The following issues were found
pandas/tests/groupby/test_allowlist.py
82 issues
Line: 9
Column: 1
from string import ascii_lowercase
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Reported by Pylint.
Line: 121
Column: 5
letters = np.array(list(ascii_lowercase))
N = 10
random_letters = letters.take(np.random.randint(0, 26, N))
df = DataFrame(
{
"floats": N / 10 * Series(np.random.random(N)),
"letters": Series(random_letters),
}
)
Reported by Pylint.
Line: 131
Column: 28
@pytest.mark.parametrize("allowlist", [df_allowlist, s_allowlist])
def test_groupby_allowlist(df_letters, allowlist):
df = df_letters
if allowlist == df_allowlist:
# dataframe
obj = df_letters
else:
Reported by Pylint.
Line: 132
Column: 5
@pytest.mark.parametrize("allowlist", [df_allowlist, s_allowlist])
def test_groupby_allowlist(df_letters, allowlist):
df = df_letters
if allowlist == df_allowlist:
# dataframe
obj = df_letters
else:
obj = df_letters["floats"]
Reported by Pylint.
Line: 141
Column: 34
gb = obj.groupby(df.letters)
assert set(allowlist) == set(gb._apply_allowlist)
def check_allowlist(obj, df, m):
# check the obj for a particular allowlist m
Reported by Pylint.
Line: 144
Column: 26
assert set(allowlist) == set(gb._apply_allowlist)
def check_allowlist(obj, df, m):
# check the obj for a particular allowlist m
gb = obj.groupby(df.letters)
f = getattr(type(gb), m)
Reported by Pylint.
Line: 166
Column: 35
assert n.endswith(m)
def test_groupby_series_allowlist(df_letters, s_allowlist_fixture):
m = s_allowlist_fixture
df = df_letters
check_allowlist(df.letters, df, m)
Reported by Pylint.
Line: 166
Column: 47
assert n.endswith(m)
def test_groupby_series_allowlist(df_letters, s_allowlist_fixture):
m = s_allowlist_fixture
df = df_letters
check_allowlist(df.letters, df, m)
Reported by Pylint.
Line: 168
Column: 5
def test_groupby_series_allowlist(df_letters, s_allowlist_fixture):
m = s_allowlist_fixture
df = df_letters
check_allowlist(df.letters, df, m)
def test_groupby_frame_allowlist(df_letters, df_allowlist_fixture):
m = df_allowlist_fixture
Reported by Pylint.
Line: 172
Column: 34
check_allowlist(df.letters, df, m)
def test_groupby_frame_allowlist(df_letters, df_allowlist_fixture):
m = df_allowlist_fixture
df = df_letters
check_allowlist(df, df, m)
Reported by Pylint.
pandas/tests/arrays/categorical/test_dtypes.py
82 issues
Line: 2
Column: 1
import numpy as np
import pytest
from pandas.core.dtypes.dtypes import CategoricalDtype
from pandas import (
Categorical,
CategoricalIndex,
Index,
Reported by Pylint.
Line: 31
Column: 16
c1 = Categorical(list("aabca"), categories=list("abc"), ordered=False)
c2 = Categorical(list("aabca"), categories=list("cab"), ordered=False)
c3 = Categorical(list("aabca"), categories=list("cab"), ordered=True)
assert c1._categories_match_up_to_permutation(c1)
assert c2._categories_match_up_to_permutation(c2)
assert c3._categories_match_up_to_permutation(c3)
assert c1._categories_match_up_to_permutation(c2)
assert not c1._categories_match_up_to_permutation(c3)
assert not c1._categories_match_up_to_permutation(Index(list("aabca")))
Reported by Pylint.
Line: 32
Column: 16
c2 = Categorical(list("aabca"), categories=list("cab"), ordered=False)
c3 = Categorical(list("aabca"), categories=list("cab"), ordered=True)
assert c1._categories_match_up_to_permutation(c1)
assert c2._categories_match_up_to_permutation(c2)
assert c3._categories_match_up_to_permutation(c3)
assert c1._categories_match_up_to_permutation(c2)
assert not c1._categories_match_up_to_permutation(c3)
assert not c1._categories_match_up_to_permutation(Index(list("aabca")))
assert not c1._categories_match_up_to_permutation(c1.astype(object))
Reported by Pylint.
