The following issues were found
pandas/tests/frame/methods/test_rank.py
78 issues
Line: 7
Column: 1
)
import numpy as np
import pytest
from pandas._libs.algos import (
Infinity,
NegInfinity,
)
Reported by Pylint.
Line: 9
Column: 1
import numpy as np
import pytest
from pandas._libs.algos import (
Infinity,
NegInfinity,
)
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 9
Column: 1
import numpy as np
import pytest
from pandas._libs.algos import (
Infinity,
NegInfinity,
)
import pandas.util._test_decorators as td
Reported by Pylint.
Line: 43
Column: 9
@td.skip_if_no_scipy
def test_rank(self, float_frame):
import scipy.stats # noqa:F401
from scipy.stats import rankdata
float_frame["A"][::2] = np.nan
float_frame["B"][::3] = np.nan
float_frame["C"][::4] = np.nan
Reported by Pylint.
Line: 44
Column: 9
@td.skip_if_no_scipy
def test_rank(self, float_frame):
import scipy.stats # noqa:F401
from scipy.stats import rankdata
float_frame["A"][::2] = np.nan
float_frame["B"][::3] = np.nan
float_frame["C"][::4] = np.nan
float_frame["D"][::5] = np.nan
Reported by Pylint.
Line: 145
Column: 9
@td.skip_if_no_scipy
def test_rank_na_option(self, float_frame):
import scipy.stats # noqa:F401
from scipy.stats import rankdata
float_frame["A"][::2] = np.nan
float_frame["B"][::3] = np.nan
float_frame["C"][::4] = np.nan
Reported by Pylint.
Line: 146
Column: 9
@td.skip_if_no_scipy
def test_rank_na_option(self, float_frame):
import scipy.stats # noqa:F401
from scipy.stats import rankdata
float_frame["A"][::2] = np.nan
float_frame["B"][::3] = np.nan
float_frame["C"][::4] = np.nan
float_frame["D"][::5] = np.nan
Reported by Pylint.
Line: 229
Column: 9
@td.skip_if_no_scipy
def test_rank_methods_frame(self):
import scipy.stats # noqa:F401
from scipy.stats import rankdata
xs = np.random.randint(0, 21, (100, 26))
xs = (xs - 10.0) / 10.0
cols = [chr(ord("z") - i) for i in range(xs.shape[1])]
Reported by Pylint.
Line: 230
Column: 9
@td.skip_if_no_scipy
def test_rank_methods_frame(self):
import scipy.stats # noqa:F401
from scipy.stats import rankdata
xs = np.random.randint(0, 21, (100, 26))
xs = (xs - 10.0) / 10.0
cols = [chr(ord("z") - i) for i in range(xs.shape[1])]
Reported by Pylint.
Line: 43
Column: 9
@td.skip_if_no_scipy
def test_rank(self, float_frame):
import scipy.stats # noqa:F401
from scipy.stats import rankdata
float_frame["A"][::2] = np.nan
float_frame["B"][::3] = np.nan
float_frame["C"][::4] = np.nan
Reported by Pylint.
pandas/tests/io/parser/common/test_common_basic.py
77 issues
Line: 13
Column: 1
import sys
import numpy as np
import pytest
from pandas.errors import (
EmptyDataError,
ParserError,
ParserWarning,
Reported by Pylint.
Line: 40
Column: 9
# Usecols needs to be sorted in _set_noconvert_columns based
# on the test_usecols_with_parse_dates test from test_usecols.py
class MyTextFileReader(TextFileReader):
def __init__(self):
self._currow = 0
self.squeeze = False
class MyCParserWrapper(CParserWrapper):
def _set_noconvert_columns(self):
Reported by Pylint.
Line: 75
Column: 5
"delimiter": ",",
}
parser.engine = "c"
parser._engine = MyCParserWrapper(StringIO(data), **parser.options)
result = parser.read()
tm.assert_frame_equal(result, expected)
Reported by Pylint.
