The following issues were found
pandas/tests/dtypes/test_dtypes.py
559 issues
Line: 4
Column: 1
import re
import numpy as np
import pytest
import pytz
from pandas.core.dtypes.base import _registry as registry
from pandas.core.dtypes.common import (
is_bool_dtype,
Reported by Pylint.
Line: 5
Column: 1
import numpy as np
import pytest
import pytz
from pandas.core.dtypes.base import _registry as registry
from pandas.core.dtypes.common import (
is_bool_dtype,
is_categorical,
Reported by Pylint.
Line: 378
Column: 39
# GH 24713
tz = pytz.timezone("US/Eastern")
dr = date_range("2013-01-01", periods=3, tz="US/Eastern")
dtype = DatetimeTZDtype("ns", dr.tz)
assert dtype.tz == tz
dtype = DatetimeTZDtype("ns", dr[0].tz)
assert dtype.tz == tz
Reported by Pylint.
Line: 378
Column: 39
# GH 24713
tz = pytz.timezone("US/Eastern")
dr = date_range("2013-01-01", periods=3, tz="US/Eastern")
dtype = DatetimeTZDtype("ns", dr.tz)
assert dtype.tz == tz
dtype = DatetimeTZDtype("ns", dr[0].tz)
assert dtype.tz == tz
Reported by Pylint.
Line: 69
Column: 24
# clear the cache
type(dtype).reset_cache()
assert not len(dtype._cache_dtypes)
# force back to the cache
result = tm.round_trip_pickle(dtype)
if not isinstance(dtype, PeriodDtype):
# Because PeriodDtype has a cython class as a base class,
Reported by Pylint.
Line: 77
Column: 28
# Because PeriodDtype has a cython class as a base class,
# it has different pickle semantics, and its cache is re-populated
# on un-pickling.
assert not len(dtype._cache_dtypes)
assert result == dtype
class TestCategoricalDtype(Base):
@pytest.fixture
Reported by Pylint.
Line: 137
Column: 18
],
)
def test_from_values_or_dtype(self, values, categories, ordered, dtype, expected):
result = CategoricalDtype._from_values_or_dtype(
values, categories, ordered, dtype
)
assert result == expected
@pytest.mark.parametrize(
Reported by Pylint.
Line: 153
Column: 13
def test_from_values_or_dtype_raises(self, values, categories, ordered, dtype):
msg = "Cannot specify `categories` or `ordered` together with `dtype`."
with pytest.raises(ValueError, match=msg):
CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype)
def test_from_values_or_dtype_invalid_dtype(self):
msg = "Cannot not construct CategoricalDtype from <class 'object'>"
with pytest.raises(ValueError, match=msg):
CategoricalDtype._from_values_or_dtype(None, None, None, object)
Reported by Pylint.
Line: 158
Column: 13
def test_from_values_or_dtype_invalid_dtype(self):
msg = "Cannot not construct CategoricalDtype from <class 'object'>"
with pytest.raises(ValueError, match=msg):
CategoricalDtype._from_values_or_dtype(None, None, None, object)
def test_is_dtype(self, dtype):
assert CategoricalDtype.is_dtype(dtype)
assert CategoricalDtype.is_dtype("category")
assert CategoricalDtype.is_dtype(CategoricalDtype())
Reported by Pylint.
Line: 203
Column: 16
)
def test_is_boolean(self, categories, expected):
cat = Categorical(categories)
assert cat.dtype._is_boolean is expected
assert is_bool_dtype(cat) is expected
assert is_bool_dtype(cat.dtype) is expected
def test_dtype_specific_categorical_dtype(self):
expected = "datetime64[ns]"
Reported by Pylint.
pandas/tests/scalar/period/test_asfreq.py
505 issues
Line: 1
Column: 1
import pytest
from pandas._libs.tslibs.dtypes import _period_code_map
from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
from pandas.errors import OutOfBoundsDatetime
from pandas import (
Period,
Timestamp,
Reported by Pylint.