Line: 33
Column: 16
c3 = Categorical(list("aabca"), categories=list("cab"), ordered=True)
assert c1._categories_match_up_to_permutation(c1)
assert c2._categories_match_up_to_permutation(c2)
assert c3._categories_match_up_to_permutation(c3)
assert c1._categories_match_up_to_permutation(c2)
assert not c1._categories_match_up_to_permutation(c3)
assert not c1._categories_match_up_to_permutation(Index(list("aabca")))
assert not c1._categories_match_up_to_permutation(c1.astype(object))
assert c1._categories_match_up_to_permutation(CategoricalIndex(c1))
Reported by Pylint.
Line: 34
Column: 16
assert c1._categories_match_up_to_permutation(c1)
assert c2._categories_match_up_to_permutation(c2)
assert c3._categories_match_up_to_permutation(c3)
assert c1._categories_match_up_to_permutation(c2)
assert not c1._categories_match_up_to_permutation(c3)
assert not c1._categories_match_up_to_permutation(Index(list("aabca")))
assert not c1._categories_match_up_to_permutation(c1.astype(object))
assert c1._categories_match_up_to_permutation(CategoricalIndex(c1))
assert c1._categories_match_up_to_permutation(
Reported by Pylint.
Line: 35
Column: 20
assert c2._categories_match_up_to_permutation(c2)
assert c3._categories_match_up_to_permutation(c3)
assert c1._categories_match_up_to_permutation(c2)
assert not c1._categories_match_up_to_permutation(c3)
assert not c1._categories_match_up_to_permutation(Index(list("aabca")))
assert not c1._categories_match_up_to_permutation(c1.astype(object))
assert c1._categories_match_up_to_permutation(CategoricalIndex(c1))
assert c1._categories_match_up_to_permutation(
CategoricalIndex(c1, categories=list("cab"))
Reported by Pylint.
Line: 36
Column: 20
assert c3._categories_match_up_to_permutation(c3)
assert c1._categories_match_up_to_permutation(c2)
assert not c1._categories_match_up_to_permutation(c3)
assert not c1._categories_match_up_to_permutation(Index(list("aabca")))
assert not c1._categories_match_up_to_permutation(c1.astype(object))
assert c1._categories_match_up_to_permutation(CategoricalIndex(c1))
assert c1._categories_match_up_to_permutation(
CategoricalIndex(c1, categories=list("cab"))
)
Reported by Pylint.
Line: 37
Column: 20
assert c1._categories_match_up_to_permutation(c2)
assert not c1._categories_match_up_to_permutation(c3)
assert not c1._categories_match_up_to_permutation(Index(list("aabca")))
assert not c1._categories_match_up_to_permutation(c1.astype(object))
assert c1._categories_match_up_to_permutation(CategoricalIndex(c1))
assert c1._categories_match_up_to_permutation(
CategoricalIndex(c1, categories=list("cab"))
)
assert not c1._categories_match_up_to_permutation(
Reported by Pylint.
Line: 38
Column: 16
assert not c1._categories_match_up_to_permutation(c3)
assert not c1._categories_match_up_to_permutation(Index(list("aabca")))
assert not c1._categories_match_up_to_permutation(c1.astype(object))
assert c1._categories_match_up_to_permutation(CategoricalIndex(c1))
assert c1._categories_match_up_to_permutation(
CategoricalIndex(c1, categories=list("cab"))
)
assert not c1._categories_match_up_to_permutation(
CategoricalIndex(c1, ordered=True)
Reported by Pylint.
Line: 39
Column: 16
assert not c1._categories_match_up_to_permutation(Index(list("aabca")))
assert not c1._categories_match_up_to_permutation(c1.astype(object))
assert c1._categories_match_up_to_permutation(CategoricalIndex(c1))
assert c1._categories_match_up_to_permutation(
CategoricalIndex(c1, categories=list("cab"))
)
assert not c1._categories_match_up_to_permutation(
CategoricalIndex(c1, ordered=True)
)
Reported by Pylint.
pandas/tests/frame/methods/test_diff.py
82 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
Timestamp,
date_range,
Reported by Pylint.