Line: 143
Column: 16
# see gh-8217
#
# Series should not be a view.
assert not result._is_view
def test_unnamed_columns(all_parsers):
data = """A,B,C,,
1,2,3,4,5
Reported by Pylint.
Line: 34
Column: 1
from pandas.io.parsers.c_parser_wrapper import CParserWrapper
def test_override_set_noconvert_columns():
# see gh-17351
#
# Usecols needs to be sorted in _set_noconvert_columns based
# on the test_usecols_with_parse_dates test from test_usecols.py
class MyTextFileReader(TextFileReader):
Reported by Pylint.
Line: 39
Column: 5
#
# Usecols needs to be sorted in _set_noconvert_columns based
# on the test_usecols_with_parse_dates test from test_usecols.py
class MyTextFileReader(TextFileReader):
def __init__(self):
self._currow = 0
self.squeeze = False
class MyCParserWrapper(CParserWrapper):
Reported by Pylint.
Line: 44
Column: 5
self._currow = 0
self.squeeze = False
class MyCParserWrapper(CParserWrapper):
def _set_noconvert_columns(self):
if self.usecols_dtype == "integer":
# self.usecols is a set, which is documented as unordered
# but in practice, a CPython set of integers is sorted.
# In other implementations this assumption does not hold.
Reported by Pylint.
Line: 81
Column: 1
tm.assert_frame_equal(result, expected)
def test_read_csv_local(all_parsers, csv1):
prefix = "file:///" if compat.is_platform_windows() else "file://"
parser = all_parsers
fname = prefix + str(os.path.abspath(csv1))
result = parser.read_csv(fname, index_col=0, parse_dates=True)
Reported by Pylint.
Line: 115
Column: 1
tm.assert_frame_equal(result, expected)
def test_1000_sep(all_parsers):
parser = all_parsers
data = """A|B|C
1|2,334|5
10|13|10.
"""
Reported by Pylint.
Line: 127
Column: 1
tm.assert_frame_equal(result, expected)
def test_squeeze(all_parsers):
data = """\
a,1
b,2
c,3
"""
Reported by Pylint.
pandas/core/indexes/interval.py
77 issues
Line: 16
Column: 1
import numpy as np
from pandas._libs import lib
from pandas._libs.interval import (
Interval,
IntervalMixin,
IntervalTree,
)
Reported by Pylint.
Line: 17
Column: 1
import numpy as np
from pandas._libs import lib
from pandas._libs.interval import (
Interval,
IntervalMixin,
IntervalTree,
)
from pandas._libs.tslibs import (
Reported by Pylint.
Line: 17
Column: 1
import numpy as np
from pandas._libs import lib
from pandas._libs.interval import (
Interval,
IntervalMixin,
IntervalTree,
)
from pandas._libs.tslibs import (
Reported by Pylint.
Line: 371
Column: 52
def memory_usage(self, deep: bool = False) -> int:
# we don't use an explicit engine
# so return the bytes here
return self.left.memory_usage(deep=deep) + self.right.memory_usage(deep=deep)
# IntervalTree doesn't have a is_monotonic_decreasing, so have to override
# the Index implementation
@cache_readonly
def is_monotonic_decreasing(self) -> bool:
Reported by Pylint.
Line: 371
Column: 16
def memory_usage(self, deep: bool = False) -> int:
# we don't use an explicit engine
# so return the bytes here
return self.left.memory_usage(deep=deep) + self.right.memory_usage(deep=deep)
# IntervalTree doesn't have a is_monotonic_decreasing, so have to override
# the Index implementation
@cache_readonly
def is_monotonic_decreasing(self) -> bool:
Reported by Pylint.
Line: 394
Column: 30
if self.isna().sum() > 1:
return False
if left.is_unique or right.is_unique:
return True
seen_pairs = set()
check_idx = np.where(left.duplicated(keep=False))[0]
for idx in check_idx:
Reported by Pylint.