Line: 3
Column: 1
import pytest
from pandas._libs.tslibs.dtypes import _period_code_map
from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
from pandas.errors import OutOfBoundsDatetime
from pandas import (
Period,
Timestamp,
Reported by Pylint.
Line: 4
Column: 1
import pytest
from pandas._libs.tslibs.dtypes import _period_code_map
from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
from pandas.errors import OutOfBoundsDatetime
from pandas import (
Period,
Timestamp,
Reported by Pylint.
Line: 4
Column: 1
import pytest
from pandas._libs.tslibs.dtypes import _period_code_map
from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
from pandas.errors import OutOfBoundsDatetime
from pandas import (
Period,
Timestamp,
Reported by Pylint.
Line: 431
Column: 3
ival_D_saturday = Period(freq="D", year=2007, month=1, day=6)
ival_D_sunday = Period(freq="D", year=2007, month=1, day=7)
# TODO: unused?
# ival_D_monday = Period(freq='D', year=2007, month=1, day=8)
ival_B_friday = Period(freq="B", year=2007, month=1, day=5)
ival_B_monday = Period(freq="B", year=2007, month=1, day=8)
Reported by Pylint.
Line: 679
Column: 13
per2 = Period("2300-01-01", "us")
msg = "2300-01-01"
with pytest.raises(OutOfBoundsDatetime, match=msg):
per2.start_time
with pytest.raises(OutOfBoundsDatetime, match=msg):
per2.end_time
def test_asfreq_mult(self):
# normal freq to mult freq
Reported by Pylint.
Line: 681
Column: 13
with pytest.raises(OutOfBoundsDatetime, match=msg):
per2.start_time
with pytest.raises(OutOfBoundsDatetime, match=msg):
per2.end_time
def test_asfreq_mult(self):
# normal freq to mult freq
p = Period(freq="A", year=2007)
# ordinal will not change
Reported by Pylint.
Line: 1
Column: 1
import pytest
from pandas._libs.tslibs.dtypes import _period_code_map
from pandas._libs.tslibs.period import INVALID_FREQ_ERR_MSG
from pandas.errors import OutOfBoundsDatetime
from pandas import (
Period,
Timestamp,
Reported by Pylint.
Line: 18
Column: 5
"""Test frequency conversion of date objects"""
@pytest.mark.parametrize("freq", ["A", "Q", "M", "W", "B", "D"])
def test_asfreq_near_zero(self, freq):
# GH#19643, GH#19650
per = Period("0001-01-01", freq=freq)
tup1 = (per.year, per.hour, per.day)
prev = per - 1
Reported by Pylint.
Line: 18
Column: 5
"""Test frequency conversion of date objects"""
@pytest.mark.parametrize("freq", ["A", "Q", "M", "W", "B", "D"])
def test_asfreq_near_zero(self, freq):
# GH#19643, GH#19650
per = Period("0001-01-01", freq=freq)
tup1 = (per.year, per.hour, per.day)
prev = per - 1
Reported by Pylint.
pandas/tests/io/formats/style/test_style.py
496 issues
Line: 5
Column: 1
import re
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
MultiIndex,
Reported by Pylint.
Line: 37
Column: 15
@pytest.fixture
def mi_styler(mi_df):
return Styler(mi_df, uuid_len=0)
@pytest.fixture
def mi_styler_comp(mi_styler):
Reported by Pylint.
Line: 42
Column: 20
@pytest.fixture
def mi_styler_comp(mi_styler):
# comprehensively add features to mi_styler
mi_styler.uuid_len = 5
mi_styler.uuid = "abcde"
mi_styler.set_caption("capt")
mi_styler.set_table_styles([{"selector": "a", "props": "a:v;"}])
Reported by Pylint.
Line: 91
Column: 37
),
],
)
def test_mi_styler_sparsify_columns(mi_styler, sparse_columns, exp_cols):
exp_l1_c0 = {"is_visible": True, "attributes": "", "display_value": "c1_a"}
exp_l1_c1 = {"is_visible": True, "attributes": "", "display_value": "c1_b"}
ctx = mi_styler._translate(True, sparse_columns)
Reported by Pylint.
