The following issues were found
pandas/tests/io/test_common.py
121 issues
Line: 16
Column: 1
from pathlib import Path
import tempfile
import pytest
from pandas.compat import is_platform_windows
import pandas.util._test_decorators as td
import pandas as pd
Reported by Pylint.
Line: 164
Column: 9
# Test that pyarrow can handle a file opened with get_handle
@td.skip_if_no("pyarrow", min_version="0.15.0")
def test_get_handle_pyarrow_compat(self):
from pyarrow import csv
# Test latin1, ucs-2, and ucs-4 chars
data = """a,b,c
1,2,3
©,®,®
Reported by Pylint.
Line: 64
Column: 25
def test_expand_user(self):
filename = "~/sometest"
expanded_name = icom._expand_user(filename)
assert expanded_name != filename
assert os.path.isabs(expanded_name)
assert os.path.expanduser(filename) == expanded_name
Reported by Pylint.
Line: 72
Column: 25
def test_expand_user_normal_path(self):
filename = "/somefolder/sometest"
expanded_name = icom._expand_user(filename)
assert expanded_name == filename
assert os.path.expanduser(filename) == expanded_name
def test_stringify_path_pathlib(self):
Reported by Pylint.
Line: 360
Column: 3
@pytest.mark.filterwarnings( # pytables np.object usage
"ignore:`np.object` is a deprecated alias:DeprecationWarning"
)
@td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) IO HDF5
def test_write_fspath_hdf5(self):
# Same test as write_fspath_all, except HDF5 files aren't
# necessarily byte-for-byte identical for a given dataframe, so we'll
# have to read and compare equality
pytest.importorskip("tables")
Reported by Pylint.
Line: 388
Column: 41
class TestMMapWrapper:
def test_constructor_bad_file(self, mmap_file):
non_file = StringIO("I am not a file")
non_file.fileno = lambda: -1
# the error raised is different on Windows
if is_platform_windows():
Reported by Pylint.
Line: 401
Column: 13
err = mmap.error
with pytest.raises(err, match=msg):
icom._MMapWrapper(non_file)
target = open(mmap_file)
target.close()
msg = "I/O operation on closed file"
Reported by Pylint.
Line: 408
Column: 13
msg = "I/O operation on closed file"
with pytest.raises(ValueError, match=msg):
icom._MMapWrapper(target)
def test_get_attr(self, mmap_file):
with open(mmap_file) as target:
wrapper = icom._MMapWrapper(target)
Reported by Pylint.
Line: 410
Column: 29
with pytest.raises(ValueError, match=msg):
icom._MMapWrapper(target)
def test_get_attr(self, mmap_file):
with open(mmap_file) as target:
wrapper = icom._MMapWrapper(target)
attrs = dir(wrapper.mmap)
attrs = [attr for attr in attrs if not attr.startswith("__")]
Reported by Pylint.
Line: 412
Column: 23
def test_get_attr(self, mmap_file):
with open(mmap_file) as target:
wrapper = icom._MMapWrapper(target)
attrs = dir(wrapper.mmap)
attrs = [attr for attr in attrs if not attr.startswith("__")]
attrs.append("__next__")
Reported by Pylint.
pandas/tests/scalar/test_na_scalar.py
120 issues
Line: 4
Column: 1
import pickle
import numpy as np
import pytest
from pandas._libs.missing import NA
from pandas.core.dtypes.common import is_scalar
Reported by Pylint.
Line: 6
Column: 1
import numpy as np
import pytest
from pandas._libs.missing import NA
from pandas.core.dtypes.common import is_scalar
import pandas as pd
import pandas._testing as tm
Reported by Pylint.
Line: 6
Column: 1
import numpy as np
import pytest
from pandas._libs.missing import NA
from pandas.core.dtypes.common import is_scalar
import pandas as pd
import pandas._testing as tm
Reported by Pylint.
Line: 43
Column: 9
bool(NA)
with pytest.raises(TypeError, match=msg):
not NA
def test_hashable():
assert hash(NA) == hash(NA)
d = {NA: "test"}
Reported by Pylint.