Line: 394
Column: 12
if self.isna().sum() > 1:
return False
if left.is_unique or right.is_unique:
return True
seen_pairs = set()
check_idx = np.where(left.duplicated(keep=False))[0]
for idx in check_idx:
Reported by Pylint.
Line: 398
Column: 30
return True
seen_pairs = set()
check_idx = np.where(left.duplicated(keep=False))[0]
for idx in check_idx:
pair = (left[idx], right[idx])
if pair in seen_pairs:
return False
seen_pairs.add(pair)
Reported by Pylint.
Line: 455
Column: 16
False
"""
# GH 23309
return self._engine.is_overlapping
def _needs_i8_conversion(self, key) -> bool:
"""
Check if a given key needs i8 conversion. Conversion is necessary for
Timestamp, Timedelta, DatetimeIndex, and TimedeltaIndex keys. An
Reported by Pylint.
Line: 528
Column: 39
if key.hasnans:
# convert NaT from its i8 value to np.nan so it's not viewed
# as a valid value, maybe causing errors (e.g. is_overlapping)
key_i8 = key_i8.where(~key._isnan)
# ensure consistency with IntervalIndex subtype
subtype = self.dtype.subtype
if not is_dtype_equal(subtype, key_dtype):
Reported by Pylint.
asv_bench/benchmarks/stat_ops.py
77 issues
Line: 3
Column: 1
import numpy as np
import pandas as pd
ops = ["mean", "sum", "median", "std", "skew", "kurt", "mad", "prod", "sem", "var"]
class FrameOps:
Reported by Pylint.
Line: 144
Column: 1
self.s.cov(self.s2)
from .pandas_vb_common import setup # noqa: F401 isort:skip
Reported by Pylint.
Line: 13
Column: 32
params = [ops, ["float", "int", "Int64"], [0, 1]]
param_names = ["op", "dtype", "axis"]
def setup(self, op, dtype, axis):
if op == "mad" and dtype == "Int64":
# GH-33036, GH#33600
raise NotImplementedError
values = np.random.randn(100000, 4)
if dtype == "Int64":
Reported by Pylint.
Line: 21
Column: 9
if dtype == "Int64":
values = values.astype(int)
df = pd.DataFrame(values).astype(dtype)
self.df_func = getattr(df, op)
def time_op(self, op, dtype, axis):
self.df_func(axis=axis)
Reported by Pylint.
Line: 23
Column: 23
df = pd.DataFrame(values).astype(dtype)
self.df_func = getattr(df, op)
def time_op(self, op, dtype, axis):
self.df_func(axis=axis)
class FrameMultiIndexOps:
Reported by Pylint.
Line: 23
Column: 27
df = pd.DataFrame(values).astype(dtype)
self.df_func = getattr(df, op)
def time_op(self, op, dtype, axis):
self.df_func(axis=axis)
class FrameMultiIndexOps:
Reported by Pylint.
Line: 32
Column: 21
params = ([0, 1, [0, 1]], ops)
param_names = ["level", "op"]
def setup(self, level, op):
levels = [np.arange(10), np.arange(100), np.arange(100)]
codes = [
np.arange(10).repeat(10000),
np.tile(np.arange(100).repeat(100), 10),
np.tile(np.tile(np.arange(100), 100), 10),
Reported by Pylint.
Line: 41
Column: 9
]
index = pd.MultiIndex(levels=levels, codes=codes)
df = pd.DataFrame(np.random.randn(len(index), 4), index=index)
self.df_func = getattr(df, op)
def time_op(self, level, op):
self.df_func(level=level)
Reported by Pylint.
Line: 43
Column: 30
df = pd.DataFrame(np.random.randn(len(index), 4), index=index)
self.df_func = getattr(df, op)
def time_op(self, level, op):
self.df_func(level=level)
class SeriesOps:
Reported by Pylint.
