The following issues were found
pandas/tests/indexing/test_scalar.py
116 issues
Line: 8
Column: 1
)
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
Timedelta,
Reported by Pylint.
Line: 236
Column: 18
# call maybe_box_datetimelike
dti = date_range("2016-01-01", periods=3)
tdi = dti - dti
ser = Series(dti.to_pydatetime(), dtype=object)
ser2 = Series(tdi.to_pytimedelta(), dtype=object)
df = DataFrame({"A": ser, "B": ser2})
assert (df.dtypes == object).all()
for result in [df.at[0, "A"], df.iat[0, 0], df.loc[0, "A"], df.iloc[0, 0]]:
Reported by Pylint.
Line: 236
Column: 18
# call maybe_box_datetimelike
dti = date_range("2016-01-01", periods=3)
tdi = dti - dti
ser = Series(dti.to_pydatetime(), dtype=object)
ser2 = Series(tdi.to_pytimedelta(), dtype=object)
df = DataFrame({"A": ser, "B": ser2})
assert (df.dtypes == object).all()
for result in [df.at[0, "A"], df.iat[0, 0], df.loc[0, "A"], df.iloc[0, 0]]:
Reported by Pylint.
Line: 78
Column: 3
class TestScalar2:
# TODO: Better name, just separating things that dont need Base class
def test_at_iat_coercion(self):
# as timestamp is not a tuple!
dates = date_range("1/1/2000", periods=8)
Reported by Pylint.
Line: 123
Column: 13
msg = "index 10 is out of bounds for axis 0 with size 5"
with pytest.raises(IndexError, match=msg):
s.iat[10]
msg = "index -10 is out of bounds for axis 0 with size 5"
with pytest.raises(IndexError, match=msg):
s.iat[-10]
result = s.iloc[[2, 3]]
Reported by Pylint.
Line: 126
Column: 13
s.iat[10]
msg = "index -10 is out of bounds for axis 0 with size 5"
with pytest.raises(IndexError, match=msg):
s.iat[-10]
result = s.iloc[[2, 3]]
expected = Series([2, 3], [2, 2], dtype="int64")
tm.assert_series_equal(result, expected)
Reported by Pylint.
Line: 188
Column: 13
assert s.iat[i] == s.iloc[i] == i + 1
with pytest.raises(KeyError, match="^4$"):
s.at[4]
with pytest.raises(KeyError, match="^4$"):
s.loc[4]
def test_mixed_index_at_iat_loc_iloc_dataframe(self):
# GH 19860
Reported by Pylint.
Line: 190
Column: 13
with pytest.raises(KeyError, match="^4$"):
s.at[4]
with pytest.raises(KeyError, match="^4$"):
s.loc[4]
def test_mixed_index_at_iat_loc_iloc_dataframe(self):
# GH 19860
df = DataFrame(
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], columns=["a", "b", "c", 1, 2]
Reported by Pylint.
Line: 206
Column: 13
assert df.iat[row, i] == df.iloc[row, i] == row * 5 + i
with pytest.raises(KeyError, match="^3$"):
df.at[0, 3]
with pytest.raises(KeyError, match="^3$"):
df.loc[0, 3]
def test_iat_setter_incompatible_assignment(self):
# GH 23236
Reported by Pylint.
Line: 208
Column: 13
with pytest.raises(KeyError, match="^3$"):
df.at[0, 3]
with pytest.raises(KeyError, match="^3$"):
df.loc[0, 3]
def test_iat_setter_incompatible_assignment(self):
# GH 23236
result = DataFrame({"a": [0, 1], "b": [4, 5]})
result.iat[0, 0] = None
Reported by Pylint.
pandas/tests/extension/decimal/test_decimal.py
116 issues
Line: 6
Column: 1
import operator
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.api.types import infer_dtype
from pandas.tests.extension import base
Reported by Pylint.