Line: 161
Column: 9
msg = "unsupported operand type"
with pytest.raises(TypeError, match=msg):
NA & 5
def test_logical_or():
assert NA | True is True
Reported by Pylint.
Line: 174
Column: 9
msg = "unsupported operand type"
with pytest.raises(TypeError, match=msg):
NA | 5
def test_logical_xor():
assert NA ^ True is NA
Reported by Pylint.
Line: 187
Column: 9
msg = "unsupported operand type"
with pytest.raises(TypeError, match=msg):
NA ^ 5
def test_logical_not():
assert ~NA is NA
Reported by Pylint.
Line: 289
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html#b301-pickle
def test_pickle_roundtrip():
# https://github.com/pandas-dev/pandas/issues/31847
result = pickle.loads(pickle.dumps(NA))
assert result is NA
def test_pickle_roundtrip_pandas():
result = tm.round_trip_pickle(NA)
Reported by Bandit.
Line: 1
Suggestion:
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_imports.html#b403-import-pickle
import pickle
import numpy as np
import pytest
from pandas._libs.missing import NA
from pandas.core.dtypes.common import is_scalar
Reported by Bandit.
Line: 1
Column: 1
import pickle
import numpy as np
import pytest
from pandas._libs.missing import NA
from pandas.core.dtypes.common import is_scalar
Reported by Pylint.
pandas/_testing/asserters.py
119 issues
Line: 8
Column: 1
import numpy as np
from pandas._libs.lib import (
NoDefault,
no_default,
)
from pandas._libs.missing import is_matching_na
import pandas._libs.testing as _testing
Reported by Pylint.
Line: 8
Column: 1
import numpy as np
from pandas._libs.lib import (
NoDefault,
no_default,
)
from pandas._libs.missing import is_matching_na
import pandas._libs.testing as _testing
Reported by Pylint.
Line: 12
Column: 1
NoDefault,
no_default,
)
from pandas._libs.missing import is_matching_na
import pandas._libs.testing as _testing
from pandas.core.dtypes.common import (
is_bool,
is_categorical_dtype,
Reported by Pylint.
Line: 12
Column: 1
NoDefault,
no_default,
)
from pandas._libs.missing import is_matching_na
import pandas._libs.testing as _testing
from pandas.core.dtypes.common import (
is_bool,
is_categorical_dtype,
Reported by Pylint.
Line: 13
Column: 1
no_default,
)
from pandas._libs.missing import is_matching_na
import pandas._libs.testing as _testing
from pandas.core.dtypes.common import (
is_bool,
is_categorical_dtype,
is_extension_array_dtype,
Reported by Pylint.
Line: 13
Column: 1
no_default,
)
from pandas._libs.missing import is_matching_na
import pandas._libs.testing as _testing
from pandas.core.dtypes.common import (
is_bool,
is_categorical_dtype,
is_extension_array_dtype,
Reported by Pylint.
Line: 1380
Column: 38
assert_numpy_array_equal(left.sp_values, right.sp_values)
# SparseIndex comparison
assert isinstance(left.sp_index, pd._libs.sparse.SparseIndex)
assert isinstance(right.sp_index, pd._libs.sparse.SparseIndex)
left_index = left.sp_index
right_index = right.sp_index
Reported by Pylint.
Line: 1381
Column: 39
# SparseIndex comparison
assert isinstance(left.sp_index, pd._libs.sparse.SparseIndex)
assert isinstance(right.sp_index, pd._libs.sparse.SparseIndex)
left_index = left.sp_index
right_index = right.sp_index
if not left_index.equals(right_index):
Reported by Pylint.
Line: 311
Column: 5
>>> b = pd.Index([1, 2, 3])
>>> tm.assert_index_equal(a, b)
"""
__tracebackhide__ = True
def _check_types(left, right, obj="Index") -> None:
if not exact:
return
Reported by Pylint.
Line: 333
Column: 26
# accept level number only
unique = index.levels[level]
level_codes = index.codes[level]
filled = take_nd(unique._values, level_codes, fill_value=unique._na_value)
return unique._shallow_copy(filled, name=index.names[level])
if check_less_precise is not no_default:
warnings.warn(
"The 'check_less_precise' keyword in testing.assert_*_equal "
Reported by Pylint.
pandas/core/internals/array_manager.py
119 issues
Line: 16
Column: 1
import numpy as np
from pandas._libs import (
NaT,
lib,
)
from pandas._typing import (
ArrayLike,
Reported by Pylint.