Line: 95
Column: 11
exp_l1_c0 = {"is_visible": True, "attributes": "", "display_value": "c1_a"}
exp_l1_c1 = {"is_visible": True, "attributes": "", "display_value": "c1_b"}
ctx = mi_styler._translate(True, sparse_columns)
assert exp_cols[0].items() <= ctx["head"][0][2].items()
assert exp_cols[1].items() <= ctx["head"][0][3].items()
assert exp_l1_c0.items() <= ctx["head"][1][2].items()
assert exp_l1_c1.items() <= ctx["head"][1][3].items()
Reported by Pylint.
Line: 122
Column: 35
),
],
)
def test_mi_styler_sparsify_index(mi_styler, sparse_index, exp_rows):
exp_l1_r0 = {"is_visible": True, "attributes": "", "display_value": "i1_a"}
exp_l1_r1 = {"is_visible": True, "attributes": "", "display_value": "i1_b"}
ctx = mi_styler._translate(sparse_index, True)
Reported by Pylint.
Line: 126
Column: 11
exp_l1_r0 = {"is_visible": True, "attributes": "", "display_value": "i1_a"}
exp_l1_r1 = {"is_visible": True, "attributes": "", "display_value": "i1_b"}
ctx = mi_styler._translate(sparse_index, True)
assert exp_rows[0].items() <= ctx["body"][0][0].items()
assert exp_rows[1].items() <= ctx["body"][1][0].items()
assert exp_l1_r0.items() <= ctx["body"][0][1].items()
assert exp_l1_r1.items() <= ctx["body"][1][1].items()
Reported by Pylint.
Line: 134
Column: 37
assert exp_l1_r1.items() <= ctx["body"][1][1].items()
def test_mi_styler_sparsify_options(mi_styler):
with pd.option_context("styler.sparse.index", False):
html1 = mi_styler.to_html()
with pd.option_context("styler.sparse.index", True):
html2 = mi_styler.to_html()
Reported by Pylint.
Line: 161
Column: 15
def test_render_trimming():
df = DataFrame(np.arange(120).reshape(60, 2))
with pd.option_context("styler.render.max_elements", 6):
ctx = df.style._translate(True, True)
assert len(ctx["head"][0]) == 3 # index + 2 data cols
assert len(ctx["body"]) == 4 # 3 data rows + trimming row
assert len(ctx["body"][0]) == 3 # index + 2 data cols
df = DataFrame(np.arange(120).reshape(12, 10))
Reported by Pylint.
Line: 168
Column: 15
df = DataFrame(np.arange(120).reshape(12, 10))
with pd.option_context("styler.render.max_elements", 6):
ctx = df.style._translate(True, True)
assert len(ctx["head"][0]) == 4 # index + 2 data cols + trimming row
assert len(ctx["body"]) == 4 # 3 data rows + trimming row
assert len(ctx["body"][0]) == 4 # index + 2 data cols + trimming row
Reported by Pylint.
pandas/tests/arithmetic/test_datetime64.py
465 issues
Line: 17
Column: 1
import warnings
import numpy as np
import pytest
import pytz
from pandas._libs.tslibs.conversion import localize_pydatetime
from pandas._libs.tslibs.offsets import shift_months
from pandas.compat import np_datetime64_compat
Reported by Pylint.
Line: 18
Column: 1
import numpy as np
import pytest
import pytz
from pandas._libs.tslibs.conversion import localize_pydatetime
from pandas._libs.tslibs.offsets import shift_months
from pandas.compat import np_datetime64_compat
from pandas.errors import PerformanceWarning
Reported by Pylint.
Line: 20
Column: 1
import pytest
import pytz
from pandas._libs.tslibs.conversion import localize_pydatetime
from pandas._libs.tslibs.offsets import shift_months
from pandas.compat import np_datetime64_compat
from pandas.errors import PerformanceWarning
import pandas as pd
Reported by Pylint.