Line: 341
Column: 5
class DecimalArrayWithoutFromSequence(DecimalArray):
"""Helper class for testing error handling in _from_sequence."""
def _from_sequence(cls, scalars, dtype=None, copy=False):
raise KeyError("For the test")
class DecimalArrayWithoutCoercion(DecimalArrayWithoutFromSequence):
@classmethod
Reported by Pylint.
Line: 99
Column: 3
@classmethod
def assert_frame_equal(cls, left, right, *args, **kwargs):
# TODO(EA): select_dtypes
tm.assert_index_equal(
left.columns,
right.columns,
exact=kwargs.get("check_column_type", "equiv"),
check_names=kwargs.get("check_names", True),
Reported by Pylint.
Line: 121
Column: 29
class TestDtype(BaseDecimal, base.BaseDtypeTests):
def test_hashable(self, dtype):
pass
@pytest.mark.parametrize("skipna", [True, False])
def test_infer_dtype(self, data, data_missing, skipna):
# here overriding base test to ensure we fall back to return
Reported by Pylint.
Line: 125
Column: 32
pass
@pytest.mark.parametrize("skipna", [True, False])
def test_infer_dtype(self, data, data_missing, skipna):
# here overriding base test to ensure we fall back to return
# "unknown-array" for an EA pandas doesn't know
assert infer_dtype(data, skipna=skipna) == "unknown-array"
assert infer_dtype(data_missing, skipna=skipna) == "unknown-array"
Reported by Pylint.
Line: 125
Column: 38
pass
@pytest.mark.parametrize("skipna", [True, False])
def test_infer_dtype(self, data, data_missing, skipna):
# here overriding base test to ensure we fall back to return
# "unknown-array" for an EA pandas doesn't know
assert infer_dtype(data, skipna=skipna) == "unknown-array"
assert infer_dtype(data_missing, skipna=skipna) == "unknown-array"
Reported by Pylint.
Line: 180
Column: 5
class TestMethods(BaseDecimal, base.BaseMethodsTests):
@pytest.mark.parametrize("dropna", [True, False])
def test_value_counts(self, all_data, dropna, request):
all_data = all_data[:10]
if dropna:
other = np.array(all_data[~all_data.isna()])
else:
other = all_data
Reported by Pylint.
Line: 180
Column: 51
class TestMethods(BaseDecimal, base.BaseMethodsTests):
@pytest.mark.parametrize("dropna", [True, False])
def test_value_counts(self, all_data, dropna, request):
all_data = all_data[:10]
if dropna:
other = np.array(all_data[~all_data.isna()])
else:
other = all_data
Reported by Pylint.
Line: 199
Column: 48
tm.assert_series_equal(result, expected)
def test_value_counts_with_normalize(self, data):
return super().test_value_counts_with_normalize(data)
class TestCasting(BaseDecimal, base.BaseCastingTests):
pass
Reported by Pylint.
Line: 199
Column: 5
tm.assert_series_equal(result, expected)
def test_value_counts_with_normalize(self, data):
return super().test_value_counts_with_normalize(data)
class TestCasting(BaseDecimal, base.BaseCastingTests):
pass
Reported by Pylint.
asv_bench/benchmarks/series_methods.py
116 issues
Line: 5
Column: 1
import numpy as np
from pandas import (
NaT,
Series,
date_range,
)
Reported by Pylint.
Line: 11
Column: 1
date_range,
)
from .pandas_vb_common import tm
class SeriesConstructor:
params = [None, "dict"]
Reported by Pylint.
Line: 244
Column: 1
self.s.rank()
from .pandas_vb_common import setup # noqa: F401 isort:skip
Reported by Pylint.
Line: 20
Column: 9
param_names = ["data"]
def setup(self, data):
self.idx = date_range(
start=datetime(2015, 10, 26), end=datetime(2016, 1, 1), freq="50s"
)
dict_data = dict(zip(self.idx, range(len(self.idx))))
self.data = None if data is None else dict_data
Reported by Pylint.