Line: 136
Column: 21
def make_empty(self: T, axes=None) -> T:
"""Return an empty ArrayManager with the items axis of len 0 (no columns)"""
if axes is None:
axes = [self.axes[1:], Index([])]
arrays: list[np.ndarray | ExtensionArray] = []
return type(self)(arrays, axes)
@property
Reported by Pylint.
Line: 1051
Column: 40
if not ignore_failures:
raise
result_arrays = []
new_axes = [self._axes[0], self.axes[1].take([])]
else:
result_arrays = [result[:, i] for i in range(len(self._axes[1]))]
new_axes = self._axes
return type(self)(result_arrays, new_axes)
Reported by Pylint.
Line: 173
Column: 3
def get_dtypes(self):
return np.array([arr.dtype for arr in self.arrays], dtype="object")
# TODO setstate getstate
def __repr__(self) -> str:
output = type(self).__name__
output += f"\nIndex: {self._axes[0]}"
if self.ndim == 2:
Reported by Pylint.
Line: 231
Column: 41
if obj.ndim == 1:
kwargs[k] = obj.iloc[i]
else:
kwargs[k] = obj.iloc[:, i]._values
else:
# otherwise we have an array-like
kwargs[k] = obj[i]
try:
Reported by Pylint.
Line: 246
Column: 9
raise
continue
# if not isinstance(applied, ExtensionArray):
# # TODO not all EA operations return new EAs (eg astype)
# applied = array(applied)
result_arrays.append(applied)
result_indices.append(i)
new_axes: list[Index]
Reported by Pylint.
Line: 253
Column: 3
new_axes: list[Index]
if ignore_failures:
# TODO copy?
new_axes = [self._axes[0], self._axes[1][result_indices]]
else:
new_axes = self._axes
# error: Argument 1 to "ArrayManager" has incompatible type "List[ndarray]";
Reported by Pylint.
Line: 281
Column: 45
# obj.axes[-1].equals(self.items)
if obj.ndim == 1:
if self.ndim == 2:
kwargs[k] = obj.iloc[slice(i, i + 1)]._values
else:
kwargs[k] = obj.iloc[:]._values
else:
kwargs[k] = obj.iloc[:, [i]]._values
else:
Reported by Pylint.
Line: 283
Column: 45
if self.ndim == 2:
kwargs[k] = obj.iloc[slice(i, i + 1)]._values
else:
kwargs[k] = obj.iloc[:]._values
else:
kwargs[k] = obj.iloc[:, [i]]._values
else:
# otherwise we have an ndarray
if obj.ndim == 2:
Reported by Pylint.
Line: 285
Column: 41
else:
kwargs[k] = obj.iloc[:]._values
else:
kwargs[k] = obj.iloc[:, [i]]._values
else:
# otherwise we have an ndarray
if obj.ndim == 2:
kwargs[k] = obj[[i]]
Reported by Pylint.
pandas/tests/series/methods/test_astype.py
119 issues
Line: 10
Column: 1
import sys
import numpy as np
import pytest
from pandas._libs.tslibs import iNaT
import pandas.util._test_decorators as td
from pandas import (
Reported by Pylint.
Line: 352
Column: 13
# Restore the former encoding
if former_encoding is not None and former_encoding != "utf-8":
reload(sys)
sys.setdefaultencoding(former_encoding)
def test_astype_bytes(self):
# GH#39474
result = Series(["foo", "bar", "baz"]).astype(bytes)
assert result.dtypes == np.dtype("S3")
Reported by Pylint.
Line: 405
Column: 22
class TestAstypeCategorical:
def test_astype_categorical_to_other(self):
cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)])
ser = Series(np.random.RandomState(0).randint(0, 10000, 100)).sort_values()
ser = cut(ser, range(0, 10500, 500), right=False, labels=cat)
expected = ser
tm.assert_series_equal(ser.astype("category"), expected)
tm.assert_series_equal(ser.astype(CategoricalDtype()), expected)
Reported by Pylint.