Line: 181
Column: 14
def test_diff_period(self):
# GH#32995 Don't pass an incorrect axis
pi = date_range("2016-01-01", periods=3).to_period("D")
df = DataFrame({"A": pi})
result = df.diff(1, axis=1)
expected = (df - pd.NaT).astype(object)
Reported by Pylint.
Line: 181
Column: 14
def test_diff_period(self):
# GH#32995 Don't pass an incorrect axis
pi = date_range("2016-01-01", periods=3).to_period("D")
df = DataFrame({"A": pi})
result = df.diff(1, axis=1)
expected = (df - pd.NaT).astype(object)
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
Timestamp,
date_range,
Reported by Pylint.
Line: 14
Column: 1
import pandas._testing as tm
class TestDataFrameDiff:
def test_diff_requires_integer(self):
df = DataFrame(np.random.randn(2, 2))
with pytest.raises(ValueError, match="periods must be an integer"):
df.diff(1.5)
Reported by Pylint.
Line: 15
Column: 5
class TestDataFrameDiff:
def test_diff_requires_integer(self):
df = DataFrame(np.random.randn(2, 2))
with pytest.raises(ValueError, match="periods must be an integer"):
df.diff(1.5)
def test_diff(self, datetime_frame):
Reported by Pylint.
Line: 15
Column: 5
class TestDataFrameDiff:
def test_diff_requires_integer(self):
df = DataFrame(np.random.randn(2, 2))
with pytest.raises(ValueError, match="periods must be an integer"):
df.diff(1.5)
def test_diff(self, datetime_frame):
Reported by Pylint.
Line: 16
Column: 9
class TestDataFrameDiff:
def test_diff_requires_integer(self):
df = DataFrame(np.random.randn(2, 2))
with pytest.raises(ValueError, match="periods must be an integer"):
df.diff(1.5)
def test_diff(self, datetime_frame):
the_diff = datetime_frame.diff(1)
Reported by Pylint.
Line: 20
Column: 5
with pytest.raises(ValueError, match="periods must be an integer"):
df.diff(1.5)
def test_diff(self, datetime_frame):
the_diff = datetime_frame.diff(1)
tm.assert_series_equal(
the_diff["A"], datetime_frame["A"] - datetime_frame["A"].shift(1)
)
Reported by Pylint.
Line: 20
Column: 5
with pytest.raises(ValueError, match="periods must be an integer"):
df.diff(1.5)
def test_diff(self, datetime_frame):
the_diff = datetime_frame.diff(1)
tm.assert_series_equal(
the_diff["A"], datetime_frame["A"] - datetime_frame["A"].shift(1)
)
Reported by Pylint.
pandas/tests/frame/methods/test_shift.py
81 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
CategoricalIndex,
DataFrame,
Reported by Pylint.
Line: 51
Column: 9
)
# shift int frame
int_shifted = int_frame.shift(1) # noqa
# Shifting with PeriodIndex
ps = tm.makePeriodFrame()
shifted = ps.shift(1)
unshifted = shifted.shift(-1)
Reported by Pylint.
Line: 163
Column: 24
df2 = DataFrame(np.random.randint(1000, size=(5, 2)))
df3 = pd.concat([df1, df2], axis=1)
if not using_array_manager:
assert len(df3._mgr.blocks) == 2
result = df3.shift(2, axis=1)
expected = df3.take([-1, -1, 0, 1, 2], axis=1)
expected.iloc[:, :2] = np.nan
Reported by Pylint.
Line: 177
Column: 24
# rebuild df3 because `take` call above consolidated
df3 = pd.concat([df1, df2], axis=1)
if not using_array_manager:
assert len(df3._mgr.blocks) == 2
result = df3.shift(-2, axis=1)
expected = df3.take([2, 3, 4, -1, -1], axis=1)
expected.iloc[:, -2:] = np.nan
expected.columns = df3.columns
Reported by Pylint.