Line: 20
Column: 1
import pytest
import pytz
from pandas._libs.tslibs.conversion import localize_pydatetime
from pandas._libs.tslibs.offsets import shift_months
from pandas.compat import np_datetime64_compat
from pandas.errors import PerformanceWarning
import pandas as pd
Reported by Pylint.
Line: 21
Column: 1
import pytz
from pandas._libs.tslibs.conversion import localize_pydatetime
from pandas._libs.tslibs.offsets import shift_months
from pandas.compat import np_datetime64_compat
from pandas.errors import PerformanceWarning
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 21
Column: 1
import pytz
from pandas._libs.tslibs.conversion import localize_pydatetime
from pandas._libs.tslibs.offsets import shift_months
from pandas.compat import np_datetime64_compat
from pandas.errors import PerformanceWarning
import pandas as pd
from pandas import (
Reported by Pylint.
Line: 398
Column: 48
if isinstance(other, np.datetime64):
# no tzaware version available
return
other = localize_pydatetime(other, dti.tzinfo)
result = dti == other
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
Reported by Pylint.
Line: 398
Column: 48
if isinstance(other, np.datetime64):
# no tzaware version available
return
other = localize_pydatetime(other, dti.tzinfo)
result = dti == other
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
Reported by Pylint.
Line: 571
Column: 14
box = box_with_array
dr = date_range("2016-01-01", periods=6)
dz = dr.tz_localize("US/Pacific")
dr = tm.box_expected(dr, box)
dz = tm.box_expected(dz, box)
if box is pd.DataFrame:
Reported by Pylint.
Line: 571
Column: 14
box = box_with_array
dr = date_range("2016-01-01", periods=6)
dz = dr.tz_localize("US/Pacific")
dr = tm.box_expected(dr, box)
dz = tm.box_expected(dz, box)
if box is pd.DataFrame:
Reported by Pylint.
pandas/tests/reductions/test_reductions.py
456 issues
Line: 7
Column: 1
)
import numpy as np
import pytest
import pandas as pd
from pandas import (
Categorical,
DataFrame,
Reported by Pylint.
Line: 224
Column: 20
def test_max_min_range(self, start, stop, step):
# GH#17607
idx = RangeIndex(start, stop, step)
expected = idx._int64index.max()
result = idx.max()
assert result == expected
# skipna should be irrelevant since RangeIndex should never have NAs
result2 = idx.max(skipna=False)
Reported by Pylint.
Line: 232
Column: 20
result2 = idx.max(skipna=False)
assert result2 == expected
expected = idx._int64index.min()
result = idx.min()
assert result == expected
# skipna should be irrelevant since RangeIndex should never have NAs
result2 = idx.min(skipna=False)
Reported by Pylint.
Line: 434
Column: 20
# GH#26125
idx = RangeIndex(0, 10, 3)
expected = idx._int64index.max()
result = np.max(idx)
assert result == expected
expected = idx._int64index.min()
result = np.min(idx)
Reported by Pylint.
Line: 438
Column: 20
result = np.max(idx)
assert result == expected
expected = idx._int64index.min()
result = np.min(idx)
assert result == expected
errmsg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=errmsg):
Reported by Pylint.
Line: 47
Column: 5
arr = np.random.randn(10)
series = [Series(arr, index=idx, name="a") for idx in indexes]
objs = indexes + series
return objs
objs = get_objs()
Reported by Pylint.
Line: 224
Column: 20
def test_max_min_range(self, start, stop, step):
# GH#17607
idx = RangeIndex(start, stop, step)
expected = idx._int64index.max()
result = idx.max()
assert result == expected
# skipna should be irrelevant since RangeIndex should never have NAs
result2 = idx.max(skipna=False)
Reported by Pylint.
Line: 232
Column: 20
result2 = idx.max(skipna=False)
assert result2 == expected
expected = idx._int64index.min()
result = idx.min()
assert result == expected
# skipna should be irrelevant since RangeIndex should never have NAs
result2 = idx.min(skipna=False)
Reported by Pylint.