Line: 520
Column: 13
# deprecated GH#17636, removed in GH#27141
s = Series(["a", "b", "a"])
with pytest.raises(TypeError, match="got an unexpected"):
s.astype("category", categories=["a", "b"], ordered=True)
@pytest.mark.parametrize("items", [["a", "b", "c", "a"], [1, 2, 3, 1]])
def test_astype_from_categorical(self, items):
ser = Series(items)
exp = Series(Categorical(items))
Reported by Pylint.
Line: 520
Column: 13
# deprecated GH#17636, removed in GH#27141
s = Series(["a", "b", "a"])
with pytest.raises(TypeError, match="got an unexpected"):
s.astype("category", categories=["a", "b"], ordered=True)
@pytest.mark.parametrize("items", [["a", "b", "c", "a"], [1, 2, 3, 1]])
def test_astype_from_categorical(self, items):
ser = Series(items)
exp = Series(Categorical(items))
Reported by Pylint.
Line: 231
Column: 9
def test_astype_str_cast_td64(self):
# see GH#9757
td = Series([Timedelta(1, unit="d")])
ser = td.astype(str)
expected = Series(["1 days"])
tm.assert_series_equal(ser, expected)
Reported by Pylint.
Line: 1
Column: 1
from datetime import (
datetime,
timedelta,
)
from importlib import reload
import string
import sys
import numpy as np
Reported by Pylint.
Line: 31
Column: 1
import pandas._testing as tm
class TestAstypeAPI:
def test_arg_for_errors_in_astype(self):
# see GH#14878
ser = Series([1, 2, 3])
msg = (
Reported by Pylint.
Line: 32
Column: 5
class TestAstypeAPI:
def test_arg_for_errors_in_astype(self):
# see GH#14878
ser = Series([1, 2, 3])
msg = (
r"Expected value of kwarg 'errors' to be one of \['raise', "
Reported by Pylint.
Line: 32
Column: 5
class TestAstypeAPI:
def test_arg_for_errors_in_astype(self):
# see GH#14878
ser = Series([1, 2, 3])
msg = (
r"Expected value of kwarg 'errors' to be one of \['raise', "
Reported by Pylint.
pandas/tests/indexes/categorical/test_category.py
118 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas._libs import index as libindex
from pandas._libs.arrays import NDArrayBacked
import pandas as pd
from pandas import (
Categorical,
Reported by Pylint.
Line: 4
Column: 1
import numpy as np
import pytest
from pandas._libs import index as libindex
from pandas._libs.arrays import NDArrayBacked
import pandas as pd
from pandas import (
Categorical,
Reported by Pylint.
Line: 5
Column: 1
import pytest
from pandas._libs import index as libindex
from pandas._libs.arrays import NDArrayBacked
import pandas as pd
from pandas import (
Categorical,
CategoricalDtype,
Reported by Pylint.
Line: 5
Column: 1
import pytest
from pandas._libs import index as libindex
from pandas._libs.arrays import NDArrayBacked
import pandas as pd
from pandas import (
Categorical,
CategoricalDtype,
Reported by Pylint.
Line: 25
Column: 16
@pytest.fixture
def simple_index(self) -> CategoricalIndex:
return self._index_cls(list("aabbca"), categories=list("cab"), ordered=False)
@pytest.fixture
def index(self, request):
return tm.makeCategoricalIndex(100)
Reported by Pylint.
Line: 44
Column: 13
def test_pickle_compat_construction(self):
# Once the deprecation is enforced, we can use the parent class's test
with tm.assert_produces_warning(FutureWarning, match="without passing data"):
self._index_cls()
def test_insert(self, simple_index):
ci = simple_index
categories = ci.categories
Reported by Pylint.
Line: 245
Column: 26
)
# mismatched categorical -> coerced to ndarray so doesn't matter
result = ci.isin(ci.set_categories(list("abcdefghi")))
expected = np.array([True] * 6)
tm.assert_numpy_array_equal(result, expected)
result = ci.isin(ci.set_categories(list("defghi")))
expected = np.array([False] * 5 + [True])
Reported by Pylint.