Line: 54
Column: 9
def setup(self, op, dtype):
s = pd.Series(np.random.randn(100000)).astype(dtype)
self.s_func = getattr(s, op)
def time_op(self, op, dtype):
self.s_func()
Reported by Pylint.
pandas/tests/indexes/test_indexing.py
77 issues
Line: 18
Column: 1
contain tests for the corresponding methods specific to those Index subclasses.
"""
import numpy as np
import pytest
from pandas.errors import InvalidIndexError
from pandas import (
DatetimeIndex,
Reported by Pylint.
Line: 69
Column: 17
# GH 10791
msg = r"'(.*Index)' object has no attribute 'freq'"
with pytest.raises(AttributeError, match=msg):
index.freq
def test_take_minus1_without_fill(self, index):
# -1 does not get treated as NA unless allow_fill=True is passed
if len(index) == 0:
# Test is not applicable
Reported by Pylint.
Line: 149
Column: 3
def test_contains_requires_hashable_raises(self, index):
if isinstance(index, MultiIndex):
return # TODO: do we want this to raise?
msg = "unhashable type: 'list'"
with pytest.raises(TypeError, match=msg):
[] in index
Reported by Pylint.
Line: 153
Column: 13
msg = "unhashable type: 'list'"
with pytest.raises(TypeError, match=msg):
[] in index
msg = "|".join(
[
r"unhashable type: 'dict'",
r"must be real number, not dict",
Reported by Pylint.
Line: 165
Column: 13
]
)
with pytest.raises(TypeError, match=msg):
{} in index._engine
class TestGetValue:
@pytest.mark.parametrize(
"index", ["string", "int", "datetime", "timedelta"], indirect=True
Reported by Pylint.
Line: 165
Column: 19
]
)
with pytest.raises(TypeError, match=msg):
{} in index._engine
class TestGetValue:
@pytest.mark.parametrize(
"index", ["string", "int", "datetime", "timedelta"], indirect=True
Reported by Pylint.
Line: 173
Column: 3
"index", ["string", "int", "datetime", "timedelta"], indirect=True
)
def test_get_value(self, index):
# TODO: Remove function? GH#19728
values = np.random.randn(100)
value = index[67]
with pytest.raises(AttributeError, match="has no attribute '_values'"):
# Index.get_value requires a Series, not an ndarray
Reported by Pylint.
Line: 201
Column: 3
index,
(DatetimeIndex, TimedeltaIndex, PeriodIndex, RangeIndex, IntervalIndex),
):
# TODO: make these more consistent?
exc = InvalidIndexError
with pytest.raises(exc, match="generator object"):
# MultiIndex specifically checks for generator; others for scalar
index.get_loc(x for x in range(5))
Reported by Pylint.
Line: 211
Column: 12
class TestGetIndexer:
def test_get_indexer_base(self, index):
if index._index_as_unique:
expected = np.arange(index.size, dtype=np.intp)
actual = index.get_indexer(index)
tm.assert_numpy_array_equal(expected, actual)
else:
msg = "Reindexing only valid with uniquely valued Index objects"
Reported by Pylint.
Line: 226
Column: 12
def test_get_indexer_consistency(self, index):
# See GH#16819
if index._index_as_unique:
indexer = index.get_indexer(index[0:2])
assert isinstance(indexer, np.ndarray)
assert indexer.dtype == np.intp
else:
msg = "Reindexing only valid with uniquely valued Index objects"
Reported by Pylint.
pandas/core/groupby/ops.py
77 issues
Line: 23
Column: 1
import numpy as np
from pandas._libs import (
NaT,
lib,
)
import pandas._libs.groupby as libgroupby
import pandas._libs.reduction as libreduction
Reported by Pylint.
Line: 27
Column: 1
NaT,
lib,
)
import pandas._libs.groupby as libgroupby
import pandas._libs.reduction as libreduction
from pandas._typing import (
ArrayLike,
DtypeObj,
F,
Reported by Pylint.
Line: 27
Column: 1
NaT,
lib,
)
import pandas._libs.groupby as libgroupby
import pandas._libs.reduction as libreduction
from pandas._typing import (
ArrayLike,
DtypeObj,
F,
Reported by Pylint.