Line: 24
Column: 9
start=datetime(2015, 10, 26), end=datetime(2016, 1, 1), freq="50s"
)
dict_data = dict(zip(self.idx, range(len(self.idx))))
self.data = None if data is None else dict_data
def time_constructor(self, data):
Series(data=self.data, index=self.idx)
Reported by Pylint.
Line: 26
Column: 32
dict_data = dict(zip(self.idx, range(len(self.idx))))
self.data = None if data is None else dict_data
def time_constructor(self, data):
Series(data=self.data, index=self.idx)
class NSort:
Reported by Pylint.
Line: 35
Column: 21
params = ["first", "last", "all"]
param_names = ["keep"]
def setup(self, keep):
self.s = Series(np.random.randint(1, 10, 100000))
def time_nlargest(self, keep):
self.s.nlargest(3, keep=keep)
Reported by Pylint.
Line: 36
Column: 9
param_names = ["keep"]
def setup(self, keep):
self.s = Series(np.random.randint(1, 10, 100000))
def time_nlargest(self, keep):
self.s.nlargest(3, keep=keep)
def time_nsmallest(self, keep):
Reported by Pylint.
Line: 56
Column: 9
"int": np.random.randint(1, 10, N),
"datetime": date_range("2000-01-01", freq="S", periods=N),
}
self.s = Series(data[dtype])
if dtype == "datetime":
self.s[np.random.randint(1, N, 100)] = NaT
def time_dropna(self, dtype):
self.s.dropna()
Reported by Pylint.
Line: 60
Column: 27
if dtype == "datetime":
self.s[np.random.randint(1, N, 100)] = NaT
def time_dropna(self, dtype):
self.s.dropna()
class SearchSorted:
Reported by Pylint.
pandas/tests/io/json/test_normalize.py
111 issues
Line: 4
Column: 1
import json
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Reported by Pylint.
Line: 156
Column: 3
tm.assert_frame_equal(result, expected)
# TODO(ArrayManager) sanitize S/U numpy dtypes to object
@td.skip_array_manager_not_yet_implemented
def test_simple_normalize(self, state_data):
result = json_normalize(state_data[0], "counties")
expected = DataFrame(state_data[0]["counties"])
tm.assert_frame_equal(result, expected)
Reported by Pylint.
Line: 158
Column: 37
# TODO(ArrayManager) sanitize S/U numpy dtypes to object
@td.skip_array_manager_not_yet_implemented
def test_simple_normalize(self, state_data):
result = json_normalize(state_data[0], "counties")
expected = DataFrame(state_data[0]["counties"])
tm.assert_frame_equal(result, expected)
result = json_normalize(state_data, "counties")
Reported by Pylint.
Line: 200
Column: 52
expected = DataFrame([0, 1], columns=["a"])
tm.assert_frame_equal(result, expected)
def test_simple_normalize_with_separator(self, deep_nested):
# GH 14883
result = json_normalize({"A": {"A": 1, "B": 2}})
expected = DataFrame([[1, 2]], columns=["A.A", "A.B"])
tm.assert_frame_equal(result.reindex_like(expected), expected)
Reported by Pylint.
Line: 249
Column: 39
)
tm.assert_frame_equal(result, expected)
def test_more_deeply_nested(self, deep_nested):
result = json_normalize(
deep_nested, ["states", "cities"], meta=["country", ["states", "name"]]
)
ex_data = {
Reported by Pylint.
Line: 316
Column: 61
expected = DataFrame(ex_data, columns=result.columns)
tm.assert_frame_equal(result, expected)
def test_nested_meta_path_with_nested_record_path(self, state_data):
# GH 27220
result = json_normalize(
data=state_data,
record_path=["counties"],
meta=["state", "shortname", ["info", "governor"]],
Reported by Pylint.