Line: 186
Column: 3
tm.assert_frame_equal(result, expected)
@td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) axis=1 support
def test_shift_axis1_multiple_blocks_with_int_fill(self):
# GH#42719
df1 = DataFrame(np.random.randint(1000, size=(5, 3)))
df2 = DataFrame(np.random.randint(1000, size=(5, 2)))
df3 = pd.concat([df1.iloc[:4, 1:3], df2.iloc[:4, :]], axis=1)
Reported by Pylint.
Line: 193
Column: 20
df2 = DataFrame(np.random.randint(1000, size=(5, 2)))
df3 = pd.concat([df1.iloc[:4, 1:3], df2.iloc[:4, :]], axis=1)
result = df3.shift(2, axis=1, fill_value=np.int_(0))
assert len(df3._mgr.blocks) == 2
expected = df3.take([-1, -1, 0, 1], axis=1)
expected.iloc[:, :2] = np.int_(0)
expected.columns = df3.columns
Reported by Pylint.
Line: 204
Column: 20
# Case with periods < 0
df3 = pd.concat([df1.iloc[:4, 1:3], df2.iloc[:4, :]], axis=1)
result = df3.shift(-2, axis=1, fill_value=np.int_(0))
assert len(df3._mgr.blocks) == 2
expected = df3.take([2, 3, -1, -1], axis=1)
expected.iloc[:, -2:] = np.int_(0)
expected.columns = df3.columns
Reported by Pylint.
Line: 214
Column: 3
@pytest.mark.filterwarnings("ignore:tshift is deprecated:FutureWarning")
def test_tshift(self, datetime_frame):
# TODO: remove this test when tshift deprecation is enforced
# PeriodIndex
ps = tm.makePeriodFrame()
shifted = ps.tshift(1)
unshifted = shifted.tshift(-1)
Reported by Pylint.
Line: 250
Column: 26
shifted = inferred_ts.tshift(1)
expected = datetime_frame.tshift(1)
expected.index = expected.index._with_freq(None)
tm.assert_frame_equal(shifted, expected)
unshifted = shifted.tshift(-1)
tm.assert_frame_equal(unshifted, inferred_ts)
Reported by Pylint.
Line: 294
Column: 26
)
shifted = inferred_ts.shift(1, freq="infer")
expected = datetime_frame.shift(1, freq="infer")
expected.index = expected.index._with_freq(None)
tm.assert_frame_equal(shifted, expected)
unshifted = shifted.shift(-1, freq="infer")
tm.assert_frame_equal(unshifted, inferred_ts)
Reported by Pylint.
asv_bench/benchmarks/gil.py
81 issues
Line: 3
Column: 1
import numpy as np
from pandas import (
DataFrame,
Series,
date_range,
factorize,
read_csv,
)
Reported by Pylint.
Line: 10
Column: 1
factorize,
read_csv,
)
from pandas.core.algorithms import take_nd
from .pandas_vb_common import tm
try:
from pandas import (
Reported by Pylint.
Line: 12
Column: 1
)
from pandas.core.algorithms import take_nd
from .pandas_vb_common import tm
try:
from pandas import (
rolling_kurt,
rolling_max,
Reported by Pylint.
Line: 47
Column: 1
return wrapper
from .pandas_vb_common import BaseIO # isort:skip
class ParallelGroupbyMethods:
params = ([2, 4, 8], ["count", "last", "max", "mean", "min", "prod", "sum", "var"])
Reported by Pylint.
Line: 147
Column: 9
self.parallel_kth_smallest = parallel_kth_smallest
def time_kth_smallest(self):
self.parallel_kth_smallest()
class ParallelDatetimeFields:
def setup(self):
if not have_real_test_parallel:
Reported by Pylint.
Line: 311
Column: 1
self.loop()
from .pandas_vb_common import setup # noqa: F401 isort:skip
Reported by Pylint.
Line: 40
Column: 23
except ImportError:
have_real_test_parallel = False
def test_parallel(num_threads=1):
def wrapper(fname):
return fname
return wrapper
Reported by Pylint.
Line: 68
Column: 9
def parallel():
getattr(df.groupby("key")["data"], method)()
self.parallel = parallel
def loop():
getattr(df.groupby("key")["data"], method)()
self.loop = loop
Reported by Pylint.