Line: 28
Column: 1
lib,
)
import pandas._libs.groupby as libgroupby
import pandas._libs.reduction as libreduction
from pandas._typing import (
ArrayLike,
DtypeObj,
F,
FrameOrSeries,
Reported by Pylint.
Line: 28
Column: 1
lib,
)
import pandas._libs.groupby as libgroupby
import pandas._libs.reduction as libreduction
from pandas._typing import (
ArrayLike,
DtypeObj,
F,
FrameOrSeries,
Reported by Pylint.
Line: 637
Column: 18
sort: bool = True,
group_keys: bool = True,
mutated: bool = False,
indexer: npt.NDArray[np.intp] | None = None,
dropna: bool = True,
):
assert isinstance(axis, Index), axis
self.axis = axis
Reported by Pylint.
Line: 835
Column: 16
return self.groupings[0].group_arraylike
# result_index is MultiIndex
return self.result_index._values
@cache_readonly
def result_index(self) -> Index:
if len(self.groupings) == 1:
return self.groupings[0].result_index.rename(self.names[0])
Reported by Pylint.
Line: 1182
Column: 17
def __init__(
self,
data: FrameOrSeries,
labels: npt.NDArray[np.intp],
ngroups: int,
axis: int = 0,
):
self.data = data
self.labels = ensure_platform_int(labels) # _should_ already be np.intp
Reported by Pylint.
Line: 332
Column: 3
If we have an ExtensionArray, unwrap, call _cython_operation, and
re-wrap if appropriate.
"""
# TODO: general case implementation overridable by EAs.
if isinstance(values, BaseMaskedArray) and self.uses_mask():
return self._masked_ea_wrap_cython_operation(
values,
min_count=min_count,
ngroups=ngroups,
Reported by Pylint.
Line: 345
Column: 24
if isinstance(values, (DatetimeArray, PeriodArray, TimedeltaArray)):
# All of the functions implemented here are ordinal, so we can
# operate on the tz-naive equivalents
npvalues = values._ndarray.view("M8[ns]")
elif isinstance(values.dtype, (BooleanDtype, _IntegerDtype)):
# IntegerArray or BooleanArray
npvalues = values.to_numpy("float64", na_value=np.nan)
elif isinstance(values.dtype, FloatingDtype):
# FloatingArray
Reported by Pylint.
asv_bench/benchmarks/reindex.py
77 issues
Line: 3
Column: 1
import numpy as np
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
date_range,
period_range,
Reported by Pylint.
Line: 12
Column: 1
period_range,
)
from .pandas_vb_common import tm
class Reindex:
def setup(self):
rng = date_range(start="1/1/1970", periods=10000, freq="1min")
Reported by Pylint.
Line: 155
Column: 1
self.x + self.y
from .pandas_vb_common import setup # noqa: F401 isort:skip
Reported by Pylint.
Line: 18
Column: 9
class Reindex:
def setup(self):
rng = date_range(start="1/1/1970", periods=10000, freq="1min")
self.df = DataFrame(np.random.rand(10000, 10), index=rng, columns=range(10))
self.df["foo"] = "bar"
self.rng_subset = Index(rng[::2])
self.df2 = DataFrame(
index=range(10000), data=np.random.rand(10000, 30), columns=range(30)
)
Reported by Pylint.
Line: 20
Column: 9
rng = date_range(start="1/1/1970", periods=10000, freq="1min")
self.df = DataFrame(np.random.rand(10000, 10), index=rng, columns=range(10))
self.df["foo"] = "bar"
self.rng_subset = Index(rng[::2])
self.df2 = DataFrame(
index=range(10000), data=np.random.rand(10000, 30), columns=range(30)
)
N = 5000
K = 200
Reported by Pylint.