Line: 377
Column: 3
for val in ["metafoo", "metabar", "foo", "bar"]:
assert val in result
# TODO(ArrayManager) sanitize S/U numpy dtypes to object
@td.skip_array_manager_not_yet_implemented
def test_record_prefix(self, state_data):
result = json_normalize(state_data[0], "counties")
expected = DataFrame(state_data[0]["counties"])
tm.assert_frame_equal(result, expected)
Reported by Pylint.
Line: 379
Column: 34
# TODO(ArrayManager) sanitize S/U numpy dtypes to object
@td.skip_array_manager_not_yet_implemented
def test_record_prefix(self, state_data):
result = json_normalize(state_data[0], "counties")
expected = DataFrame(state_data[0]["counties"])
tm.assert_frame_equal(result, expected)
result = json_normalize(
Reported by Pylint.
Line: 413
Column: 34
result = json_normalize(json.loads(testjson))
tm.assert_frame_equal(result, expected)
def test_missing_field(self, author_missing_data):
# GH20030:
result = json_normalize(author_missing_data)
ex_data = [
{
"info": np.nan,
Reported by Pylint.
Line: 552
Column: 30
)
tm.assert_frame_equal(result, expected)
def test_generator(self, state_data):
# GH35923 Fix pd.json_normalize to not skip the first element of a
# generator input
def generator_data():
yield from state_data[0]["counties"]
Reported by Pylint.
pandas/tests/tseries/frequencies/test_inference.py
110 issues
Line: 7
Column: 1
)
import numpy as np
import pytest
from pandas._libs.tslibs.ccalendar import (
DAYS,
MONTHS,
)
Reported by Pylint.
Line: 9
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs.ccalendar import (
DAYS,
MONTHS,
)
from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
from pandas.compat import is_platform_windows
Reported by Pylint.
Line: 9
Column: 1
import numpy as np
import pytest
from pandas._libs.tslibs.ccalendar import (
DAYS,
MONTHS,
)
from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
from pandas.compat import is_platform_windows
Reported by Pylint.
Line: 13
Column: 1
DAYS,
MONTHS,
)
from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
from pandas.compat import is_platform_windows
from pandas import (
DatetimeIndex,
Index,
Reported by Pylint.
Line: 13
Column: 1
DAYS,
MONTHS,
)
from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
from pandas.compat import is_platform_windows
from pandas import (
DatetimeIndex,
Index,
Reported by Pylint.
Line: 50
Column: 49
index = DatetimeIndex(gen.values)
if not freq.startswith("Q-"):
assert frequencies.infer_freq(index) == gen.freqstr
else:
inf_freq = frequencies.infer_freq(index)
is_dec_range = inf_freq == "Q-DEC" and gen.freqstr in (
"Q",
"Q-DEC",
Reported by Pylint.
Line: 50
Column: 49
index = DatetimeIndex(gen.values)
if not freq.startswith("Q-"):
assert frequencies.infer_freq(index) == gen.freqstr
else:
inf_freq = frequencies.infer_freq(index)
is_dec_range = inf_freq == "Q-DEC" and gen.freqstr in (
"Q",
"Q-DEC",
Reported by Pylint.
Line: 53
Column: 48
assert frequencies.infer_freq(index) == gen.freqstr
else:
inf_freq = frequencies.infer_freq(index)
is_dec_range = inf_freq == "Q-DEC" and gen.freqstr in (
"Q",
"Q-DEC",
"Q-SEP",
"Q-JUN",
"Q-MAR",
Reported by Pylint.
Line: 53
Column: 48
assert frequencies.infer_freq(index) == gen.freqstr
else:
inf_freq = frequencies.infer_freq(index)
is_dec_range = inf_freq == "Q-DEC" and gen.freqstr in (
"Q",
"Q-DEC",
"Q-SEP",
"Q-JUN",
"Q-MAR",
Reported by Pylint.