Line: 73
Column: 9
def loop():
getattr(df.groupby("key")["data"], method)()
self.loop = loop
def time_parallel(self, threads, method):
self.parallel()
def time_loop(self, threads, method):
Reported by Pylint.
Line: 75
Column: 38
self.loop = loop
def time_parallel(self, threads, method):
self.parallel()
def time_loop(self, threads, method):
for i in range(threads):
self.loop()
Reported by Pylint.
pandas/tests/indexes/datetimes/test_datetime.py
81 issues
Line: 5
Column: 1
import dateutil
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Reported by Pylint.
Line: 23
Column: 9
def test_time_loc(self): # GH8667
from datetime import time
from pandas._libs.index import _SIZE_CUTOFF
ns = _SIZE_CUTOFF + np.array([-100, 100], dtype=np.int64)
key = time(15, 11, 30)
start = key.hour * 3600 + key.minute * 60 + key.second
step = 24 * 3600
Reported by Pylint.
Line: 23
Column: 9
def test_time_loc(self): # GH8667
from datetime import time
from pandas._libs.index import _SIZE_CUTOFF
ns = _SIZE_CUTOFF + np.array([-100, 100], dtype=np.int64)
key = time(15, 11, 30)
start = key.hour * 3600 + key.minute * 60 + key.second
step = 24 * 3600
Reported by Pylint.
Line: 137
Column: 30
def test_misc_coverage(self):
rng = date_range("1/1/2000", periods=5)
result = rng.groupby(rng.day)
assert isinstance(list(result.values())[0][0], Timestamp)
def test_string_index_series_name_converted(self):
# #1644
df = DataFrame(np.random.randn(10, 4), index=date_range("1/1/2000", periods=10))
Reported by Pylint.
Line: 137
Column: 30
def test_misc_coverage(self):
rng = date_range("1/1/2000", periods=5)
result = rng.groupby(rng.day)
assert isinstance(list(result.values())[0][0], Timestamp)
def test_string_index_series_name_converted(self):
# #1644
df = DataFrame(np.random.randn(10, 4), index=date_range("1/1/2000", periods=10))
Reported by Pylint.
Line: 138
Column: 32
def test_misc_coverage(self):
rng = date_range("1/1/2000", periods=5)
result = rng.groupby(rng.day)
assert isinstance(list(result.values())[0][0], Timestamp)
def test_string_index_series_name_converted(self):
# #1644
df = DataFrame(np.random.randn(10, 4), index=date_range("1/1/2000", periods=10))
Reported by Pylint.
Line: 183
Column: 68
index = DatetimeIndex(dt, freq=freq, name="time")
self.assert_index_parameters(index)
new_index = date_range(start=index[0], end=index[-1], freq=index.freq)
self.assert_index_parameters(new_index)
def test_asarray_tz_naive(self):
# This shouldn't produce a warning.
idx = date_range("2000", periods=2)
Reported by Pylint.
Line: 86
Column: 9
start = "2013-01-07"
idx = date_range(start=start, freq="1d", periods=10, tz="US/Eastern")
df = DataFrame(np.arange(10), index=idx)
df["2013-01-14 23:44:34.437768-05:00":] # no exception here
def test_append_nondatetimeindex(self):
rng = date_range("1/1/2000", periods=10)
idx = Index(["a", "b", "c", "d"])
Reported by Pylint.
Line: 111
Column: 20
for i, ts in enumerate(index):
result = ts
expected = index[i]
assert result._repr_base == expected._repr_base
assert result == expected
# 9100
index = DatetimeIndex(
["2014-12-01 03:32:39.987000-08:00", "2014-12-01 04:12:34.987000-08:00"]
Reported by Pylint.
Line: 111
Column: 41
for i, ts in enumerate(index):
result = ts
expected = index[i]
assert result._repr_base == expected._repr_base
assert result == expected
# 9100
index = DatetimeIndex(
["2014-12-01 03:32:39.987000-08:00", "2014-12-01 04:12:34.987000-08:00"]
Reported by Pylint.
pandas/tests/io/formats/test_printing.py
81 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas._config.config as cf
import pandas as pd
import pandas.io.formats.format as fmt
import pandas.io.formats.printing as printing
Reported by Pylint.