Line: 249
Column: 26
expected = np.array([True] * 6)
tm.assert_numpy_array_equal(result, expected)
result = ci.isin(ci.set_categories(list("defghi")))
expected = np.array([False] * 5 + [True])
tm.assert_numpy_array_equal(result, expected)
def test_identical(self):
Reported by Pylint.
Line: 349
Column: 18
def test_method_delegation(self):
ci = CategoricalIndex(list("aabbca"), categories=list("cabdef"))
result = ci.set_categories(list("cab"))
tm.assert_index_equal(
result, CategoricalIndex(list("aabbca"), categories=list("cab"))
)
ci = CategoricalIndex(list("aabbca"), categories=list("cab"))
Reported by Pylint.
Line: 355
Column: 18
)
ci = CategoricalIndex(list("aabbca"), categories=list("cab"))
result = ci.rename_categories(list("efg"))
tm.assert_index_equal(
result, CategoricalIndex(list("ffggef"), categories=list("efg"))
)
# GH18862 (let rename_categories take callables)
Reported by Pylint.
pandas/core/strings/accessor.py
118 issues
Line: 15
Column: 1
import numpy as np
import pandas._libs.lib as lib
from pandas._typing import DtypeObj
from pandas.util._decorators import Appender
from pandas.core.dtypes.common import (
ensure_object,
Reported by Pylint.
Line: 15
Column: 1
import numpy as np
import pandas._libs.lib as lib
from pandas._typing import DtypeObj
from pandas.util._decorators import Appender
from pandas.core.dtypes.common import (
ensure_object,
Reported by Pylint.
Line: 112
Column: 16
@wraps(func)
def wrapper(self, *args, **kwargs):
if self._inferred_dtype not in allowed_types:
msg = (
f"Cannot use .str.{func_name} with values of "
f"inferred dtype '{self._inferred_dtype}'."
)
raise TypeError(msg)
Reported by Pylint.
Line: 114
Column: 22
def wrapper(self, *args, **kwargs):
if self._inferred_dtype not in allowed_types:
msg = (
f"Cannot use .str.{func_name} with values of "
f"inferred dtype '{self._inferred_dtype}'."
)
raise TypeError(msg)
return func(self, *args, **kwargs)
Reported by Pylint.
Line: 129
Column: 26
def _map_and_wrap(name, docstring):
@forbid_nonstring_types(["bytes"], name=name)
def wrapper(self):
result = getattr(self._data.array, f"_str_{name}")()
return self._wrap_result(result)
wrapper.__doc__ = docstring
return wrapper
Reported by Pylint.
Line: 130
Column: 16
@forbid_nonstring_types(["bytes"], name=name)
def wrapper(self):
result = getattr(self._data.array, f"_str_{name}")()
return self._wrap_result(result)
wrapper.__doc__ = docstring
return wrapper
Reported by Pylint.
Line: 162
Column: 3
# Note: see the docstring in pandas.core.strings.__init__
# for an explanation of the implementation.
# TODO: Dispatch all the methods
# Currently the following are not dispatched to the array
# * cat
# * extractall
def __init__(self, data):
Reported by Pylint.
Line: 249
Column: 9
result,
name=None,
expand: bool | None = None,
fill_value=np.nan,
returns_string=True,
returns_bool: bool = False,
):
from pandas import (
Index,
Reported by Pylint.
Line: 251
Column: 9
expand: bool | None = None,
fill_value=np.nan,
returns_string=True,
returns_bool: bool = False,
):
from pandas import (
Index,
MultiIndex,
)
Reported by Pylint.
Line: 325
Column: 24
out = out.get_level_values(0)
return out
else:
return Index._with_infer(result, name=name)
else:
index = self._orig.index
# This is a mess.
dtype: DtypeObj | str | None
vdtype = getattr(result, "dtype", None)
Reported by Pylint.
pandas/tests/reshape/concat/test_append_common.py
117 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
Categorical,
DataFrame,
Index,
Series,
Reported by Pylint.
Line: 19
Column: 28
Test common dtype coercion rules between concat and append.