Line: 60
Column: 48
"Q-JUN",
"Q-MAR",
)
is_nov_range = inf_freq == "Q-NOV" and gen.freqstr in (
"Q-NOV",
"Q-AUG",
"Q-MAY",
"Q-FEB",
)
Reported by Pylint.
asv_bench/benchmarks/algos/isin.py
110 issues
Line: 3
Column: 1
import numpy as np
from pandas import (
Categorical,
NaT,
Series,
date_range,
)
Reported by Pylint.
Line: 10
Column: 1
date_range,
)
from ..pandas_vb_common import tm
class IsIn:
params = [
Reported by Pylint.
Line: 34
Column: 9
def setup(self, dtype):
N = 10000
self.mismatched = [NaT.to_datetime64()] * 2
if dtype in ["boolean", "bool"]:
self.series = Series(np.random.randint(0, 2, N)).astype(dtype)
self.values = [True, False]
Reported by Pylint.
Line: 37
Column: 13
self.mismatched = [NaT.to_datetime64()] * 2
if dtype in ["boolean", "bool"]:
self.series = Series(np.random.randint(0, 2, N)).astype(dtype)
self.values = [True, False]
elif dtype == "datetime64[ns]":
# Note: values here is much larger than non-dt64ns cases
Reported by Pylint.
Line: 38
Column: 13
if dtype in ["boolean", "bool"]:
self.series = Series(np.random.randint(0, 2, N)).astype(dtype)
self.values = [True, False]
elif dtype == "datetime64[ns]":
# Note: values here is much larger than non-dt64ns cases
# dti has length=115777
Reported by Pylint.
Line: 45
Column: 13
# dti has length=115777
dti = date_range(start="2015-10-26", end="2016-01-01", freq="50s")
self.series = Series(dti)
self.values = self.series._values[::3]
self.mismatched = [1, 2]
elif dtype in ["category[object]", "category[int]"]:
# Note: sizes are different in this case than others
Reported by Pylint.
Line: 46
Column: 13
# dti has length=115777
dti = date_range(start="2015-10-26", end="2016-01-01", freq="50s")
self.series = Series(dti)
self.values = self.series._values[::3]
self.mismatched = [1, 2]
elif dtype in ["category[object]", "category[int]"]:
# Note: sizes are different in this case than others
n = 5 * 10 ** 5
Reported by Pylint.
Line: 46
Column: 27
# dti has length=115777
dti = date_range(start="2015-10-26", end="2016-01-01", freq="50s")
self.series = Series(dti)
self.values = self.series._values[::3]
self.mismatched = [1, 2]
elif dtype in ["category[object]", "category[int]"]:
# Note: sizes are different in this case than others
n = 5 * 10 ** 5
Reported by Pylint.
Line: 47
Column: 13
dti = date_range(start="2015-10-26", end="2016-01-01", freq="50s")
self.series = Series(dti)
self.values = self.series._values[::3]
self.mismatched = [1, 2]
elif dtype in ["category[object]", "category[int]"]:
# Note: sizes are different in this case than others
n = 5 * 10 ** 5
sample_size = 100
Reported by Pylint.
Line: 58
Column: 13
if dtype == "category[object]":
arr = [f"s{i:04d}" for i in arr]
self.values = np.random.choice(arr, sample_size)
self.series = Series(arr).astype("category")
elif dtype in ["str", "string[python]", "string[pyarrow]"]:
try:
self.series = Series(tm.makeStringIndex(N), dtype=dtype)
Reported by Pylint.
pandas/tests/reshape/concat/test_datetimes.py
109 issues
Line: 6
Column: 1
import dateutil
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Reported by Pylint.
Line: 25
Column: 9
class TestDatetimeConcat:
def test_concat_datetime64_block(self):
from pandas.core.indexes.datetimes import date_range
rng = date_range("1/1/2000", periods=10)
df = DataFrame({"time": rng})
Reported by Pylint.