Line: 21
Column: 9
self.df = DataFrame(np.random.rand(10000, 10), index=rng, columns=range(10))
self.df["foo"] = "bar"
self.rng_subset = Index(rng[::2])
self.df2 = DataFrame(
index=range(10000), data=np.random.rand(10000, 30), columns=range(30)
)
N = 5000
K = 200
level1 = tm.makeStringIndex(N).values.repeat(K)
Reported by Pylint.
Line: 29
Column: 9
level1 = tm.makeStringIndex(N).values.repeat(K)
level2 = np.tile(tm.makeStringIndex(K).values, N)
index = MultiIndex.from_arrays([level1, level2])
self.s = Series(np.random.randn(N * K), index=index)
self.s_subset = self.s[::2]
def time_reindex_dates(self):
self.df.reindex(self.rng_subset)
Reported by Pylint.
Line: 30
Column: 9
level2 = np.tile(tm.makeStringIndex(K).values, N)
index = MultiIndex.from_arrays([level1, level2])
self.s = Series(np.random.randn(N * K), index=index)
self.s_subset = self.s[::2]
def time_reindex_dates(self):
self.df.reindex(self.rng_subset)
def time_reindex_columns(self):
Reported by Pylint.
Line: 47
Column: 21
params = [["pad", "backfill"], [date_range, period_range]]
param_names = ["method", "constructor"]
def setup(self, method, constructor):
N = 100000
self.idx = constructor("1/1/2000", periods=N, freq="1min")
self.ts = Series(np.random.randn(N), index=self.idx)[::2]
def time_reindex_method(self, method, constructor):
Reported by Pylint.
Line: 49
Column: 9
def setup(self, method, constructor):
N = 100000
self.idx = constructor("1/1/2000", periods=N, freq="1min")
self.ts = Series(np.random.randn(N), index=self.idx)[::2]
def time_reindex_method(self, method, constructor):
self.ts.reindex(self.idx, method=method)
Reported by Pylint.
pandas/plotting/_matplotlib/misc.py
77 issues
Line: 84
Column: 21
ax.hist(values, **hist_kwds)
elif diagonal in ("kde", "density"):
from scipy.stats import gaussian_kde
y = values
gkde = gaussian_kde(y)
ind = np.linspace(y.min(), y.max(), 1000)
ax.plot(ind, gkde.evaluate(ind), **density_kwds)
Reported by Pylint.
Line: 39
Column: 5
alpha=0.5,
figsize=None,
ax=None,
grid=False,
diagonal="hist",
marker=".",
density_kwds=None,
hist_kwds=None,
range_padding=0.05,
Reported by Pylint.
Line: 47
Column: 10
range_padding=0.05,
**kwds,
):
df = frame._get_numeric_data()
n = df.columns.size
naxes = n * n
fig, axes = create_subplots(naxes=naxes, figsize=figsize, ax=ax, squeeze=False)
# no gaps between subplots
Reported by Pylint.
Line: 302
Column: 3
import matplotlib.pyplot as plt
# TODO: is the failure mentioned below still relevant?
# random.sample(ndarray, int) fails on python 3.3, sigh
data = list(series.values)
samplings = [random.sample(data, size) for _ in range(samples)]
means = np.array([np.mean(sampling) for sampling in samplings])
Reported by Pylint.
Line: 1
Column: 1
from __future__ import annotations
import random
from typing import (
TYPE_CHECKING,
Hashable,
)
import matplotlib.lines as mlines
Reported by Pylint.
Line: 28
Column: 5
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from pandas import (
DataFrame,
Series,
)
Reported by Pylint.
Line: 34
Column: 1
)
def scatter_matrix(
frame: DataFrame,
alpha=0.5,
figsize=None,
ax=None,
grid=False,
Reported by Pylint.
Line: 34
Column: 1
)
def scatter_matrix(
frame: DataFrame,
alpha=0.5,
figsize=None,
ax=None,
grid=False,
Reported by Pylint.
Line: 34
Column: 1
)
def scatter_matrix(
frame: DataFrame,
alpha=0.5,
figsize=None,
ax=None,
grid=False,
Reported by Pylint.