"""
def setup_method(self, method):
dt_data = [
pd.Timestamp("2011-01-01"),
pd.Timestamp("2011-01-02"),
pd.Timestamp("2011-01-03"),
Reported by Pylint.
Line: 44
Column: 9
pd.Period("2011-03", freq="M"),
]
self.data = {
"bool": [True, False, True],
"int64": [1, 2, 3],
"float64": [1.1, np.nan, 3.3],
"category": Categorical(["X", "Y", "Z"]),
"object": ["a", "b", "c"],
Reported by Pylint.
Line: 203
Column: 3
# same dtype is tested in test_concatlike_same_dtypes
continue
elif typ1 == "category" or typ2 == "category":
# TODO: suspicious
continue
# specify expected dtype
if typ1 == "bool" and typ2 in ("int64", "float64"):
# series coerces to numeric based on numpy rule
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
Categorical,
DataFrame,
Index,
Series,
Reported by Pylint.
Line: 19
Column: 5
Test common dtype coercion rules between concat and append.
"""
def setup_method(self, method):
dt_data = [
pd.Timestamp("2011-01-01"),
pd.Timestamp("2011-01-02"),
pd.Timestamp("2011-01-03"),
Reported by Pylint.
Line: 56
Column: 5
"period[M]": period_data,
}
def _check_expected_dtype(self, obj, label):
"""
Check whether obj has expected dtype depending on label
considering not-supported dtypes
"""
if isinstance(obj, Index):
Reported by Pylint.
Line: 63
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
"""
if isinstance(obj, Index):
if label == "bool":
assert obj.dtype == "object"
else:
assert obj.dtype == label
elif isinstance(obj, Series):
if label.startswith("period"):
assert obj.dtype == "Period[M]"
Reported by Bandit.
Line: 65
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
if label == "bool":
assert obj.dtype == "object"
else:
assert obj.dtype == label
elif isinstance(obj, Series):
if label.startswith("period"):
assert obj.dtype == "Period[M]"
else:
assert obj.dtype == label
Reported by Bandit.
Line: 68
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
assert obj.dtype == label
elif isinstance(obj, Series):
if label.startswith("period"):
assert obj.dtype == "Period[M]"
else:
assert obj.dtype == label
else:
raise ValueError
Reported by Bandit.
asv_bench/benchmarks/inference.py
117 issues
Line: 11
Column: 1
import numpy as np
from pandas import (
NaT,
Series,
date_range,
to_datetime,
to_numeric,
Reported by Pylint.
Line: 20
Column: 1
to_timedelta,
)
from .pandas_vb_common import (
lib,
tm,
)
Reported by Pylint.
Line: 300
Column: 1
to_timedelta(self.arr, errors=errors)
from .pandas_vb_common import setup # noqa: F401 isort:skip
Reported by Pylint.
Line: 31
Column: 21
params = ["ignore", "coerce"]
param_names = ["errors"]
def setup(self, errors):
N = 10000
self.float = Series(np.random.randn(N))
self.numstr = self.float.astype("str")
self.str = Series(tm.makeStringIndex(N))
Reported by Pylint.
Line: 33
Column: 9
def setup(self, errors):
N = 10000
self.float = Series(np.random.randn(N))
self.numstr = self.float.astype("str")
self.str = Series(tm.makeStringIndex(N))
def time_from_float(self, errors):
to_numeric(self.float, errors=errors)
Reported by Pylint.
Line: 34
Column: 9
def setup(self, errors):
N = 10000
self.float = Series(np.random.randn(N))
self.numstr = self.float.astype("str")
self.str = Series(tm.makeStringIndex(N))
def time_from_float(self, errors):
to_numeric(self.float, errors=errors)
Reported by Pylint.
Line: 35
Column: 9
N = 10000
self.float = Series(np.random.randn(N))
self.numstr = self.float.astype("str")
self.str = Series(tm.makeStringIndex(N))
def time_from_float(self, errors):
to_numeric(self.float, errors=errors)
def time_from_numeric_str(self, errors):
Reported by Pylint.