Line: 25
Column: 9
class TestDatetimeConcat:
def test_concat_datetime64_block(self):
from pandas.core.indexes.datetimes import date_range
rng = date_range("1/1/2000", periods=10)
df = DataFrame({"time": rng})
Reported by Pylint.
Line: 126
Column: 9
# Non-monotonic index result
result = concat([expected[50:], expected[:50]])
expected = DataFrame(data[50:] + data[:50], index=dr[50:].append(dr[:50]))
expected.index._data.freq = None
tm.assert_frame_equal(result, expected)
def test_concat_multiindex_datetime_object_index(self):
# https://github.com/pandas-dev/pandas/issues/11058
idx = Index(
Reported by Pylint.
Line: 1
Column: 1
import datetime as dt
from datetime import datetime
import dateutil
import numpy as np
import pytest
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 23
Column: 1
import pandas._testing as tm
class TestDatetimeConcat:
def test_concat_datetime64_block(self):
from pandas.core.indexes.datetimes import date_range
rng = date_range("1/1/2000", periods=10)
Reported by Pylint.
Line: 24
Column: 5
class TestDatetimeConcat:
def test_concat_datetime64_block(self):
from pandas.core.indexes.datetimes import date_range
rng = date_range("1/1/2000", periods=10)
df = DataFrame({"time": rng})
Reported by Pylint.
Line: 24
Column: 5
class TestDatetimeConcat:
def test_concat_datetime64_block(self):
from pandas.core.indexes.datetimes import date_range
rng = date_range("1/1/2000", periods=10)
df = DataFrame({"time": rng})
Reported by Pylint.
Line: 25
Column: 9
class TestDatetimeConcat:
def test_concat_datetime64_block(self):
from pandas.core.indexes.datetimes import date_range
rng = date_range("1/1/2000", periods=10)
df = DataFrame({"time": rng})
Reported by Pylint.
Line: 29
Column: 9
rng = date_range("1/1/2000", periods=10)
df = DataFrame({"time": rng})
result = concat([df, df])
assert (result.iloc[:10]["time"] == rng).all()
assert (result.iloc[10:]["time"] == rng).all()
Reported by Pylint.
pandas/tests/tseries/offsets/test_fiscal.py
109 issues
Line: 7
Column: 1
from datetime import datetime
from dateutil.relativedelta import relativedelta
import pytest
from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
from pandas import Timestamp
import pandas._testing as tm
Reported by Pylint.
Line: 9
Column: 1
from dateutil.relativedelta import relativedelta
import pytest
from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
from pandas import Timestamp
import pandas._testing as tm
from pandas.tests.tseries.offsets.common import (
Base,
Reported by Pylint.
Line: 9
Column: 1
from dateutil.relativedelta import relativedelta
import pytest
from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
from pandas import Timestamp
import pandas._testing as tm
from pandas.tests.tseries.offsets.common import (
Base,
Reported by Pylint.
Line: 27
Column: 1
)
def makeFY5253LastOfMonthQuarter(*args, **kwds):
return FY5253Quarter(*args, variation="last", **kwds)
def makeFY5253NearestEndMonthQuarter(*args, **kwds):
return FY5253Quarter(*args, variation="nearest", **kwds)
Reported by Pylint.
Line: 27
Column: 1
)
def makeFY5253LastOfMonthQuarter(*args, **kwds):
return FY5253Quarter(*args, variation="last", **kwds)
def makeFY5253NearestEndMonthQuarter(*args, **kwds):
return FY5253Quarter(*args, variation="nearest", **kwds)
Reported by Pylint.
Line: 31
Column: 1
return FY5253Quarter(*args, variation="last", **kwds)
def makeFY5253NearestEndMonthQuarter(*args, **kwds):
return FY5253Quarter(*args, variation="nearest", **kwds)
def makeFY5253NearestEndMonth(*args, **kwds):
return FY5253(*args, variation="nearest", **kwds)
Reported by Pylint.