Line: 434
Column: 20
# GH#26125
idx = RangeIndex(0, 10, 3)
expected = idx._int64index.max()
result = np.max(idx)
assert result == expected
expected = idx._int64index.min()
result = np.min(idx)
Reported by Pylint.
Line: 438
Column: 20
result = np.max(idx)
assert result == expected
expected = idx._int64index.min()
result = np.min(idx)
assert result == expected
errmsg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=errmsg):
Reported by Pylint.
pandas/io/pytables.py
453 issues
Line: 34
Column: 1
get_option,
)
from pandas._libs import (
lib,
writers as libwriters,
)
from pandas._libs.tslibs import timezones
from pandas._typing import (
Reported by Pylint.
Line: 34
Column: 1
get_option,
)
from pandas._libs import (
lib,
writers as libwriters,
)
from pandas._libs.tslibs import timezones
from pandas._typing import (
Reported by Pylint.
Line: 38
Column: 1
lib,
writers as libwriters,
)
from pandas._libs.tslibs import timezones
from pandas._typing import (
ArrayLike,
DtypeArg,
FrameOrSeries,
Shape,
Reported by Pylint.
Line: 100
Column: 5
)
if TYPE_CHECKING:
from tables import (
Col,
File,
Node,
)
Reported by Pylint.
Line: 244
Column: 9
global _table_mod
global _table_file_open_policy_is_strict
if _table_mod is None:
import tables
_table_mod = tables
# set the file open policy
# return the file open policy; this changes as of pytables 3.1
Reported by Pylint.
Line: 2787
Column: 30
dta = DatetimeArray._simple_new(values.values, freq=freq)
result = DatetimeIndex._simple_new(dta, name=None)
if tz is not None:
result = result.tz_localize("UTC").tz_convert(tz)
return result
factory = f
elif index_class == PeriodIndex:
Reported by Pylint.
Line: 2787
Column: 30
dta = DatetimeArray._simple_new(values.values, freq=freq)
result = DatetimeIndex._simple_new(dta, name=None)
if tz is not None:
result = result.tz_localize("UTC").tz_convert(tz)
return result
factory = f
elif index_class == PeriodIndex:
Reported by Pylint.
Line: 2855
Column: 9
def read_array(self, key: str, start: int | None = None, stop: int | None = None):
"""read an array for the specified node (off of group"""
import tables
node = getattr(self.group, key)
attrs = node._v_attrs
transposed = getattr(attrs, "transposed", False)
Reported by Pylint.
Line: 3181
Column: 23
):
# start, stop applied to rows, so 0th axis only
self.validate_read(columns, where)
select_axis = self.obj_type()._get_block_manager_axis(0)
axes = []
for i in range(self.ndim):
_start, _stop = (start, stop) if i == select_axis else (None, None)
Reported by Pylint.
Line: 3184
Column: 24
select_axis = self.obj_type()._get_block_manager_axis(0)
axes = []
for i in range(self.ndim):
_start, _stop = (start, stop) if i == select_axis else (None, None)
ax = self.read_index(f"axis{i}", start=_start, stop=_stop)
axes.append(ax)
Reported by Pylint.
pandas/tests/test_algos.py
446 issues
Line: 6
Column: 1
import struct
import numpy as np
import pytest
from pandas._libs import (
algos as libalgos,
hashtable as ht,
)
Reported by Pylint.
Line: 8
Column: 1
import numpy as np
import pytest
from pandas._libs import (
algos as libalgos,
hashtable as ht,
)
from pandas.compat import np_array_datetime64_compat
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 8
Column: 1
import numpy as np
import pytest
from pandas._libs import (
algos as libalgos,
hashtable as ht,
)
from pandas.compat import np_array_datetime64_compat
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 364
Column: 13
# Test not valid once order keyword is removed.
data = np.array([2 ** 63, 1, 2 ** 63], dtype=np.uint64)
with pytest.raises(TypeError, match="got an unexpected keyword"):
algos.factorize(data, order=True)
with tm.assert_produces_warning(False):
algos.factorize(data)
@pytest.mark.parametrize(
"data",
Reported by Pylint.