Line: 76
Column: 28
"int32": np.repeat(np.int32(1), N),
}
def setup(self, dtype, downcast):
self.data = self.data_dict[dtype]
def time_downcast(self, dtype, downcast):
to_numeric(self.data, downcast=downcast)
Reported by Pylint.
Line: 77
Column: 9
}
def setup(self, dtype, downcast):
self.data = self.data_dict[dtype]
def time_downcast(self, dtype, downcast):
to_numeric(self.data, downcast=downcast)
Reported by Pylint.
Line: 79
Column: 29
def setup(self, dtype, downcast):
self.data = self.data_dict[dtype]
def time_downcast(self, dtype, downcast):
to_numeric(self.data, downcast=downcast)
class MaybeConvertNumeric:
# maybe_convert_numeric depends _exclusively_ on _libs, could
Reported by Pylint.
pandas/tests/extension/decimal/test_decimal.py
116 issues
Line: 6
Column: 1
import operator
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.api.types import infer_dtype
from pandas.tests.extension import base
Reported by Pylint.
Line: 341
Column: 5
class DecimalArrayWithoutFromSequence(DecimalArray):
"""Helper class for testing error handling in _from_sequence."""
def _from_sequence(cls, scalars, dtype=None, copy=False):
raise KeyError("For the test")
class DecimalArrayWithoutCoercion(DecimalArrayWithoutFromSequence):
@classmethod
Reported by Pylint.
Line: 99
Column: 3
@classmethod
def assert_frame_equal(cls, left, right, *args, **kwargs):
# TODO(EA): select_dtypes
tm.assert_index_equal(
left.columns,
right.columns,
exact=kwargs.get("check_column_type", "equiv"),
check_names=kwargs.get("check_names", True),
Reported by Pylint.
Line: 121
Column: 29
class TestDtype(BaseDecimal, base.BaseDtypeTests):
def test_hashable(self, dtype):
pass
@pytest.mark.parametrize("skipna", [True, False])
def test_infer_dtype(self, data, data_missing, skipna):
# here overriding base test to ensure we fall back to return
Reported by Pylint.
Line: 125
Column: 32
pass
@pytest.mark.parametrize("skipna", [True, False])
def test_infer_dtype(self, data, data_missing, skipna):
# here overriding base test to ensure we fall back to return
# "unknown-array" for an EA pandas doesn't know
assert infer_dtype(data, skipna=skipna) == "unknown-array"
assert infer_dtype(data_missing, skipna=skipna) == "unknown-array"
Reported by Pylint.
Line: 125
Column: 38
pass
@pytest.mark.parametrize("skipna", [True, False])
def test_infer_dtype(self, data, data_missing, skipna):
# here overriding base test to ensure we fall back to return
# "unknown-array" for an EA pandas doesn't know
assert infer_dtype(data, skipna=skipna) == "unknown-array"
assert infer_dtype(data_missing, skipna=skipna) == "unknown-array"
Reported by Pylint.
Line: 180
Column: 5
class TestMethods(BaseDecimal, base.BaseMethodsTests):
@pytest.mark.parametrize("dropna", [True, False])
def test_value_counts(self, all_data, dropna, request):
all_data = all_data[:10]
if dropna:
other = np.array(all_data[~all_data.isna()])
else:
other = all_data
Reported by Pylint.
Line: 180
Column: 51
class TestMethods(BaseDecimal, base.BaseMethodsTests):
@pytest.mark.parametrize("dropna", [True, False])
def test_value_counts(self, all_data, dropna, request):
all_data = all_data[:10]
if dropna:
other = np.array(all_data[~all_data.isna()])
else:
other = all_data
Reported by Pylint.
Line: 199
Column: 48
tm.assert_series_equal(result, expected)
def test_value_counts_with_normalize(self, data):
return super().test_value_counts_with_normalize(data)
class TestCasting(BaseDecimal, base.BaseCastingTests):
pass
Reported by Pylint.
Line: 199
Column: 5
tm.assert_series_equal(result, expected)
def test_value_counts_with_normalize(self, data):
return super().test_value_counts_with_normalize(data)
class TestCasting(BaseDecimal, base.BaseCastingTests):
pass
Reported by Pylint.