Line: 31
Column: 1
return FY5253Quarter(*args, variation="last", **kwds)
def makeFY5253NearestEndMonthQuarter(*args, **kwds):
return FY5253Quarter(*args, variation="nearest", **kwds)
def makeFY5253NearestEndMonth(*args, **kwds):
return FY5253(*args, variation="nearest", **kwds)
Reported by Pylint.
Line: 35
Column: 1
return FY5253Quarter(*args, variation="nearest", **kwds)
def makeFY5253NearestEndMonth(*args, **kwds):
return FY5253(*args, variation="nearest", **kwds)
def makeFY5253LastOfMonth(*args, **kwds):
return FY5253(*args, variation="last", **kwds)
Reported by Pylint.
Line: 35
Column: 1
return FY5253Quarter(*args, variation="nearest", **kwds)
def makeFY5253NearestEndMonth(*args, **kwds):
return FY5253(*args, variation="nearest", **kwds)
def makeFY5253LastOfMonth(*args, **kwds):
return FY5253(*args, variation="last", **kwds)
Reported by Pylint.
Line: 39
Column: 1
return FY5253(*args, variation="nearest", **kwds)
def makeFY5253LastOfMonth(*args, **kwds):
return FY5253(*args, variation="last", **kwds)
def test_get_offset_name():
assert (
Reported by Pylint.
pandas/tests/scalar/interval/test_interval.py
109 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas import (
Interval,
Period,
Timedelta,
Timestamp,
)
Reported by Pylint.
Line: 20
Column: 31
class TestInterval:
def test_properties(self, interval):
assert interval.closed == "right"
assert interval.left == 0
assert interval.right == 1
assert interval.mid == 0.5
Reported by Pylint.
Line: 26
Column: 25
assert interval.right == 1
assert interval.mid == 0.5
def test_repr(self, interval):
assert repr(interval) == "Interval(0, 1, closed='right')"
assert str(interval) == "(0, 1]"
interval_left = Interval(0, 1, closed="left")
assert repr(interval_left) == "Interval(0, 1, closed='left')"
Reported by Pylint.
Line: 34
Column: 29
assert repr(interval_left) == "Interval(0, 1, closed='left')"
assert str(interval_left) == "[0, 1)"
def test_contains(self, interval):
assert 0.5 in interval
assert 1 in interval
assert 0 not in interval
msg = "__contains__ not defined for two intervals"
Reported by Pylint.
Line: 41
Column: 13
msg = "__contains__ not defined for two intervals"
with pytest.raises(TypeError, match=msg):
interval in interval
interval_both = Interval(0, 1, closed="both")
assert 0 in interval_both
assert 1 in interval_both
Reported by Pylint.
Line: 63
Column: 13
"'pandas._libs.interval.Interval' and 'int'"
)
with pytest.raises(TypeError, match=msg):
Interval(0, 1) < 2
assert Interval(0, 1) < Interval(1, 2)
assert Interval(0, 1) < Interval(0, 2)
assert Interval(0, 1) < Interval(0.5, 1.5)
assert Interval(0, 1) <= Interval(0, 1)
Reported by Pylint.
Line: 72
Column: 25
assert Interval(0, 1) > Interval(-1, 2)
assert Interval(0, 1) >= Interval(0, 1)
def test_hash(self, interval):
# should not raise
hash(interval)
@pytest.mark.parametrize(
"left, right, expected",
Reported by Pylint.
Line: 155
Column: 9
Interval(left, right)
def test_math_add(self, closed):
interval = Interval(0, 1, closed=closed)
expected = Interval(1, 2, closed=closed)
result = interval + 1
assert result == expected
Reported by Pylint.
Line: 170
Column: 13
msg = r"unsupported operand type\(s\) for \+"
with pytest.raises(TypeError, match=msg):
interval + interval
with pytest.raises(TypeError, match=msg):
interval + "foo"
def test_math_sub(self, closed):
Reported by Pylint.
