" in type(strategy).__name__:
self.skipTest("Does not work with CentralStorageStrategy yet.")
# TODO(b/159738418): large image input causes OOM in ubuntu multi gpu.
np_images = np.random.random((32, 32, 32, 3)).astype(np.float32)
image_dataset = tf.data.Dataset.from_tensor_slices(np_images).batch(
16, drop_remainder=True)
Reported by Pylint.
Line: 41
Column: 1
if "CentralStorage" in type(strategy).__name__:
self.skipTest("Does not work with CentralStorageStrategy yet.")
# TODO(b/159738418): large image input causes OOM in ubuntu multi gpu.
np_images = np.random.random((32, 32, 32, 3)).astype(np.float32)
image_dataset = tf.data.Dataset.from_tensor_slices(np_images).batch(
16, drop_remainder=True)
with strategy.scope():
input_data = keras.Input(shape=(32, 32, 3), dtype=tf.float32)
Reported by Pylint.
Line: 42
Column: 1
self.skipTest("Does not work with CentralStorageStrategy yet.")
# TODO(b/159738418): large image input causes OOM in ubuntu multi gpu.
np_images = np.random.random((32, 32, 32, 3)).astype(np.float32)
image_dataset = tf.data.Dataset.from_tensor_slices(np_images).batch(
16, drop_remainder=True)
with strategy.scope():
input_data = keras.Input(shape=(32, 32, 3), dtype=tf.float32)
image_preprocessor = keras.Sequential([
Reported by Pylint.
Line: 45
Column: 1
image_dataset = tf.data.Dataset.from_tensor_slices(np_images).batch(
16, drop_remainder=True)
with strategy.scope():
input_data = keras.Input(shape=(32, 32, 3), dtype=tf.float32)
image_preprocessor = keras.Sequential([
image_preprocessing.Resizing(height=256, width=256),
image_preprocessing.RandomCrop(height=224, width=224),
image_preprocessing.RandomTranslation(.1, .1),
Reported by Pylint.
keras/saving/saved_model/load_context.py
22 issues
Line: 22
Column: 1
class LoadContext(threading.local):
"""A context for loading a model."""
def __init__(self):
super(LoadContext, self).__init__()
self._load_options = None
Reported by Pylint.
Line: 24
Column: 1
class LoadContext(threading.local):
"""A context for loading a model."""
def __init__(self):
super(LoadContext, self).__init__()
self._load_options = None
def set_load_options(self, load_options):
self._load_options = load_options
Reported by Pylint.
Line: 25
Column: 5
"""A context for loading a model."""
def __init__(self):
super(LoadContext, self).__init__()
self._load_options = None
def set_load_options(self, load_options):
self._load_options = load_options
Reported by Pylint.
Line: 25
Column: 1
"""A context for loading a model."""
def __init__(self):
super(LoadContext, self).__init__()
self._load_options = None
def set_load_options(self, load_options):
self._load_options = load_options
Reported by Pylint.
Line: 26
Column: 1
def __init__(self):
super(LoadContext, self).__init__()
self._load_options = None
def set_load_options(self, load_options):
self._load_options = load_options
def clear_load_options(self):
Reported by Pylint.
Line: 28
Column: 3
super(LoadContext, self).__init__()
self._load_options = None
def set_load_options(self, load_options):
self._load_options = load_options
def clear_load_options(self):
self._load_options = None
Reported by Pylint.
Line: 28
Column: 1
super(LoadContext, self).__init__()
self._load_options = None
def set_load_options(self, load_options):
self._load_options = load_options
def clear_load_options(self):
self._load_options = None
Reported by Pylint.
Line: 29
Column: 1
self._load_options = None
def set_load_options(self, load_options):
self._load_options = load_options
def clear_load_options(self):
self._load_options = None
def load_options(self):
Reported by Pylint.
Line: 31
Column: 1
def set_load_options(self, load_options):
self._load_options = load_options
def clear_load_options(self):
self._load_options = None
def load_options(self):
return self._load_options
Reported by Pylint.
Line: 31
Column: 3
def set_load_options(self, load_options):
self._load_options = load_options
def clear_load_options(self):
self._load_options = None
def load_options(self):
return self._load_options
Reported by Pylint.
keras/distribute/keras_models_test.py
21 issues
Line: 17
Column: 1
# ==============================================================================
"""Tests for Keras high level APIs, e.g. fit, evaluate and predict."""
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
Reported by Pylint.
Line: 19
Column: 1
import tensorflow.compat.v2 as tf
from absl.testing import parameterized
import numpy as np
import keras
from keras.distribute.strategy_combinations import all_strategies
Reported by Pylint.
Line: 26
Column: 1
from keras.distribute.strategy_combinations import all_strategies
class KerasModelsTest(tf.test.TestCase, parameterized.TestCase):
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
distribution=all_strategies, mode=["eager"]))
def test_lstm_model_with_dynamic_batch(self, distribution):
Reported by Pylint.