Line: 34
Column: 1
)
def scatter_matrix(
frame: DataFrame,
alpha=0.5,
figsize=None,
ax=None,
grid=False,
Reported by Pylint.
pandas/tests/plotting/frame/test_hist_box_by.py
77 issues
Line: 4
Column: 1
import re
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import DataFrame
import pandas._testing as tm
Reported by Pylint.
Line: 31
Column: 9
import matplotlib as mpl
mpl.rcdefaults()
self.hist_df = _create_hist_box_with_by_df()
@pytest.mark.parametrize(
"by, column, titles, legends",
[
("C", "A", ["a", "b", "c"], [["A"]] * 3),
Reported by Pylint.
Line: 198
Column: 16
ax1, ax2, ax3 = self.hist_df.plot.hist(column="A", by="C", sharex=True)
# share x
assert ax1._shared_x_axes.joined(ax1, ax2)
assert ax2._shared_x_axes.joined(ax1, ax2)
assert ax3._shared_x_axes.joined(ax1, ax3)
assert ax3._shared_x_axes.joined(ax2, ax3)
# don't share y
Reported by Pylint.
Line: 199
Column: 16
# share x
assert ax1._shared_x_axes.joined(ax1, ax2)
assert ax2._shared_x_axes.joined(ax1, ax2)
assert ax3._shared_x_axes.joined(ax1, ax3)
assert ax3._shared_x_axes.joined(ax2, ax3)
# don't share y
assert not ax1._shared_y_axes.joined(ax1, ax2)
Reported by Pylint.
Line: 200
Column: 16
# share x
assert ax1._shared_x_axes.joined(ax1, ax2)
assert ax2._shared_x_axes.joined(ax1, ax2)
assert ax3._shared_x_axes.joined(ax1, ax3)
assert ax3._shared_x_axes.joined(ax2, ax3)
# don't share y
assert not ax1._shared_y_axes.joined(ax1, ax2)
assert not ax2._shared_y_axes.joined(ax1, ax2)
Reported by Pylint.
Line: 201
Column: 16
assert ax1._shared_x_axes.joined(ax1, ax2)
assert ax2._shared_x_axes.joined(ax1, ax2)
assert ax3._shared_x_axes.joined(ax1, ax3)
assert ax3._shared_x_axes.joined(ax2, ax3)
# don't share y
assert not ax1._shared_y_axes.joined(ax1, ax2)
assert not ax2._shared_y_axes.joined(ax1, ax2)
assert not ax3._shared_y_axes.joined(ax1, ax3)
Reported by Pylint.
Line: 204
Column: 20
assert ax3._shared_x_axes.joined(ax2, ax3)
# don't share y
assert not ax1._shared_y_axes.joined(ax1, ax2)
assert not ax2._shared_y_axes.joined(ax1, ax2)
assert not ax3._shared_y_axes.joined(ax1, ax3)
assert not ax3._shared_y_axes.joined(ax2, ax3)
@pytest.mark.slow
Reported by Pylint.
Line: 205
Column: 20
# don't share y
assert not ax1._shared_y_axes.joined(ax1, ax2)
assert not ax2._shared_y_axes.joined(ax1, ax2)
assert not ax3._shared_y_axes.joined(ax1, ax3)
assert not ax3._shared_y_axes.joined(ax2, ax3)
@pytest.mark.slow
def test_axis_share_y_with_by(self):
Reported by Pylint.
Line: 206
Column: 20
# don't share y
assert not ax1._shared_y_axes.joined(ax1, ax2)
assert not ax2._shared_y_axes.joined(ax1, ax2)
assert not ax3._shared_y_axes.joined(ax1, ax3)
assert not ax3._shared_y_axes.joined(ax2, ax3)
@pytest.mark.slow
def test_axis_share_y_with_by(self):
# GH 15079
Reported by Pylint.