Line: 173
Column: 13
interval + interval
with pytest.raises(TypeError, match=msg):
interval + "foo"
def test_math_sub(self, closed):
interval = Interval(0, 1, closed=closed)
expected = Interval(-1, 0, closed=closed)
Reported by Pylint.
pandas/tests/indexes/datetimelike_/test_equals.py
109 issues
Line: 10
Column: 1
)
import numpy as np
import pytest
import pandas as pd
from pandas import (
CategoricalIndex,
DatetimeIndex,
Reported by Pylint.
Line: 57
Column: 3
def index(self):
return period_range("2013-01-01", periods=5, freq="D")
# TODO: de-duplicate with other test_equals2 methods
@pytest.mark.parametrize("freq", ["D", "M"])
def test_equals2(self, freq):
# GH#13107
idx = PeriodIndex(["2011-01-01", "2011-01-02", "NaT"], freq=freq)
assert idx.equals(idx)
Reported by Pylint.
Line: 79
Column: 16
assert not idx.equals(pd.Series(idx2))
# same internal, different tz
idx3 = PeriodIndex._simple_new(
idx._values._simple_new(idx._values.asi8, freq="H")
)
tm.assert_numpy_array_equal(idx.asi8, idx3.asi8)
assert not idx.equals(idx3)
assert not idx.equals(idx3.copy())
Reported by Pylint.
Line: 80
Column: 13
# same internal, different tz
idx3 = PeriodIndex._simple_new(
idx._values._simple_new(idx._values.asi8, freq="H")
)
tm.assert_numpy_array_equal(idx.asi8, idx3.asi8)
assert not idx.equals(idx3)
assert not idx.equals(idx3.copy())
assert not idx.equals(idx3.astype(object))
Reported by Pylint.
Line: 80
Column: 37
# same internal, different tz
idx3 = PeriodIndex._simple_new(
idx._values._simple_new(idx._values.asi8, freq="H")
)
tm.assert_numpy_array_equal(idx.asi8, idx3.asi8)
assert not idx.equals(idx3)
assert not idx.equals(idx3.copy())
assert not idx.equals(idx3.astype(object))
Reported by Pylint.
Line: 80
Column: 13
# same internal, different tz
idx3 = PeriodIndex._simple_new(
idx._values._simple_new(idx._values.asi8, freq="H")
)
tm.assert_numpy_array_equal(idx.asi8, idx3.asi8)
assert not idx.equals(idx3)
assert not idx.equals(idx3.copy())
assert not idx.equals(idx3.astype(object))
Reported by Pylint.
Line: 174
Column: 3
assert not idx.equals(oob)
assert not idx2.equals(oob)
# FIXME: oob.apply(np.timedelta64) incorrectly overflows
oob2 = Index([np.timedelta64(x) for x in oob], dtype=object)
assert not idx.equals(oob2)
assert not idx2.equals(oob2)
Reported by Pylint.
Line: 25
Column: 1
import pandas._testing as tm
class EqualsTests:
def test_not_equals_numeric(self, index):
assert not index.equals(Index(index.asi8))
assert not index.equals(Index(index.asi8.astype("u8")))
assert not index.equals(Index(index.asi8).astype("f8"))
Reported by Pylint.
Line: 26
Column: 5
class EqualsTests:
def test_not_equals_numeric(self, index):
assert not index.equals(Index(index.asi8))
assert not index.equals(Index(index.asi8.astype("u8")))
assert not index.equals(Index(index.asi8).astype("f8"))
Reported by Pylint.
Line: 26
Column: 5
class EqualsTests:
def test_not_equals_numeric(self, index):
assert not index.equals(Index(index.asi8))
assert not index.equals(Index(index.asi8.astype("u8")))
assert not index.equals(Index(index.asi8).astype("f8"))
Reported by Pylint.