Line: 26
Column: 1
from keras.distribute.strategy_combinations import all_strategies
class KerasModelsTest(tf.test.TestCase, parameterized.TestCase):
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
distribution=all_strategies, mode=["eager"]))
def test_lstm_model_with_dynamic_batch(self, distribution):
Reported by Pylint.
Line: 28
Column: 1
class KerasModelsTest(tf.test.TestCase, parameterized.TestCase):
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
distribution=all_strategies, mode=["eager"]))
def test_lstm_model_with_dynamic_batch(self, distribution):
input_data = np.random.random([1, 32, 64, 64, 3])
input_shape = tuple(input_data.shape[1:])
Reported by Pylint.
Line: 31
Column: 1
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
distribution=all_strategies, mode=["eager"]))
def test_lstm_model_with_dynamic_batch(self, distribution):
input_data = np.random.random([1, 32, 64, 64, 3])
input_shape = tuple(input_data.shape[1:])
def build_model():
model = keras.models.Sequential()
Reported by Pylint.
Line: 31
Column: 3
@tf.__internal__.distribute.combinations.generate(
tf.__internal__.test.combinations.combine(
distribution=all_strategies, mode=["eager"]))
def test_lstm_model_with_dynamic_batch(self, distribution):
input_data = np.random.random([1, 32, 64, 64, 3])
input_shape = tuple(input_data.shape[1:])
def build_model():
model = keras.models.Sequential()
Reported by Pylint.
Line: 32
Column: 1
tf.__internal__.test.combinations.combine(
distribution=all_strategies, mode=["eager"]))
def test_lstm_model_with_dynamic_batch(self, distribution):
input_data = np.random.random([1, 32, 64, 64, 3])
input_shape = tuple(input_data.shape[1:])
def build_model():
model = keras.models.Sequential()
model.add(
Reported by Pylint.
Line: 33
Column: 1
distribution=all_strategies, mode=["eager"]))
def test_lstm_model_with_dynamic_batch(self, distribution):
input_data = np.random.random([1, 32, 64, 64, 3])
input_shape = tuple(input_data.shape[1:])
def build_model():
model = keras.models.Sequential()
model.add(
keras.layers.ConvLSTM2D(
Reported by Pylint.
Line: 35
Column: 1
input_data = np.random.random([1, 32, 64, 64, 3])
input_shape = tuple(input_data.shape[1:])
def build_model():
model = keras.models.Sequential()
model.add(
keras.layers.ConvLSTM2D(
4,
kernel_size=(4, 4),
Reported by Pylint.
keras/benchmarks/layer_benchmarks/run_xprof.py
21 issues
Line: 22
Column: 1
import time
import uuid
from tensorflow.python.profiler import profiler_v2 as profiler
def run_with_xprof(self, func, num_iters_xprof=100, enable_python_trace=True,
logdir='/tmp/layer_benchmark_xprof/'):
suid = str(uuid.uuid4())
if enable_python_trace:
Reported by Pylint.
Line: 29
Column: 14
suid = str(uuid.uuid4())
if enable_python_trace:
options = profiler.ProfilerOptions(python_tracer_level=1)
logdir = os.path.join(logdir, str(uuid.uuid4()) + "_with_python")
else:
options = profiler.ProfilerOptions(python_tracer_level=0)
logdir = os.path.join(logdir, suid)
start = time.time()
Reported by Pylint.
Line: 32
Column: 14
logdir = os.path.join(logdir, str(uuid.uuid4()) + "_with_python")
else:
options = profiler.ProfilerOptions(python_tracer_level=0)
logdir = os.path.join(logdir, suid)
start = time.time()
with profiler.Profile(logdir, options):
for _ in range(num_iters_xprof):
func()
Reported by Pylint.
Line: 24
Column: 20
from tensorflow.python.profiler import profiler_v2 as profiler
def run_with_xprof(self, func, num_iters_xprof=100, enable_python_trace=True,
logdir='/tmp/layer_benchmark_xprof/'):
suid = str(uuid.uuid4())
if enable_python_trace:
options = profiler.ProfilerOptions(python_tracer_level=1)
logdir = os.path.join(logdir, str(uuid.uuid4()) + "_with_python")
Reported by Pylint.
Line: 25
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b108_hardcoded_tmp_directory.html
from tensorflow.python.profiler import profiler_v2 as profiler
def run_with_xprof(self, func, num_iters_xprof=100, enable_python_trace=True,
logdir='/tmp/layer_benchmark_xprof/'):
suid = str(uuid.uuid4())
if enable_python_trace:
options = profiler.ProfilerOptions(python_tracer_level=1)
logdir = os.path.join(logdir, str(uuid.uuid4()) + "_with_python")
else:
Reported by Bandit.
Line: 1
Column: 1
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
Reported by Pylint.