Line: 127
Column: 9
def setup_class(cls):
pytest.importorskip("IPython")
from IPython.core.interactiveshell import InteractiveShell
cls.display_formatter = InteractiveShell.instance().display_formatter
def test_publishes(self):
Reported by Pylint.
Line: 149
Column: 55
with_latex = pd.option_context("display.latex.repr", True)
with opt, with_latex:
formatted = self.display_formatter.format(obj)
expected = {
"text/plain",
"text/html",
"text/latex",
Reported by Pylint.
Line: 176
Column: 22
def test_config_on(self):
df = pd.DataFrame({"A": [1, 2]})
with pd.option_context("display.html.table_schema", True):
result = df._repr_data_resource_()
assert result is not None
def test_config_default_off(self):
df = pd.DataFrame({"A": [1, 2]})
Reported by Pylint.
Line: 183
Column: 22
def test_config_default_off(self):
df = pd.DataFrame({"A": [1, 2]})
with pd.option_context("display.html.table_schema", False):
result = df._repr_data_resource_()
assert result is None
def test_enable_data_resource_formatter(self):
# GH 10491
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas._config.config as cf
import pandas as pd
import pandas.io.formats.format as fmt
import pandas.io.formats.printing as printing
Reported by Pylint.
Line: 12
Column: 1
import pandas.io.formats.printing as printing
def test_adjoin():
data = [["a", "b", "c"], ["dd", "ee", "ff"], ["ggg", "hhh", "iii"]]
expected = "a dd ggg\nb ee hhh\nc ff iii"
adjoined = printing.adjoin(2, *data)
Reported by Pylint.
Line: 18
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b101_assert_used.html
adjoined = printing.adjoin(2, *data)
assert adjoined == expected
def test_repr_binary_type():
import string
Reported by Bandit.
Line: 21
Column: 1
assert adjoined == expected
def test_repr_binary_type():
import string
letters = string.ascii_letters
try:
raw = bytes(letters, encoding=cf.get_option("display.encoding"))
Reported by Pylint.
Line: 22
Column: 5
def test_repr_binary_type():
import string
letters = string.ascii_letters
try:
raw = bytes(letters, encoding=cf.get_option("display.encoding"))
except TypeError:
Reported by Pylint.
pandas/tests/frame/methods/test_rename.py
81 issues
Line: 5
Column: 1
import inspect
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Reported by Pylint.
Line: 326
Column: 13
# Duplicates
with pytest.raises(TypeError, match="multiple values"):
df.rename(id, mapper=id)
def test_rename_positional_raises(self):
# GH 29136
df = DataFrame(columns=["A", "B"])
msg = r"rename\(\) takes from 1 to 2 positional arguments"
Reported by Pylint.
Line: 334
Column: 13
msg = r"rename\(\) takes from 1 to 2 positional arguments"
with pytest.raises(TypeError, match=msg):
df.rename(None, str.lower)
def test_rename_no_mappings_raises(self):
# GH 29136
df = DataFrame([[1]])
msg = "must pass an index to rename"
Reported by Pylint.
Line: 173
Column: 3
renamed = df.rename(index={"foo1": "foo3", "bar2": "bar3"}, level=0)
tm.assert_index_equal(renamed.index, new_index)
@td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) setitem copy/view
def test_rename_nocopy(self, float_frame):
renamed = float_frame.rename(columns={"C": "foo"}, copy=False)
renamed["foo"] = 1.0
assert (float_frame["C"] == 1.0).all()
Reported by Pylint.
Line: 387
Column: 3
names=["STK_ID", "RPT_Date"],
),
)
# TODO: can we construct this without merge?
k = merge(df4, df5, how="inner", left_index=True, right_index=True)
result = k.rename(columns={"TClose_x": "TClose", "TClose_y": "QT_Close"})
str(result)
result.dtypes
Reported by Pylint.