Line: 504
Column: 9
[np.arange(5).repeat(5), np.tile(np.arange(5), 5)]
)
expected = mindex.values
expected.sort()
mindex = mindex.repeat(2)
result = pd.unique(mindex)
result.sort()
Reported by Pylint.
Line: 1745
Column: 9
class TestRank:
@td.skip_if_no_scipy
def test_scipy_compat(self):
from scipy.stats import rankdata
def _check(arr):
mask = ~np.isfinite(arr)
arr = arr.copy()
result = libalgos.rank_1d(arr)
Reported by Pylint.
Line: 199
Column: 13
key = np.array([1, 2, 1, np.nan], dtype="O")
rizer = ht.ObjectFactorizer(len(key))
for na_sentinel in (-1, 20):
ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel)
expected = np.array([0, 1, 0, na_sentinel], dtype="int32")
assert len(set(key)) == len(set(expected))
tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel)
# nan still maps to na_sentinel when sort=False
Reported by Pylint.
Line: 208
Column: 3
key = np.array([0, np.nan, 1], dtype="O")
na_sentinel = -1
# TODO(wesm): unused?
ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa
expected = np.array([2, -1, 0], dtype="int32")
assert len(set(key)) == len(set(expected))
tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel)
Reported by Pylint.
Line: 495
Column: 13
def test_object_refcount_bug(self):
lst = ["A", "B", "C", "D", "E"]
for i in range(1000):
len(algos.unique(lst))
def test_on_index_object(self):
mindex = MultiIndex.from_arrays(
Reported by Pylint.
Line: 668
Column: 20
]
)
).unique()
expected = DatetimeArray._from_sequence(
np.array([Timestamp("2016-01-01 00:00:00-0500", tz="US/Eastern")])
)
tm.assert_extension_array_equal(result, expected)
result = Index(
Reported by Pylint.
pandas/tests/indexes/test_base.py
442 issues
Line: 11
Column: 1
import re
import numpy as np
import pytest
from pandas.compat import (
IS64,
np_datetime64_compat,
)
Reported by Pylint.
Line: 54
Column: 16
@pytest.fixture
def simple_index(self) -> Index:
return self._index_cls(list("abcde"))
def test_can_hold_identifiers(self, simple_index):
index = simple_index
key = index[0]
assert index._can_hold_identifiers_and_holds_name(key) is True
Reported by Pylint.
Line: 146
Column: 20
tm.assert_index_equal(result, index)
if has_tz:
assert result.tz == index.tz
def test_constructor_from_series_freq(self):
# GH 6273
# create from a series, passing a freq
dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"]
Reported by Pylint.
Line: 353
Column: 17
# the i8 values as NS_DTYPE, effectively treating them as wall times.
index = date_range("2011-01-01", periods=5)
arg = getattr(index, attr)
index = index.tz_localize(tz_naive_fixture)
dtype = index.dtype
warn = None if tz_naive_fixture is None else FutureWarning
# astype dt64 -> dt64tz deprecated
Reported by Pylint.
Line: 353
Column: 17
# the i8 values as NS_DTYPE, effectively treating them as wall times.
index = date_range("2011-01-01", periods=5)
arg = getattr(index, attr)
index = index.tz_localize(tz_naive_fixture)
dtype = index.dtype
warn = None if tz_naive_fixture is None else FutureWarning
# astype dt64 -> dt64tz deprecated
Reported by Pylint.
Line: 389
Column: 17
@pytest.mark.parametrize("klass", [Index, TimedeltaIndex])
def test_constructor_dtypes_timedelta(self, attr, klass):
index = pd.timedelta_range("1 days", periods=5)
index = index._with_freq(None) # won't be preserved by constructors
dtype = index.dtype
values = getattr(index, attr)
result = klass(values, dtype=dtype)
Reported by Pylint.
Line: 389
Column: 17
@pytest.mark.parametrize("klass", [Index, TimedeltaIndex])
def test_constructor_dtypes_timedelta(self, attr, klass):
index = pd.timedelta_range("1 days", periods=5)
index = index._with_freq(None) # won't be preserved by constructors
dtype = index.dtype
values = getattr(index, attr)
result = klass(values, dtype=dtype)
Reported by Pylint.