Line: 24
Column: 1
from tensorflow.python.profiler import profiler_v2 as profiler
def run_with_xprof(self, func, num_iters_xprof=100, enable_python_trace=True,
logdir='/tmp/layer_benchmark_xprof/'):
suid = str(uuid.uuid4())
if enable_python_trace:
options = profiler.ProfilerOptions(python_tracer_level=1)
logdir = os.path.join(logdir, str(uuid.uuid4()) + "_with_python")
Reported by Pylint.
Line: 26
Column: 1
def run_with_xprof(self, func, num_iters_xprof=100, enable_python_trace=True,
logdir='/tmp/layer_benchmark_xprof/'):
suid = str(uuid.uuid4())
if enable_python_trace:
options = profiler.ProfilerOptions(python_tracer_level=1)
logdir = os.path.join(logdir, str(uuid.uuid4()) + "_with_python")
else:
options = profiler.ProfilerOptions(python_tracer_level=0)
Reported by Pylint.
Line: 27
Column: 1
def run_with_xprof(self, func, num_iters_xprof=100, enable_python_trace=True,
logdir='/tmp/layer_benchmark_xprof/'):
suid = str(uuid.uuid4())
if enable_python_trace:
options = profiler.ProfilerOptions(python_tracer_level=1)
logdir = os.path.join(logdir, str(uuid.uuid4()) + "_with_python")
else:
options = profiler.ProfilerOptions(python_tracer_level=0)
logdir = os.path.join(logdir, suid)
Reported by Pylint.
Line: 28
Column: 1
logdir='/tmp/layer_benchmark_xprof/'):
suid = str(uuid.uuid4())
if enable_python_trace:
options = profiler.ProfilerOptions(python_tracer_level=1)
logdir = os.path.join(logdir, str(uuid.uuid4()) + "_with_python")
else:
options = profiler.ProfilerOptions(python_tracer_level=0)
logdir = os.path.join(logdir, suid)
Reported by Pylint.
keras/datasets/cifar10.py
21 issues
Line: 24
Column: 1
from keras import backend
from keras.datasets.cifar import load_batch
from keras.utils.data_utils import get_file
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.datasets.cifar10.load_data')
def load_data():
"""Loads the CIFAR10 dataset.
Reported by Pylint.
Line: 29
Column: 1
@keras_export('keras.datasets.cifar10.load_data')
def load_data():
"""Loads the CIFAR10 dataset.
This is a dataset of 50,000 32x32 color training images and 10,000 test
images, labeled over 10 categories. See more info at the
[CIFAR homepage](https://www.cs.toronto.edu/~kriz/cifar.html).
Reported by Pylint.
Line: 77
Column: 1
assert y_test.shape == (10000, 1)
```
"""
dirname = 'cifar-10-batches-py'
origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
path = get_file(
dirname,
origin=origin,
untar=True,
Reported by Pylint.
Line: 78
Column: 1
```
"""
dirname = 'cifar-10-batches-py'
origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
path = get_file(
dirname,
origin=origin,
untar=True,
file_hash=
Reported by Pylint.
Line: 79
Column: 1
"""
dirname = 'cifar-10-batches-py'
origin = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
path = get_file(
dirname,
origin=origin,
untar=True,
file_hash=
'6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce')
Reported by Pylint.
Line: 86
Column: 1
file_hash=
'6d958be074577803d12ecdefd02955f39262c83c16fe9348329d7fe0b5c001ce')
num_train_samples = 50000
x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
y_train = np.empty((num_train_samples,), dtype='uint8')
for i in range(1, 6):
Reported by Pylint.
Line: 88
Column: 1
num_train_samples = 50000
x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
y_train = np.empty((num_train_samples,), dtype='uint8')
for i in range(1, 6):
fpath = os.path.join(path, 'data_batch_' + str(i))
(x_train[(i - 1) * 10000:i * 10000, :, :, :],
Reported by Pylint.
Line: 89
Column: 1
num_train_samples = 50000
x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
y_train = np.empty((num_train_samples,), dtype='uint8')
for i in range(1, 6):
fpath = os.path.join(path, 'data_batch_' + str(i))
(x_train[(i - 1) * 10000:i * 10000, :, :, :],
y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath)
Reported by Pylint.
Line: 91
Column: 1
x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
y_train = np.empty((num_train_samples,), dtype='uint8')
for i in range(1, 6):
fpath = os.path.join(path, 'data_batch_' + str(i))
(x_train[(i - 1) * 10000:i * 10000, :, :, :],
y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath)
fpath = os.path.join(path, 'test_batch')
Reported by Pylint.
Line: 92
Column: 1
y_train = np.empty((num_train_samples,), dtype='uint8')
for i in range(1, 6):
fpath = os.path.join(path, 'data_batch_' + str(i))
(x_train[(i - 1) * 10000:i * 10000, :, :, :],
y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath)
fpath = os.path.join(path, 'test_batch')
x_test, y_test = load_batch(fpath)
Reported by Pylint.