Line: 391
Column: 9
k = merge(df4, df5, how="inner", left_index=True, right_index=True)
result = k.rename(columns={"TClose_x": "TClose", "TClose_y": "QT_Close"})
str(result)
result.dtypes
expected = DataFrame(
[[0.0454, 22.02, 0.0422, 20130331, 600809, "饡驦", 30.01]],
columns=[
"RT",
Reported by Pylint.
Line: 1
Column: 1
from collections import ChainMap
import inspect
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
Reported by Pylint.
Line: 19
Column: 1
import pandas._testing as tm
class TestRename:
def test_rename_signature(self):
sig = inspect.signature(DataFrame.rename)
parameters = set(sig.parameters)
assert parameters == {
"self",
Reported by Pylint.
Line: 20
Column: 5
class TestRename:
def test_rename_signature(self):
sig = inspect.signature(DataFrame.rename)
parameters = set(sig.parameters)
assert parameters == {
"self",
"mapper",
Reported by Pylint.
Line: 20
Column: 5
class TestRename:
def test_rename_signature(self):
sig = inspect.signature(DataFrame.rename)
parameters = set(sig.parameters)
assert parameters == {
"self",
"mapper",
Reported by Pylint.
pandas/tests/groupby/test_filters.py
81 issues
Line: 2
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
Timestamp,
)
Reported by Pylint.
Line: 1
Column: 1
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
Timestamp,
)
Reported by Pylint.
Line: 13
Column: 1
import pandas._testing as tm
def test_filter_series():
s = Series([1, 3, 20, 5, 22, 24, 7])
expected_odd = Series([1, 3, 5, 7], index=[0, 1, 3, 6])
expected_even = Series([20, 22, 24], index=[2, 4, 5])
grouper = s.apply(lambda x: x % 2)
grouped = s.groupby(grouper)
Reported by Pylint.
Line: 14
Column: 5
def test_filter_series():
s = Series([1, 3, 20, 5, 22, 24, 7])
expected_odd = Series([1, 3, 5, 7], index=[0, 1, 3, 6])
expected_even = Series([20, 22, 24], index=[2, 4, 5])
grouper = s.apply(lambda x: x % 2)
grouped = s.groupby(grouper)
tm.assert_series_equal(grouped.filter(lambda x: x.mean() < 10), expected_odd)
Reported by Pylint.
Line: 32
Column: 1
)
def test_filter_single_column_df():
df = DataFrame([1, 3, 20, 5, 22, 24, 7])
expected_odd = DataFrame([1, 3, 5, 7], index=[0, 1, 3, 6])
expected_even = DataFrame([20, 22, 24], index=[2, 4, 5])
grouper = df[0].apply(lambda x: x % 2)
grouped = df.groupby(grouper)
Reported by Pylint.
Line: 33
Column: 5
def test_filter_single_column_df():
df = DataFrame([1, 3, 20, 5, 22, 24, 7])
expected_odd = DataFrame([1, 3, 5, 7], index=[0, 1, 3, 6])
expected_even = DataFrame([20, 22, 24], index=[2, 4, 5])
grouper = df[0].apply(lambda x: x % 2)
grouped = df.groupby(grouper)
tm.assert_frame_equal(grouped.filter(lambda x: x.mean() < 10), expected_odd)
Reported by Pylint.
Line: 51
Column: 1
)
def test_filter_multi_column_df():
df = DataFrame({"A": [1, 12, 12, 1], "B": [1, 1, 1, 1]})
grouper = df["A"].apply(lambda x: x % 2)
grouped = df.groupby(grouper)
expected = DataFrame({"A": [12, 12], "B": [1, 1]}, index=[1, 2])
tm.assert_frame_equal(
Reported by Pylint.
Line: 52
Column: 5
def test_filter_multi_column_df():
df = DataFrame({"A": [1, 12, 12, 1], "B": [1, 1, 1, 1]})
grouper = df["A"].apply(lambda x: x % 2)
grouped = df.groupby(grouper)
expected = DataFrame({"A": [12, 12], "B": [1, 1]}, index=[1, 2])
tm.assert_frame_equal(
grouped.filter(lambda x: x["A"].sum() - x["B"].sum() > 10), expected
Reported by Pylint.