Line: 207
Column: 20
assert not ax1._shared_y_axes.joined(ax1, ax2)
assert not ax2._shared_y_axes.joined(ax1, ax2)
assert not ax3._shared_y_axes.joined(ax1, ax3)
assert not ax3._shared_y_axes.joined(ax2, ax3)
@pytest.mark.slow
def test_axis_share_y_with_by(self):
# GH 15079
ax1, ax2, ax3 = self.hist_df.plot.hist(column="A", by="C", sharey=True)
Reported by Pylint.
pandas/io/formats/style.py
77 issues
Line: 2960
Suggestion:
https://bandit.readthedocs.io/en/latest/plugins/b701_jinja2_autoescape_false.html
# error: Variable "cls" is not valid as a type
# error: Invalid base class "cls"
class MyStyler(cls): # type:ignore[valid-type,misc]
env = jinja2.Environment(loader=loader)
if html_table:
template_html_table = env.get_template(html_table)
if html_style:
template_html_style = env.get_template(html_style)
Reported by Bandit.
Line: 384
Column: 25
@doc(
NDFrame.to_excel,
klass="Styler",
storage_options=generic._shared_docs["storage_options"],
)
def to_excel(
self,
excel_writer,
sheet_name: str = "Sheet1",
Reported by Pylint.
Line: 400
Column: 9
startcol: int = 0,
engine: str | None = None,
merge_cells: bool = True,
encoding: str | None = None,
inf_rep: str = "inf",
verbose: bool = True,
freeze_panes: tuple[int, int] | None = None,
) -> None:
Reported by Pylint.
Line: 402
Column: 9
merge_cells: bool = True,
encoding: str | None = None,
inf_rep: str = "inf",
verbose: bool = True,
freeze_panes: tuple[int, int] | None = None,
) -> None:
from pandas.io.formats.excel import ExcelFormatter
Reported by Pylint.
Line: 761
Column: 28
# create a default: set float, complex, int cols to 'r' ('S'), index to 'l'
_original_columns = self.data.columns
self.data.columns = RangeIndex(stop=len(self.data.columns))
numeric_cols = self.data._get_numeric_data().columns.to_list()
self.data.columns = _original_columns
column_format = ""
for level in range(self.index.nlevels):
column_format += "" if self.hide_index_[level] else "l"
for ci, _ in enumerate(self.data.columns):
Reported by Pylint.
Line: 822
Column: 17
if sparse_columns is None:
sparse_columns = get_option("styler.sparse.columns")
latex = obj._render_latex(
sparse_index=sparse_index,
sparse_columns=sparse_columns,
multirow_align=multirow_align,
multicol_align=multicol_align,
environment=environment,
Reported by Pylint.
Line: 917
Column: 16
sparse_columns = get_option("styler.sparse.columns")
# Build HTML string..
html = obj._render_html(
sparse_index=sparse_index,
sparse_columns=sparse_columns,
exclude_styles=exclude_styles,
encoding=encoding if encoding else "utf-8",
doctype_html=doctype_html,
Reported by Pylint.
Line: 1299
Column: 16
method: str = "apply",
**kwargs,
) -> Styler:
axis = self.data._get_axis_number(axis)
obj = self.index if axis == 0 else self.columns
levels_ = _refactor_levels(level, obj)
data = DataFrame(obj.to_list()).loc[:, levels_]
Reported by Pylint.
Line: 1749
Column: 16
may produce strange behaviour due to CSS controls with missing elements.
"""
axis = self.data._get_axis_number(axis)
obj = self.data.index if axis == 0 else self.data.columns
pixel_size = (75 if axis == 0 else 25) if not pixel_size else pixel_size
props = "position:sticky; background-color:white;"
if not isinstance(obj, pd.MultiIndex):
Reported by Pylint.
Line: 1816
Column: 41
"selector": f"thead tr:nth-child({obj.nlevels+1}) th",
"props": props
+ (
f"top:{(i+1) * pixel_size}px; height:{pixel_size}px; "
"z-index:2;"
),
}
)
Reported by Pylint.