Line: 1374
Column: 9
async def test_tab_complete_warning(self, ip):
# https://github.com/pandas-dev/pandas/issues/16409
pytest.importorskip("IPython", minversion="6.0.0")
from IPython.core.completer import provisionalcompleter
code = "import pandas as pd; idx = pd.Index([1, 2])"
await ip.run_code(code)
# GH 31324 newer jedi version raises Deprecation warning;
Reported by Pylint.
Line: 1428
Column: 16
@pytest.fixture
def simple_index(self) -> Index:
return self._index_cls([0, "a", 1, "b", 2, "c"])
@pytest.fixture(params=[[0, "a", 1, "b", 2, "c"]], ids=["mixedIndex"])
def index(self, request):
return Index(request.param)
Reported by Pylint.
Line: 1695
Column: 9
Index(np.array(["a", "b"], dtype=object), name="test", fastpath=True)
with pytest.raises(TypeError, match=msg):
Int64Index(np.array([1, 2, 3], dtype="int64"), name="test", fastpath=True)
with pytest.raises(TypeError, match=msg):
RangeIndex(0, 5, 2, name="test", fastpath=True)
with pytest.raises(TypeError, match=msg):
Reported by Pylint.
pandas/tests/tools/test_to_datetime.py
440 issues
Line: 15
Column: 1
from dateutil.parser import parse
from dateutil.tz.tz import tzoffset
import numpy as np
import pytest
import pytz
from pandas._libs import tslib
from pandas._libs.tslibs import (
iNaT,
Reported by Pylint.
Line: 16
Column: 1
from dateutil.tz.tz import tzoffset
import numpy as np
import pytest
import pytz
from pandas._libs import tslib
from pandas._libs.tslibs import (
iNaT,
parsing,
Reported by Pylint.
Line: 18
Column: 1
import pytest
import pytz
from pandas._libs import tslib
from pandas._libs.tslibs import (
iNaT,
parsing,
)
from pandas.errors import (
Reported by Pylint.
Line: 19
Column: 1
import pytz
from pandas._libs import tslib
from pandas._libs.tslibs import (
iNaT,
parsing,
)
from pandas.errors import (
OutOfBoundsDatetime,
Reported by Pylint.
Line: 2321
Column: 12
@pytest.fixture
def julian_dates():
return date_range("2014-1-1", periods=10).to_julian_date().values
class TestOrigin:
def test_to_basic(self, julian_dates):
# gh-11276, gh-11745
Reported by Pylint.
Line: 2321
Column: 12
@pytest.fixture
def julian_dates():
return date_range("2014-1-1", periods=10).to_julian_date().values
class TestOrigin:
def test_to_basic(self, julian_dates):
# gh-11276, gh-11745
Reported by Pylint.
Line: 221
Column: 9
def test_to_datetime_format_microsecond(self, cache):
# these are locale dependent
lang, _ = locale.getlocale()
month_abbr = calendar.month_abbr[4]
val = f"01-{month_abbr}-2011 00:00:01.978"
format = "%d-%b-%Y %H:%M:%S.%f"
result = to_datetime(val, format=format, cache=cache)
Reported by Pylint.
Line: 225
Column: 9
month_abbr = calendar.month_abbr[4]
val = f"01-{month_abbr}-2011 00:00:01.978"
format = "%d-%b-%Y %H:%M:%S.%f"
result = to_datetime(val, format=format, cache=cache)
exp = datetime.strptime(val, format)
assert result == exp
@pytest.mark.parametrize("cache", [True, False])
Reported by Pylint.
Line: 247
Column: 16
# ['01/10/2010 09:12:56 AM', '%m/%d/%Y %I:%M:%S %p',
# Timestamp('2010-01-10 09:12:56')]
]
for s, format, dt in data:
assert to_datetime(s, format=format, cache=cache) == dt
@td.skip_if_has_locale
@pytest.mark.parametrize("cache", [True, False])
def test_to_datetime_with_non_exact(self, cache):
Reported by Pylint.