Line: 61
Column: 1
)
def test_filter_mixed_df():
df = DataFrame({"A": [1, 12, 12, 1], "B": "a b c d".split()})
grouper = df["A"].apply(lambda x: x % 2)
grouped = df.groupby(grouper)
expected = DataFrame({"A": [12, 12], "B": ["b", "c"]}, index=[1, 2])
tm.assert_frame_equal(grouped.filter(lambda x: x["A"].sum() > 10), expected)
Reported by Pylint.
Line: 62
Column: 5
def test_filter_mixed_df():
df = DataFrame({"A": [1, 12, 12, 1], "B": "a b c d".split()})
grouper = df["A"].apply(lambda x: x % 2)
grouped = df.groupby(grouper)
expected = DataFrame({"A": [12, 12], "B": ["b", "c"]}, index=[1, 2])
tm.assert_frame_equal(grouped.filter(lambda x: x["A"].sum() > 10), expected)
Reported by Pylint.
asv_bench/benchmarks/multiindex_object.py
81 issues
Line: 5
Column: 1
import numpy as np
from pandas import (
DataFrame,
MultiIndex,
RangeIndex,
date_range,
)
Reported by Pylint.
Line: 12
Column: 1
date_range,
)
from .pandas_vb_common import tm
class GetLoc:
def setup(self):
self.mi_large = MultiIndex.from_product(
Reported by Pylint.
Line: 235
Column: 1
getattr(self.left, method)(self.right)
from .pandas_vb_common import setup # noqa: F401 isort:skip
Reported by Pylint.
Line: 17
Column: 9
class GetLoc:
def setup(self):
self.mi_large = MultiIndex.from_product(
[np.arange(1000), np.arange(20), list(string.ascii_letters)],
names=["one", "two", "three"],
)
self.mi_med = MultiIndex.from_product(
[np.arange(1000), np.arange(10), list("A")], names=["one", "two", "three"]
Reported by Pylint.
Line: 21
Column: 9
[np.arange(1000), np.arange(20), list(string.ascii_letters)],
names=["one", "two", "three"],
)
self.mi_med = MultiIndex.from_product(
[np.arange(1000), np.arange(10), list("A")], names=["one", "two", "three"]
)
self.mi_small = MultiIndex.from_product(
[np.arange(100), list("A"), list("A")], names=["one", "two", "three"]
)
Reported by Pylint.
Line: 24
Column: 9
self.mi_med = MultiIndex.from_product(
[np.arange(1000), np.arange(10), list("A")], names=["one", "two", "three"]
)
self.mi_small = MultiIndex.from_product(
[np.arange(100), list("A"), list("A")], names=["one", "two", "three"]
)
def time_large_get_loc(self):
self.mi_large.get_loc((999, 19, "Z"))
Reported by Pylint.
Line: 55
Column: 9
size = 65536
arrays = [np.random.randint(0, 8192, size), np.random.randint(0, 1024, size)]
mask = np.random.rand(size) < 0.1
self.mi_unused_levels = MultiIndex.from_arrays(arrays)
self.mi_unused_levels = self.mi_unused_levels[mask]
def time_remove_unused_levels(self):
self.mi_unused_levels.remove_unused_levels()
Reported by Pylint.
Line: 56
Column: 9
arrays = [np.random.randint(0, 8192, size), np.random.randint(0, 1024, size)]
mask = np.random.rand(size) < 0.1
self.mi_unused_levels = MultiIndex.from_arrays(arrays)
self.mi_unused_levels = self.mi_unused_levels[mask]
def time_remove_unused_levels(self):
self.mi_unused_levels.remove_unused_levels()
Reported by Pylint.
Line: 64
Column: 9
class Integer:
def setup(self):
self.mi_int = MultiIndex.from_product(
[np.arange(1000), np.arange(1000)], names=["one", "two"]
)
self.obj_index = np.array(
[
(0, 10),
Reported by Pylint.
Line: 67
Column: 9
self.mi_int = MultiIndex.from_product(
[np.arange(1000), np.arange(1000)], names=["one", "two"]
)
self.obj_index = np.array(
[
(0, 10),
(0, 11),
(0, 12),
(0, 13),
Reported by Pylint.