Line: 287
Column: 16
["2009324", "%Y%W%w", Timestamp("2009-08-13")],
["2013020", "%Y%U%w", Timestamp("2013-01-13")],
]
for s, format, dt in data:
assert to_datetime(s, format=format, cache=cache) == dt
@pytest.mark.parametrize(
"fmt,dates,expected_dates",
[
Reported by Pylint.
pandas/tests/indexes/datetimes/test_timezones.py
434 issues
Line: 18
Column: 1
tzlocal,
)
import numpy as np
import pytest
import pytz
from pandas._libs.tslibs import (
conversion,
timezones,
Reported by Pylint.
Line: 19
Column: 1
)
import numpy as np
import pytest
import pytz
from pandas._libs.tslibs import (
conversion,
timezones,
)
Reported by Pylint.
Line: 21
Column: 1
import pytest
import pytz
from pandas._libs.tslibs import (
conversion,
timezones,
)
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 21
Column: 1
import pytest
import pytz
from pandas._libs.tslibs import (
conversion,
timezones,
)
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 193
Column: 15
# Regression test for tslib.tz_convert(vals, tz1, tz2).
# See https://github.com/pandas-dev/pandas/issues/4496 for details.
idx = date_range(datetime(2011, 3, 26, 23), datetime(2011, 3, 27, 1), freq=freq)
idx = idx.tz_localize("UTC")
idx = idx.tz_convert("Europe/Moscow")
expected = np.repeat(np.array([3, 4, 5]), np.array([n, n, 1]))
tm.assert_index_equal(idx.hour, Index(expected))
Reported by Pylint.
Line: 193
Column: 15
# Regression test for tslib.tz_convert(vals, tz1, tz2).
# See https://github.com/pandas-dev/pandas/issues/4496 for details.
idx = date_range(datetime(2011, 3, 26, 23), datetime(2011, 3, 27, 1), freq=freq)
idx = idx.tz_localize("UTC")
idx = idx.tz_convert("Europe/Moscow")
expected = np.repeat(np.array([3, 4, 5]), np.array([n, n, 1]))
tm.assert_index_equal(idx.hour, Index(expected))
Reported by Pylint.
Line: 205
Column: 19
idx = date_range(
"2014-03-08 23:00", "2014-03-09 09:00", freq=freq, tz="UTC"
)
idx = idx.tz_convert("US/Eastern")
expected = np.repeat(
np.array([18, 19, 20, 21, 22, 23, 0, 1, 3, 4, 5]),
np.array([n, n, n, n, n, n, n, n, n, n, 1]),
)
tm.assert_index_equal(idx.hour, Index(expected))
Reported by Pylint.
Line: 205
Column: 19
idx = date_range(
"2014-03-08 23:00", "2014-03-09 09:00", freq=freq, tz="UTC"
)
idx = idx.tz_convert("US/Eastern")
expected = np.repeat(
np.array([18, 19, 20, 21, 22, 23, 0, 1, 3, 4, 5]),
np.array([n, n, n, n, n, n, n, n, n, n, 1]),
)
tm.assert_index_equal(idx.hour, Index(expected))
Reported by Pylint.
Line: 215
Column: 19
idx = date_range(
"2014-03-08 18:00", "2014-03-09 05:00", freq=freq, tz="US/Eastern"
)
idx = idx.tz_convert("UTC")
expected = np.repeat(
np.array([23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
np.array([n, n, n, n, n, n, n, n, n, n, 1]),
)
tm.assert_index_equal(idx.hour, Index(expected))
Reported by Pylint.
Line: 215
Column: 19
idx = date_range(
"2014-03-08 18:00", "2014-03-09 05:00", freq=freq, tz="US/Eastern"
)
idx = idx.tz_convert("UTC")
expected = np.repeat(
np.array([23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
np.array([n, n, n, n, n, n, n, n, n, n, 1]),
)
tm.assert_index_equal(idx.hour, Index(expected))
Reported by Pylint.